1
|
Keltsch NG, Dietrich C, Wick A, Heermann R, Tremel W, Ternes TA. Chlorination of quorum sensing molecules: Kinetics and transformation pathways. CHEMOSPHERE 2024; 370:143898. [PMID: 39645045 DOI: 10.1016/j.chemosphere.2024.143898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The impact of chlorination on quorum sensing molecules (QSMs) is not often addressed in disinfection research. Yet pathogenicity and biofilm formation are controlled by quorum sensing (QS) in many bacteria. Chemical transformation of the compounds could have an impact on all of these processes. For this reason, our study elucidated the reaction kinetics and transformation pathways of several N-acyl homoserine lactones (AHLs) and 2-heptyl-4-quinolone (HHQ) in contact with free available chlorine (FAC), a potent QS inhibitor. Both AHLs and HHQ, are known as QSMs for Gram-negative bacteria. Using FAC, a complete degradation of the target compound was observed for p-coumaroyl AHL (pC-AHL), C14:1-AHL, HHQ and 3-Oxo-C14-AHL. The reaction order for FAC varied between 1.19 (±0.07) (pC-AHL) to 1.62 (±0.13) (HHQ). This means that different reactive species (e.g. hypochlorous acid and dichlorine monoxide) are likely to be involved in the reaction mechanism. The first-order rate constants were strongly pH-dependent. For C14:1-AHL and HHQ, the first-order rate constants decreased from pH 6.0 to pH 8.5. A maximum was observed for pC-AHL at pH 8.5 ranging from pH 6.0 to 10. In addition to the distribution of the reactive species, the phenol/phenolate ratio strongly influenced the first-order rate constants for pC-AHL. In total, at pH 7 (phosphate buffered) 29 transformation products were identified and the related transformation pathways were proposed via non-target and suspect screening using high-resolution mass spectrometry. The observed reaction mechanisms can be transferred to structurally similar QSMs to further understand QS-controlled processes during chlorination. We assumed that the transformation of the QSMs affects QS of the bacteria, thereby blocking QS-controlled processes such as biofilm formation.
Collapse
Affiliation(s)
- N G Keltsch
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068, Koblenz, Germany; Universität Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany
| | - C Dietrich
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - A Wick
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - R Heermann
- Johannes Gutenberg Universität Mainz, Institut für Molekulare Physiologie, Mikrobiologie und Biotechnologie, Hanns-Dieter-Huesch-Weg 17, 55128, Mainz, Germany
| | - W Tremel
- Johannes Gutenberg-Universität Mainz, Chemie Department, Duesbergweg 10-14, 55099, Mainz, Germany
| | - T A Ternes
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068, Koblenz, Germany; Universität Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany.
| |
Collapse
|
2
|
Keltsch NG, Pütz E, Dietrich C, Wick A, Tremel W, Ternes TA. Bromination of Quorum Sensing Molecules: Vanadium Bromoperoxidase and Cerium Dioxide Nanocrystals via Free Active Bromine Transform Bacterial Communication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18491-18498. [PMID: 37222552 DOI: 10.1021/acs.est.3c00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The halogenation of quorum sensing molecules (QSMs) is known to be catalyzed by enzymes such as haloperoxidase (HPO) as well as cerium dioxide nanocrystals (NC), which mimic enzymes. Those enzymes and mimics can influence biological processes such as biofilm formation, where bacteria use QSMs for the "chemical" communication between each other and the coordination of surface colonization. However, not much is known about the degradation behavior of a broad spectrum of QSMs, especially for HPO and its mimics. Therefore, in this study, the degradation of three QSMs with different molecule moieties was elucidated. For this purpose, different batch experiments were carried out with HPOs, NCs and free active bromine (FAB). For N-β-ketocaproyl-homoserine lactone (3-Oxo-C6-AHL), N-cis-tetradec-9Z-enoyl-homoserine lactone (C14:1-AHL) and 2-heptyl-4-quinolone (HHQ) a fast degradation and moiety-specific transformations were observed. The HPO vanadium bromoperoxidase as well as cerium dioxide NCs catalyzed the formation of the same brominated transformation products (TPs). Since the same TPs are formed in batch experiments with FAB it is very likely that FAB is playing a major role in the catalytical reaction mechanism leading to the transformation of QSMs. In this study in total 17 TPs could be identified in different levels of confidence and the catalytic degradation processes for two QS groups (unsaturated AHLs and alkyl quinolones) with cerium dioxide NCs and vanadium bromoperoxidase were expanded.
