1
|
Buzby C, Plavskin Y, Sartori FM, Tong Q, Vail JK, Siegal ML. Epistasis and cryptic QTL identified using modified bulk segregant analysis of copper resistance in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620582. [PMID: 39605464 PMCID: PMC11601411 DOI: 10.1101/2024.10.28.620582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The contributions of genetic interactions to natural trait variation are challenging to estimate experimentally, as current approaches for detecting epistasis are often underpowered. Powerful mapping approaches such as bulk segregant analysis, wherein individuals with extreme phenotypes are pooled for genotyping, obscure epistasis by averaging over genotype combinations. To accurately characterize and quantify epistasis underlying natural trait variation, we have engineered strains of the budding yeast Saccharomyces cerevisiae to enable crosses where one parent's chromosome is fixed while the rest of the chromosomes segregate. These crosses allow us to use bulk segregant analysis to identify quantitative trait loci (QTL) whose effects depend on alleles on the fixed parental chromosome, indicating a genetic interaction with that chromosome. Our method, which we term epic-QTL (for epistatic-with-chromosome QTL) analysis, can thus identify interaction loci with high statistical power. Here we perform epic-QTL analysis of copper resistance with chromosome I or VIII fixed in a cross between divergent naturally derived strains. We find seven loci that interact significantly with chromosome VIII and none that interact with chromosome I, the smallest of the 16 budding yeast chromosomes. Each of the seven interactions alters the magnitude, rather than the direction, of an additive QTL effect. We also show that fixation of one source of variation - in this case chromosome VIII, which contains the large-effect QTL mapping to CUP1 - increases power to detect the contributions of other loci to trait differences.
Collapse
Affiliation(s)
- Cassandra Buzby
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Yevgeniy Plavskin
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Federica M.O. Sartori
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Current affiliation: Department of Oncological Sciences, Mount Sinai, New York, NY, USA
| | - Qiange Tong
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Janessa K. Vail
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Mark L. Siegal
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
2
|
Aguilar-Rodríguez J, Vila J, Chen SAA, Razo-Mejia M, Ghosh O, Fraser HB, Jarosz DF, Petrov DA. Massively parallel experimental interrogation of natural variants in ancient signaling pathways reveals both purifying selection and local adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621178. [PMID: 39553990 PMCID: PMC11565963 DOI: 10.1101/2024.10.30.621178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The nature of standing genetic variation remains a central debate in population genetics, with differing perspectives on whether common variants are mostly neutral or have functional effects. We address this question by directly mapping the fitness effects of over 9,000 natural variants in the Ras/PKA and TOR/Sch9 pathways-key regulators of cell proliferation in eukaryotes-across four conditions in Saccharomyces cerevisiae. While many variants are neutral in our assay, on the order of 3,500 exhibited significant fitness effects. These non-neutral variants tend to be missense and affect conserved, more densely packed, and less solvent-exposed protein regions. They are also typically younger, occur at lower frequencies, and more often found in heterozygous states, suggesting they are subject to purifying selection. A substantial fraction of non-neutral variants showing strong fitness effects in our experiments, however, is present at high frequencies in the population. These variants show signs of local adaptation as they tend to be found specifically in domesticated strains adapted to human-made environments. Our findings support the view that while common variants are often neutral, a significant proportion have adaptive functional consequences and are driven into the population by local positive selection. This study highlights the potential to explore the functional effects of natural genetic variation on a genome scale with quantitative fitness measurements in the laboratory, bridging the gap between population genetics and functional genomics to understand evolutionary dynamics in the wild.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Vila
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shi-An A. Chen
- Department of Biology, Stanford University, Stanford, CA, USA
- Present address: Altos Labs, Bay Area Institute of Science, Redwood City, CA, USA
| | | | - Olivia Ghosh
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA
| | | | - Dan F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Vandermeulen MD, Khaiwal S, Rubio G, Liti G, Cullen PJ. Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals. iScience 2024; 27:110860. [PMID: 39381740 PMCID: PMC11460476 DOI: 10.1016/j.isci.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Understanding how phenotypic diversity is generated is an important question in biology. We explored phenotypic diversity among wild yeast isolates (Saccharomyces cerevisiae) and found variation in the activity of MAPK signaling pathways as a contributing mechanism. To uncover the genetic basis of this mechanism, we identified 1957 SNPs in 62 candidate genes encoding signaling proteins from a MAPK signaling module within a large collection of yeast (>1500 individuals). Follow-up testing identified functionally relevant variants in key signaling proteins. Loss-of-function (LOF) alleles in a PAK kinase impacted protein stability and pathway specificity decreasing filamentous growth and mating phenotypes. In contrast, gain-of-function (GOF) alleles in G-proteins that were hyperactivating induced filamentous growth. Similar amino acid substitutions in G-proteins were identified in metazoans that in some cases were fixed in multicellular lineages including humans, suggesting hyperactivating GOF alleles may play roles in generating phenotypic diversity across eukaryotes. A mucin signaler that regulates MAPK activity was also found to contain a prevalance of presumed GOF alleles amoung individuals based on changes in mucin repeat numbers. Thus, genetic variation in signaling pathways may act as a reservoir for generating phenotypic diversity across eukaryotes.
