1
|
Huang C, Liu Y, Wang S, Xia J, Hu D, Xu R. From Genes to Metabolites: HSP90B1's Role in Alzheimer's Disease and Potential for Therapeutic Intervention. Neuromolecular Med 2025; 27:6. [PMID: 39760808 DOI: 10.1007/s12017-024-08822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoikis-related genes (ARGs) in the AD brain, thereby expanding the repertoire of biomarkers for the disease. Using publically available gene expression data for the hippocampus from both healthy and AD subjects, differentially expressed genes (DEGs) were identified. Subsequent intersection with a comprehensive list of 575 ARGs yielded a subset for enrichment analysis. Machine learning algorithms were employed to identify potential biomarker, which was validated in an AD animal model. Additionally, gene set enrichment analysis was conducted on the biomarker and its interacting genes and microRNAs were predicted through online databases. To assess its biological functions, the expression of the marker was suppressed in an in vitro model to examine cell viability and inflammation-related indicators. Furthermore, following treatment with the inhibitor, the dysregulated metabolites in the hippocampus of the model mice were evaluated. Forty-seven ARGs were ultimately identified, with HSP90B1 emerging as a central marker. HSP90B1 was found to be significantly up-regulated in AD hippocampal samples and its inhibition conferred increased cell viability and reduced levels of inflammatory factors in amyloid β-protein (Aβ)-treated cells. A total of 24 differentially expressed metabolites were confidently identified between model mice and those with low HSP90B1 expression, with bioinformatics analysis shedding light on the molecular underpinnings of HSP90B1's involvement in AD. Collectively, these findings may inform novel insights into the pathogenesis, mechanisms, or therapeutic strategies for AD.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China
| | - Ying Liu
- Department of Geriatrics, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Shuxin Wang
- Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 Liang Xi Road, Binhu District, Wuxi, 214000, Jiangsu, China
| | - Di Hu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
| |
Collapse
|
2
|
Xu F, Li Z, Liu T, Pang X, Fan C, Jiang H. The role of cellular senescence in the pathogenesis of Rheumatoid Arthritis: Focus on IL-6 as a target gene. Cytokine 2024; 184:156762. [PMID: 39326197 DOI: 10.1016/j.cyto.2024.156762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Rheumatoid arthritis is a chronic autoimmune disease. However, the specific role of senescence in rheumatoid arthritis (RA) is unknown. This study aimed to identify potential aging-related genes that have diagnostic and therapeutic value for RA. METHODS The GSE89408 dataset was downloaded from the Gene Expression Omnibus (GEO). Aging-related genes were downloaded from the HAGR database. Differentially expressed genes (DEGs) were subsequently identified with the "edgeR" tool. Next, hub genes were identified with a PPI network and CytoHubba analysis. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of these hub genes. Immune infiltration analysis was performed with the CIBERSORT algorithm. Additionally, molecular docking was performed with CB-Dock2. Finally, correlation experiments were performed to validate the bioinformatics and molecular docking results. RESULTS A total of 22 ADEGs were identified. Combined PPI network and CytoHubba analyses identified a total of 7 hub genes, including IL-6, IL7R, IL2RG, CDK1, PTGS2, and LEP, which are associated mainly with inflammation and immune responses. ROC analysis revealed that the hub genes were highly predictive of RA. Analysis of immune infiltration revealed that the 6 hub genes were positively associated with M1 macrophages. Validation experiments revealed that the inhibition of IL-6 significantly decreased the degree of synovial fibroblast (FLS) senescence. Furthermore, molecular docking and validation experiments revealed that IL-6 is a potential target for drug therapy. CONCLUSION This study demonstrated that RA-FLS senescence may promote the development of RA via inflammatory and immune mechanisms. Seven hub genes were identified, of which IL-6 is a reliable biomarker for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Fengxia Xu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Zhen Li
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Tao Liu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Xue Pang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| |
Collapse
|
3
|