Collapse
Affiliation(s)
- N G Keltsch
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068 Koblenz, Germany
- Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany
| | - E Pütz
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - C Dietrich
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - A Wick
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - W Tremel
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - T A Ternes
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068 Koblenz, Germany
- Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany
| |
Collapse
|
3
|
Eryildiz B, Yavuzturk Gul B, Koyuncu I. A sustainable approach for the removal methods and analytical determination methods of antiviral drugs from water/wastewater: A review. JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103036. [PMID: 35966450 PMCID: PMC9359512 DOI: 10.1016/j.jwpe.2022.103036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 05/05/2023]
Abstract
In the last years, antiviral drugs especially used for the treatment of COVID-19 have been considered emerging contaminants because of their continuous occurrence and persistence in water/wastewater even at low concentrations. Furthermore, as compared to antiviral drugs, their metabolites and transformation products of these pharmaceuticals are more persistent in the environment. They have been found in environmental matrices all over the world, demonstrating that conventional treatment technologies are unsuccessful for removing them from water/wastewater. Several approaches for degrading/removing antiviral drugs have been studied to avoid this contamination. In this study, the present level of knowledge on the input sources, occurrence, determination methods and, especially, the degradation and removal methods of antiviral drugs are discussed in water/wastewater. Different removal methods, such as conventional treatment methods (i.e. activated sludge), advanced oxidation processes (AOPs), adsorption, membrane processes, and combined processes, were evaluated. In addition, the antiviral drugs and these metabolites, as well as the transformation products created as a result of treatment, were examined. Future perspectives for removing antiviral drugs, their metabolites, and transformation products were also considered.
Collapse
Affiliation(s)
- Bahriye Eryildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
4
|
Lim S, Shi JL, von Gunten U, McCurry DL. Ozonation of organic compounds in water and wastewater: A critical review. WATER RESEARCH 2022; 213:118053. [PMID: 35196612 DOI: 10.1016/j.watres.2022.118053] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Ozonation has been applied in water treatment for more than a century, first for disinfection, later for oxidation of inorganic and organic pollutants. In recent years, ozone has been increasingly applied for enhanced municipal wastewater treatment for ecosystem protection and for potable water reuse. These applications triggered significant research efforts on the abatement efficiency of organic contaminants and the ensuing formation of transformation products. This endeavor was accompanied by developments in analytical and computational chemistry, which allowed to improve the mechanistic understanding of ozone reactions. This critical review assesses the challenges of ozonation of impaired water qualities such as wastewaters and provides an up-to-date compilation of the recent kinetic and mechanistic findings of ozone reactions with dissolved organic matter, various functional groups (olefins, aromatic compounds, heterocyclic compounds, aliphatic nitrogen-containing compounds, sulfur-containing compounds, hydrocarbons, carbanions, β-diketones) and antibiotic resistance genes.
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Jiaming Lily Shi
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Nippes RP, Macruz PD, da Silva GN, Neves Olsen Scaliante MH. A critical review on environmental presence of pharmaceutical drugs tested for the covid-19 treatment. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2021; 152:568-582. [PMID: 34226801 PMCID: PMC8243632 DOI: 10.1016/j.psep.2021.06.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 05/11/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a pandemic. The outbreak caused a worldwide impact, becoming a health threat to the general population and its professionals. To date, there are no specific antiviral treatments or vaccines for the COVID-19 infection, however, some drugs are being clinically tested. The use of these drugs on large scale raises great concern about their imminent environmental risk, since the elimination of these compounds by feces and urine associated with the inefficiency of sewage treatment plants in their removal can result in their persistence in the environment, putting in risk the health of humans and of other species. Thus, the goal of this work was to conduct a review of other studies that evaluated the presence of the drugs chloroquine, hydroxychloroquine, azithromycin, ivermectin, dexamethasone, remdesivir, favipiravir and some HIV antivirals in the environment. The research indicated the presence of these drugs in the environment in different regions, with concentration data that could serve as a basis for further comparative studies following the pandemic.
Collapse
Affiliation(s)
- Ramiro Picoli Nippes
- State University of Maringa, Department of Chemical Engineering, Maringa, 87020-900, Parana, Brazil
| | - Paula Derksen Macruz
- State University of Maringa, Department of Chemical Engineering, Maringa, 87020-900, Parana, Brazil
| | | | | |
Collapse
|