Collapse
Affiliation(s)
| | - Sakshi Khaiwal
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Gabriel Rubio
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
4
|
Dwivedi SL, Heslop‐Harrison P, Amas J, Ortiz R, Edwards D. Epistasis and pleiotropy-induced variation for plant breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2788-2807. [PMID: 38875130 PMCID: PMC11536456 DOI: 10.1111/pbi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.
Collapse
Affiliation(s)
| | - Pat Heslop‐Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Department of Genetics and Genome Biology, Institute for Environmental FuturesUniversity of LeicesterLeicesterUK
| | - Junrey Amas
- Centre for Applied Bioinformatics, School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Rodomiro Ortiz
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - David Edwards
- Centre for Applied Bioinformatics, School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
5
|
Mackay TFC, Anholt RRH. Pleiotropy, epistasis and the genetic architecture of quantitative traits. Nat Rev Genet 2024; 25:639-657. [PMID: 38565962 PMCID: PMC11330371 DOI: 10.1038/s41576-024-00711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| | - Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
6
|
Ardell S, Martsul A, Johnson MS, Kryazhimskiy S. Environment-independent distribution of mutational effects emerges from microscopic epistasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.18.567655. [PMID: 38014325 PMCID: PMC10680819 DOI: 10.1101/2023.11.18.567655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Predicting how new mutations alter phenotypes is difficult because mutational effects vary across genotypes and environments. Recently discovered global epistasis, where the fitness effects of mutations scale with the fitness of the background genotype, can improve predictions, but how the environment modulates this scaling is unknown. We measured the fitness effects of ~100 insertion mutations in 42 strains of Saccharomyces cerevisiae in six laboratory environments and found that the global-epistasis scaling is nearly invariant across environments. Instead, the environment tunes one global parameter, the background fitness at which most mutations switch sign. As a consequence, the distribution of mutational effects is predictable across genotypes and environments. Our results suggest that the effective dimensionality of genotype-to-phenotype maps across environments is surprisingly low.
Collapse
Affiliation(s)
- Sarah Ardell
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093
| | - Alena Martsul
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093
| | - Milo S. Johnson
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
7
|
Hale JJ, Matsui T, Goldstein I, Mullis MN, Roy KR, Ville CN, Miller D, Wang C, Reynolds T, Steinmetz LM, Levy SF, Ehrenreich IM. Genome-scale analysis of interactions between genetic perturbations and natural variation. Nat Commun 2024; 15:4234. [PMID: 38762544 PMCID: PMC11102447 DOI: 10.1038/s41467-024-48626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Interactions between genetic perturbations and segregating loci can cause perturbations to show different phenotypic effects across genetically distinct individuals. To study these interactions on a genome scale in many individuals, we used combinatorial DNA barcode sequencing to measure the fitness effects of 8046 CRISPRi perturbations targeting 1721 distinct genes in 169 yeast cross progeny (or segregants). We identified 460 genes whose perturbation has different effects across segregants. Several factors caused perturbations to show variable effects, including baseline segregant fitness, the mean effect of a perturbation across segregants, and interacting loci. We mapped 234 interacting loci and found four hub loci that interact with many different perturbations. Perturbations that interact with a given hub exhibit similar epistatic relationships with the hub and show enrichment for cellular processes that may mediate these interactions. These results suggest that an individual's response to perturbations is shaped by a network of perturbation-locus interactions that cannot be measured by approaches that examine perturbations or natural variation alone.
