1
|
Yong XY, Ji YX, Yang QW, Li B, Cheng XL, Zhou J, Zhang XY. Fe-doped g-C 3N 4 with duel active sites for ultrafast degradation of organic pollutants via visible-light-driven photo-Fenton reaction: Insight into the performance, kinetics, and mechanism. CHEMOSPHERE 2024; 351:141135. [PMID: 38215827 DOI: 10.1016/j.chemosphere.2024.141135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
The photo-Fenton process provides a sustainable and cost-effective strategy for removing refractory organic contaminants in wastewater. Herein, a high-efficient Fe-doped g-C3N4 photocatalyst (Fe@CN10) with a unique 3D porous mesh structure was prepared by one-pot thermal polymerization for ultrafast degradation of azo dyes, antibiotics, and phenolic acids in heterogeneous photo-Fenton systems under visible light irradiation. Fe@CN10 exhibited a synergy between adsorption-degradation processes due to the co-existence of Fe3C and Fe3N active sites. Specifically, Fe3C acted as an adsorption site for pollutant and H2O2 molecules, while Fe3N acted as a photocatalytic active site for the high-efficient degradation of MO. Resultingly, Fe@CN10 showed a photocatalytic degradation rate of MO up to 140.32 mg/L min-1. The dominant ROS contributed to the removal of MO in the photo-Fenton pathway was hydroxyl radical (•OH). Surprisingly, as the key reactive species, singlet oxygen (1O2) generated from superoxide radical (•O2-) also efficiently attacked MO in a photo-self-Fenton pathway. Additionally, sponge/Fe@CN10 was prepared and filled in the continuous flow reactors for nearly 100% degradation of MO over 150 h when treating artificial organic wastewater. This work provided a facile route to prepare highly-active Fe-doped photocatalysts and develop a green photocatalytic system for wastewater treatment in the future.
Collapse
Affiliation(s)
- Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China; Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China.
| | - Yu-Xuan Ji
- Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China; School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qian-Wen Yang
- Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China; School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210041, China
| | - Biao Li
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Xiao-Long Cheng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China; Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China
| | - Xue-Ying Zhang
- Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China; School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
2
|
Meng X, Li K, Zhao Z, Li Y, Yang Q, Jiang B. A pH self-regulated three-dimensional electro-Fenton system with a bifunctional Fe-Cu-C particle electrode: High degradation performance, wide working pH and good anti-scaling ability. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Tian X, Chen Y, Chen Y, Chen D, Wang Q, Li X. Removal of Gaseous Hydrogen Sulfide by a FeOCl/H 2O 2 Wet Oxidation System. ACS OMEGA 2022; 7:8163-8173. [PMID: 35284743 PMCID: PMC8908517 DOI: 10.1021/acsomega.2c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 05/29/2023]
Abstract
The removal of gaseous hydrogen sulfide using FeOCl/H2O2 was studied. The effects of the FeOCl dosage, the H2O2 concentration, the reaction temperature, and the gas flow rate on the removal of H2S were investigated. The reaction products were analyzed, and the characterization of FeOCl was carried out by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy. Furthermore, radical quenching experiments were carried out using butylated hydroxytoluene, isopropanol, and benzoquinone. It was found that the H2S removal rate for a H2S gas concentration of 160 ppm reached 85.6% when bubbling through 100 mL of an aqueous solution containing FeOCl (1 g/L) and H2O2 (0.33 mol/L) at 293 K with a flow rate of 135 mL/min. Although the dissolution of chlorine in FeOCl was found to result in reduced catalytic performance, the activity was restored after soaking the catalyst in concentrated hydrochloric acid (37%) and subsequent calcination. The mechanism of H2S removal was also discussed, and it was found that this process was controlled by H2S diffusion. FeOCl was found to activate H2O2 and produce radicals, such as •OH and •O2 -, resulting in the formation of a water film rich in radicals on the FeOCl surface. Following the diffusion of H2S into the water film, it underwent oxidation by radicals to produce SO4 2-. Overall, the catalyst and the product can be effectively separated.
Collapse
Affiliation(s)
- Xiubo Tian
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| | - Ying Chen
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
- United
National-Local Engineering Laboratory of Harbor Oil & Gas Storage
and Transportation Technology, No. 1, Haida South Road, Dinghai District, Zhoushan 316022, Zhejiang, P. R. China
- Zhejiang
Provincial Key Laboratory of Petrochemical Pollution Control, Dinghai District, Zhoushan 316022, Zhejiang, P.