Huang C, Lin J, Chen L, Sun W, Xia J, Wu M. Upregulation of C1QC as a Mediator of Blood-Brain Barrier Damage in Type 2 Diabetes Mellitus. Mol Neurobiol 2024:10.1007/s12035-024-04615-5. [PMID: 39531193 DOI: 10.1007/s12035-024-04615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The blood-brain barrier (BBB) is a neurovascular structure that safeguards the brain by inhibiting the passage of harmful substances. In individuals with type 2 diabetes mellitus (T2DM), the heightened blood glucose may cause damage to endothelial cells and neurons, increase collagen protein content, and elevate BBB permeability. Although the impact of blood glucose regulation on the structure and function of BBB has been documented, the exact mechanism remains incompletely elucidated. The primary aim of this investigation was to uncover the pivotal dysregulation of specific genes observed within the cerebral microvascular endothelial cells of diabetic patients, with a particular focus on understanding its biological implications in the disruption of the BBB. By integrating bioinformatics analysis, we identified C1QC as a potential upregulated marker. The expression level of C1QC was subsequently verified in both in vivo and in vitro models. Our experiments have discovered that, under diabetic conditions, suppressing C1QC leads to the mitigation of BBB damage. The presence of a high level of C1QC, through its binding to discoidin domain receptor 2 (DDR2), may trigger the activation of its downstream MMP9, a calcium-dependent enzyme that is capable of degrading protein components in the extracellular matrix, consequently leading to the structural and functional disruption of BBB. In summary, the findings of this study indicate that the aberrantly upregulated expression of C1QC may exert deleterious effects on the BBB under diabetes. To alleviate neurological impairments in individuals with T2DM, C1QC may emerge as a promising therapeutic target worthy of further investigation.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxing Lin
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lan Chen
- Taylor's University, Subang Jaya, Malaysia
| | - Wenzhe Sun
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Min Wu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
4
|
Huang X, Lan Z, Hu Z. Role and mechanisms of mast cells in brain disorders. Front Immunol 2024; 15:1445867. [PMID: 39253085 PMCID: PMC11381262 DOI: 10.3389/fimmu.2024.1445867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Mast cells serve as crucial effector cells within the innate immune system and are predominantly localized in the skin, airways, gastrointestinal tract, urinary and reproductive tracts, as well as in the brain. Under physiological conditions, brain-resident mast cells secrete a diverse array of neuro-regulatory mediators to actively participate in neuroprotection. Meanwhile, as the primary source of molecules causing brain inflammation, mast cells also function as the "first responders" in brain injury. They interact with neuroglial cells and neurons to facilitate the release of numerous inflammatory mediators, proteases, and reactive oxygen species. This process initiates and amplifies immune-inflammatory responses in the brain, thereby contributing to the regulation of neuroinflammation and blood-brain barrier permeability. This article provides a comprehensive overview of the potential mechanisms through which mast cells in the brain may modulate neuroprotection and their pathological implications in various neurological disorders. It is our contention that the inhibition of mast cell activation in brain disorders could represent a novel avenue for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Xuanyu Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Xia J, Zhang L, Gu T, Liu Q, Wang Q. Identification of ferroptosis related markers by integrated bioinformatics analysis and In vitro model experiments in rheumatoid arthritis. BMC Med Genomics 2023; 16:18. [PMID: 36717858 PMCID: PMC9887825 DOI: 10.1186/s12920-023-01445-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by destructive and symmetrical joint diseases and synovitis. This research attempted to explore the mechanisms involving ferroptosis in RA, and find the biological markers by integrated analysis. METHODS Gene expression data (GSE55235 and GSE55457) of synovial tissues from healthy and RA individuals were downloaded. By filtering the differentially expressed genes (DEGs) and intersecting them with the 484 ferroptosis-related genes (FRGs), the overlapping genes were identified. After the enrichment analysis, the machine learning-based approaches were introduced to screen the potential biomarkers, which were further validated in other two datasets (GSE77298 and GSE93272) and cell samples. Besides, we also analyze the infiltrating immune cells in RA and their correlation with the biomarkers. RESULTS With the criteria, 635 DEGs in RA were included, and 29 of them overlapped in the reported 484 FRGs. The enrichments of the 29 differentially expressed ferroptosis-related genes indicated that they may involve in the FoxO signaling pathway and inherited metabolic disorder. RRM2, validating by the external datasets and western blot, were identified as the biomarker with the high diagnostic value, whose associated immune cells, such as Neutrophils and Macrophages M1, were also further evaluated. CONCLUSION We preliminary explored the mechanisms between ferroptosis and RA. These results may help us better comprehend the pathophysiological changes of RA in basic research, and provide new evidences for the clinical transformation.
