1
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Nelson B, Faquin W. Cancer-aiding elements begin illuminating the genome's "dark matter": Within what was once deemed useless junk, virus-like retrotransposons, long noncoding RNAs, and other exotic molecules have emerged as beacons for cancer researchers. Cancer Cytopathol 2024; 132:671-672. [PMID: 39487955 DOI: 10.1002/cncy.22917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
|
3
|
Tiwari P, Tripathi LP. Long Non-Coding RNAs, Nuclear Receptors and Their Cross-Talks in Cancer-Implications and Perspectives. Cancers (Basel) 2024; 16:2920. [PMID: 39199690 PMCID: PMC11352509 DOI: 10.3390/cancers16162920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various epigenetic and post-transcriptional events in the cell, thereby significantly influencing cellular processes including gene expression, development and diseases such as cancer. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that typically regulate transcription of genes involved in a broad spectrum of cellular processes, immune responses and in many diseases including cancer. Owing to their many overlapping roles as modulators of gene expression, the paths traversed by lncRNA and NR-mediated signaling often cross each other; these lncRNA-NR cross-talks are being increasingly recognized as important players in many cellular processes and diseases such as cancer. Here, we review the individual roles of lncRNAs and NRs, especially growth factor modulated receptors such as androgen receptors (ARs), in various types of cancers and how the cross-talks between lncRNAs and NRs are involved in cancer progression and metastasis. We discuss the challenges involved in characterizing lncRNA-NR associations and how to overcome them. Furthering our understanding of the mechanisms of lncRNA-NR associations is crucial to realizing their potential as prognostic features, diagnostic biomarkers and therapeutic targets in cancer biology.
Collapse
Affiliation(s)
- Prabha Tiwari
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Lokesh P. Tripathi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Kanagawa, Japan
- AI Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Kento Innovation Park NK Building, 3-17 Senrioka Shinmachi, Settsu 566-0002, Osaka, Japan
| |
Collapse
|
4
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
5
|
Wang L, Bitar M, Lu X, Jacquelin S, Nair S, Sivakumaran H, Hillman KM, Kaufmann S, Ziegman R, Casciello F, Gowda H, Rosenbluh J, Edwards SL, French JD. CRISPR-Cas13d screens identify KILR, a breast cancer risk-associated lncRNA that regulates DNA replication and repair. Mol Cancer 2024; 23:101. [PMID: 38745269 PMCID: PMC11094906 DOI: 10.1186/s12943-024-02021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have surpassed the number of protein-coding genes, yet the majority have no known function. We previously discovered 844 lncRNAs that were genetically linked to breast cancer through genome-wide association studies (GWAS). Here, we show that a subset of these lncRNAs alter breast cancer risk by modulating cell proliferation, and provide evidence that a reduced expression on one lncRNA increases breast cancer risk through aberrant DNA replication and repair. METHODS We performed pooled CRISPR-Cas13d-based knockdown screens in breast cells to identify which of the 844 breast cancer-associated lncRNAs alter cell proliferation. We selected one of the lncRNAs that increased cell proliferation, KILR, for follow-up functional studies. KILR pull-down followed by mass spectrometry was used to identify binding proteins. Knockdown and overexpression studies were performed to assess the mechanism by which KILR regulates proliferation. RESULTS We show that KILR functions as a tumor suppressor, safeguarding breast cells against uncontrolled proliferation. The half-life of KILR is significantly reduced by the risk haplotype, revealing an alternative mechanism by which variants alter cancer risk. Mechanistically, KILR sequesters RPA1, a subunit of the RPA complex required for DNA replication and repair. Reduced KILR expression promotes breast cancer cell proliferation by increasing the available pool of RPA1 and speed of DNA replication. Conversely, KILR overexpression promotes apoptosis in breast cancer cells, but not normal breast cells. CONCLUSIONS Our results confirm lncRNAs as mediators of breast cancer risk, emphasize the need to annotate noncoding transcripts in relevant cell types when investigating GWAS variants and provide a scalable platform for mapping phenotypes associated with lncRNAs.