R. China
| | - Yong Chen
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| | - Dong Chen
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| | - Quan Wang
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| | - Xiaohong Li
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| |
Collapse
|
4
|
Wang X, Zhao J, Song C, Shi X, Du H. An Eco-friendly Iron Cathode Electro-Fenton System Coupled With a pH-Regulation Electrolysis Cell for p-nitrophenol Degradation. Front Chem 2022; 9:837761. [PMID: 35155386 PMCID: PMC8833155 DOI: 10.3389/fchem.2021.837761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
The high consumption of salt reagents and strict pH control are still bottlenecks for the full-scale application of the Fenton reaction. In this work, a novel eco-friendly iron cathode electrochemical Fenton (ICEF) system coupled with a pH-regulation divided electrolysis cell was developed. In a pH-regulation divided electrolysis system, the desired pH for an effective Fenton reaction and for a neutral treated media could be obtained by H2O splitting into H+ and OH− at the anode and cathode, respectively. In an ICEF system, an iron plate was used as the cathode to inhibit the release of iron ions and promote the reduction of Fe3+ to Fe2+. It was found that when a potential of 1.2 V/SCE was applied on the iron cathode, 98% of p-nitrophenol was removed in the combined system after 30 min with continuously adding 200 mg/L of H2O2. Meanwhile, a COD and TOC removal efficiency of 79 and 60% was obtained, respectively. In this case, the conductivity just slightly increased from 4.35 to 4.37 mS/cm, minimizing the increase of water salinity, as compared with the conventional Fenton process. Generally, this combined system was eco-friendly, energy-efficient, and has the potential of being a promising technology for the removal of bio-refractory organic pollutants from wastewaters.
Collapse
Affiliation(s)
- Xiaohui Wang
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
- *Correspondence: Xiaohui Wang,
| | - Jingang Zhao
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
| | - Chunyan Song
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
| | - Xian Shi
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
| | - Haipeng Du
- Technical Test Center of Sinopec Shengli OilField, Dongying, China
- Shengli Oilfield Testing and Evaluation Research Co., Ltd., SINOPEC, Dongying, China
| |
Collapse
|
5
|
Xu G, Jiang H, Stapelberg M, Zhou J, Liu M, Li QJ, Cao Y, Gao R, Cai M, Qiao J, Galanek MS, Fan W, Xue W, Marelli B, Zhu M, Li J. Self-Perpetuating Carbon Foam Microwave Plasma Conversion of Hydrocarbon Wastes into Useful Fuels and Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6239-6247. [PMID: 33821621 DOI: 10.1021/acs.est.0c06977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
White wastes (unseparated plastics, face masks, textiles, etc.) pose a serious challenge to sustainable human development and the ecosystem and have recently been exacerbated due to the surge in plastic usage and medical wastes from COVID-19. Current recycling methods such as chemical recycling, mechanical recycling, and incineration require either pre-sorting and washing or releasing CO2. In this work, a carbon foam microwave plasma process is developed, utilizing plasma discharge to generate surface temperatures exceeding ∼3000 K in a N2 atmosphere, to convert unsorted white wastes into gases (H2, CO, C2H4, C3H6, CH4, etc.) and small amounts of inorganic minerals and solid carbon, which can be buried as artificial "coal". This process is self-perpetuating, as the new solid carbon asperities grafted onto the foam's surface actually increase the plasma discharge efficiency over time. This process has been characterized by in situ optical probes and infrared sensors and optimized to handle most of the forms of white waste without the need for pre-sorting or washing. Thermal measurement and modeling show that in a flowing reactor, the device can achieve locally extremely high temperatures, but the container wall will still be cold and can be made with cheap materials, and thus, a miniaturized waste incinerator is possible that also takes advantage of intermittent renewable electricity.
Collapse
Affiliation(s)
- Guiyin Xu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Haibin Jiang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Myles Stapelberg
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiawei Zhou
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mengyang Liu
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qing-Jie Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rui Gao
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Minggang Cai
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jinliang Qiao
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Mitchell S Galanek
- Environment, Health & Safety Office, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Weiwei Fan
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Weijiang Xue
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|