Collapse
Affiliation(s)
- Jinjun Xia
- grid.263761.70000 0001 0198 0694Department of Clinical Laboratory, Wuxi 9Th People’s Hospital Affiliated to Soochow University, No. 999 Liang Xi Road, Binhu District, Wuxi, 214000 Jiangsu China
| | - Lulu Zhang
- grid.263761.70000 0001 0198 0694Department of Clinical Laboratory, Wuxi 9Th People’s Hospital Affiliated to Soochow University, No. 999 Liang Xi Road, Binhu District, Wuxi, 214000 Jiangsu China
| | - Tao Gu
- grid.263761.70000 0001 0198 0694Department of Clinical Laboratory, Wuxi 9Th People’s Hospital Affiliated to Soochow University, No. 999 Liang Xi Road, Binhu District, Wuxi, 214000 Jiangsu China
| | - Qingyang Liu
- grid.263761.70000 0001 0198 0694Department of Clinical Laboratory, Wuxi 9Th People’s Hospital Affiliated to Soochow University, No. 999 Liang Xi Road, Binhu District, Wuxi, 214000 Jiangsu China
| | - Qiubo Wang
- grid.263761.70000 0001 0198 0694Department of Clinical Laboratory, Wuxi 9Th People’s Hospital Affiliated to Soochow University, No. 999 Liang Xi Road, Binhu District, Wuxi, 214000 Jiangsu China
| |
Collapse
|
6
|
Xu J, Chen WJ, Wang Z, Xin MY, Gao SH, Liu WJ, Wang KK, Ma JW, Yan XZ, Ren YM. Profiles of transcriptome and metabolic pathways after hypobaric hypoxia exposure. Proteome Sci 2022; 20:16. [PMID: 36153524 PMCID: PMC9508752 DOI: 10.1186/s12953-022-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxia is a risk factor for non-alcoholic fatty liver diseases, leading to permanent imbalance of liver lipid homeostasis and steatohepatitis. However, a detailed understanding of the metabolic genes and pathways involved remains elusive. METHODS In vivo experiments were designed to analyze body weight and lipid metabolism changes of rats under hypoxia. After this, we combined microarray analysis and gene overexpression experiments to validate the core mechanisms involved in the response to hypoxia. RESULTS The hypobaric hypoxia treated rats exhibited significantly increased serum triglycerides (TG) (p < 0.05), despite no significant changes in serum alanine aminotransferase (ALT) and blood glucose (BG) were observed. In addition, serum high-density lipoprotein cholesterol (HDL-C) greatly increased after 3 days and then returned to normal level at 30 days. Interestingly, serum low-density lipoprotein cholesterol (LDL-C) showed an opposite pattern. Transcriptome analysis, qRT-PCR, ICC revealed that the genes PPARA, ANGPTL4, CPT-I, ACC and LPL play a crucial role in response to hypobaric hypoxia. IPA pathway analysis further confirmed that PPARA-mediated regulation of ANGPTL4 participated in TG clearance and lipoprotein metabolism. Finally, the PPARA-ANGPTL4 pathway was validated in rats and HL 7702 cells treated with Fenofibrate, a PPARA specific agonist. CONCLUSIONS Our study showed this pathway plays an important role on lipid metabolism caused by hypobaric hypoxia and the potential target genes associated with oxygen-dependent lipid homeostasis in the liver.
Collapse
Affiliation(s)
- Jin Xu
- Qinghai University, Xining, 810001, China
| | - Wen-Jie Chen
- Qinghai University Clinical Medicine Class 6, Grade 20, Xining, 810001, China
| | - Zhan Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ming-Yuan Xin
- Qinghai University Clinical Medicine Class 1, Grade 19, Xining, 810001, China
| | - Shen-Han Gao
- Qinghai University, Plateau Biology Jing Ying Class, 19 Grade, Xining, 810001, China
| | - Wen-Jing Liu
- Qinghai University the Graduate Student of Foundation Medical of 2020, Xining, 810001, China
| | - Kai-Kun Wang
- Qinghai University Clinical Medicine Class 3, Grade 20, Xining, 810001, China
| | - Jing-Wei Ma
- Qinghai University Clinical Medicine Class 1, Grade 19, Xining, 810001, China
| | - Xin-Zong Yan
- Qinghai University the Graduate Student of Foundation Medical of 2021, Xining, 810001, China
| | | |
Collapse
|