Collapse
Affiliation(s)
- Lu Wang
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Mainá Bitar
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Xue Lu
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sebastien Jacquelin
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Macrophage Biology Laboratory, Mater Research, Brisbane, Australia
| | - Sneha Nair
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Haran Sivakumaran
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kristine M Hillman
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanne Kaufmann
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rebekah Ziegman
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Francesco Casciello
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harsha Gowda
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Joseph Rosenbluh
- Cancer Research Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Functional Genomics Platform, Monash University, Clayton, Australia
| | - Stacey L Edwards
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- Faculty of Health, Queensland University of Technology, Brisbane, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Juliet D French
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- Faculty of Health, Queensland University of Technology, Brisbane, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
6
|
Truchi M, Lacoux C, Gille C, Fassy J, Magnone V, Lopes Goncalves R, Girard-Riboulleau C, Manosalva-Pena I, Gautier-Isola M, Lebrigand K, Barbry P, Spicuglia S, Vassaux G, Rezzonico R, Barlaud M, Mari B. Detecting subtle transcriptomic perturbations induced by lncRNAs knock-down in single-cell CRISPRi screening using a new sparse supervised autoencoder neural network. FRONTIERS IN BIOINFORMATICS 2024; 4:1340339. [PMID: 38501112 PMCID: PMC10945021 DOI: 10.3389/fbinf.2024.1340339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Single-cell CRISPR-based transcriptome screens are potent genetic tools for concomitantly assessing the expression profiles of cells targeted by a set of guides RNA (gRNA), and inferring target gene functions from the observed perturbations. However, due to various limitations, this approach lacks sensitivity in detecting weak perturbations and is essentially reliable when studying master regulators such as transcription factors. To overcome the challenge of detecting subtle gRNA induced transcriptomic perturbations and classifying the most responsive cells, we developed a new supervised autoencoder neural network method. Our Sparse supervised autoencoder (SSAE) neural network provides selection of both relevant features (genes) and actual perturbed cells. We applied this method on an in-house single-cell CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that promote tumor aggressiveness and drug resistance, in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and HIF2 by confirming the specific effect of their knock-down during the temporal switch of the hypoxic response. Next, the SSAE method was able to detect stable short hypoxia-dependent transcriptomic signatures induced by the knock-down of some lncRNAs candidates, outperforming previously published machine learning approaches. This proof of concept demonstrates the relevance of the SSAE approach for deciphering weak perturbations in single-cell transcriptomic data readout as part of CRISPR-based screening.
Collapse
Affiliation(s)
- Marin Truchi
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Caroline Lacoux
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Cyprien Gille
- Université Côte d’Azur, I3S, CNRS UMR7271, Nice, France
| | - Julien Fassy
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Virginie Magnone
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | | | | | - Iris Manosalva-Pena
- Aix-Marseille University, Inserm, TAGC, UMR1090, Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Marine Gautier-Isola
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Kevin Lebrigand
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Pascal Barbry
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Georges Vassaux
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Roger Rezzonico
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | | | - Bernard Mari
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| |
Collapse
|
7
|
Gencel-Augusto J, Wu W, Bivona TG. Long Non-Coding RNAs as Emerging Targets in Lung Cancer. Cancers (Basel) 2023; 15:3135. [PMID: 37370745 DOI: 10.3390/cancers15123135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal cell physiology and organism development. Therefore, deregulation of their activities is involved in disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular mechanisms of cancer initiation, development, and progression, and could open up a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Esposito R, Lanzós A, Uroda T, Ramnarayanan S, Büchi I, Polidori T, Guillen-Ramirez H, Mihaljevic A, Merlin BM, Mela L, Zoni E, Hovhannisyan L, McCluggage F, Medo M, Basile G, Meise DF, Zwyssig S, Wenger C, Schwarz K, Vancura A, Bosch-Guiteras N, Andrades Á, Tham AM, Roemmele M, Medina PP, Ochsenbein AF, Riether C, Kruithof-de Julio M, Zimmer Y, Medová M, Stroka D, Fox A, Johnson R. Tumour mutations in long noncoding RNAs enhance cell fitness. Nat Commun 2023; 14:3342. [PMID: 37291246 PMCID: PMC10250536 DOI: 10.1038/s41467-023-39160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, 80131, Naples, Italy.
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Tina Uroda
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Sunandini Ramnarayanan
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - Isabel Büchi
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Taisia Polidori
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Hugo Guillen-Ramirez
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ante Mihaljevic
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Bernard Mefi Merlin
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Lia Mela
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Eugenio Zoni
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Lusine Hovhannisyan
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Finn McCluggage
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Matúš Medo
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Giulia Basile
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Dominik F Meise
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Sandra Zwyssig
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Corina Wenger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Kyriakos Schwarz
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Adrienne Vancura
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Núria Bosch-Guiteras
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Álvaro Andrades
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, 18071, Spain
| | - Ai Ming Tham
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michaela Roemmele
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Pedro P Medina
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, 18071, Spain
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Yitzhak Zimmer
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Archa Fox
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
9
|
Shiu PKT, Ilieva M, Holm A, Uchida S, DiStefano JK, Bronisz A, Yang L, Asahi Y, Goel A, Yang L, Nuthanakanti A, Serganov A, Alahari SK, Lin C, Pardini B, Naccarati A, Jin J, Armanios B, Zhong XB, Sideris N, Bayraktar S, Castellano L, Gerber AP, Lin H, Conn SJ, Sleem DMM, Timmons L. The Non-Coding RNA Journal Club: Highlights on Recent Papers-12. Noncoding RNA 2023; 9:28. [PMID: 37104010 PMCID: PMC10144170 DOI: 10.3390/ncrna9020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
We are delighted to share with you our twelfth Journal Club and highlight some of the most interesting papers published recently [...].
Collapse
Affiliation(s)
- Patrick K. T. Shiu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| | - Anja Holm
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
- Department of Experimental Clinical Research, Rigshospitalet, DK-2600 Glostrup, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| | - Johanna K. DiStefano
- Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Agnieszka Bronisz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yoh Asahi
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashok Nuthanakanti
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, 10060 Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, 10060 Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA
| | - Beshoy Armanios
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA
| | - Nikolaos Sideris
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Salih Bayraktar
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Leandro Castellano
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, London W12 0NN, UK
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - He Lin
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Simon J. Conn
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Doha Magdy Mostafa Sleem
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Lisa Timmons
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|