Collapse
Affiliation(s)
- Joseph J Hale
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Takeshi Matsui
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilan Goldstein
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Martin N Mullis
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher Ne Ville
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Darach Miller
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Charley Wang
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Trevor Reynolds
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sasha F Levy
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- BacStitch DNA, Los Altos, CA, USA.
| | - Ian M Ehrenreich
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
8
|
Ribeiro TDS, Lollar MJ, Sprengelmeyer QD, Huang Y, Benson DM, Orr MS, Johnson ZC, Corbett-Detig RB, Pool JE. Recombinant inbred line panels inform the genetic architecture and interactions of adaptive traits in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594228. [PMID: 38798433 PMCID: PMC11118405 DOI: 10.1101/2024.05.14.594228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The distribution of allelic effects on traits, along with their gene-by-gene and gene-by-environment interactions, contributes to the phenotypes available for selection and the trajectories of adaptive variants. Nonetheless, uncertainty persists regarding the effect sizes underlying adaptations and the importance of genetic interactions. Herein, we aimed to investigate the genetic architecture and the epistatic and environmental interactions involving loci that contribute to multiple adaptive traits using two new panels of Drosophila melanogaster recombinant inbred lines (RILs). To better fit our data, we re-implemented functions from R/qtl (Broman et al. 2003) using additive genetic models. We found 14 quantitative trait loci (QTL) underlying melanism, wing size, song pattern, and ethanol resistance. By combining our mapping results with population genetic statistics, we identified potential new genes related to these traits. None of the detected QTLs showed clear evidence of epistasis, and our power analysis indicated that we should have seen at least one significant interaction if sign epistasis or strong positive epistasis played a pervasive role in trait evolution. In contrast, we did find roles for gene-by-environment interactions involving pigmentation traits. Overall, our data suggest that the genetic architecture of adaptive traits often involves alleles of detectable effect, that strong epistasis does not always play a role in adaptation, and that environmental interactions can modulate the effect size of adaptive alleles.
Collapse
Affiliation(s)
- Tiago da Silva Ribeiro
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew J. Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Derek M. Benson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan S. Orr
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zachary C. Johnson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Russell B. Corbett-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
9
|
O’Brien NLV, Holland B, Engelstädter J, Ortiz-Barrientos D. The distribution of fitness effects during adaptive walks using a simple genetic network. PLoS Genet 2024; 20:e1011289. [PMID: 38787919 PMCID: PMC11156440 DOI: 10.1371/journal.pgen.1011289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The tempo and mode of adaptation depends on the availability of beneficial alleles. Genetic interactions arising from gene networks can restrict this availability. However, the extent to which networks affect adaptation remains largely unknown. Current models of evolution consider additive genotype-phenotype relationships while often ignoring the contribution of gene interactions to phenotypic variance. In this study, we model a quantitative trait as the product of a simple gene regulatory network, the negative autoregulation motif. Using forward-time genetic simulations, we measure adaptive walks towards a phenotypic optimum in both additive and network models. A key expectation from adaptive walk theory is that the distribution of fitness effects of new beneficial mutations is exponential. We found that both models instead harbored distributions with fewer large-effect beneficial alleles than expected. The network model also had a complex and bimodal distribution of fitness effects among all mutations, with a considerable density at deleterious selection coefficients. This behavior is reminiscent of the cost of complexity, where correlations among traits constrain adaptation. Our results suggest that the interactions emerging from genetic networks can generate complex and multimodal distributions of fitness effects.
Collapse
Affiliation(s)
- Nicholas L. V. O’Brien
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Barbara Holland
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Jan Engelstädter
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Batista S, Madar VS, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, Chitre AS, Palmer AA, Moore JH. Interaction models matter: an efficient, flexible computational framework for model-specific investigation of epistasis. BioData Min 2024; 17:7. [PMID: 38419006 PMCID: PMC10900690 DOI: 10.1186/s13040-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Epistasis, the interaction between two or more genes, is integral to the study of genetics and is present throughout nature. Yet, it is seldom fully explored as most approaches primarily focus on single-locus effects, partly because analyzing all pairwise and higher-order interactions requires significant computational resources. Furthermore, existing methods for epistasis detection only consider a Cartesian (multiplicative) model for interaction terms. This is likely limiting as epistatic interactions can evolve to produce varied relationships between genetic loci, some complex and not linearly separable. METHODS We present new algorithms for the interaction coefficients for standard regression models for epistasis that permit many varied models for the interaction terms for loci and efficient memory usage. The algorithms are given for two-way and three-way epistasis and may be generalized to higher order epistasis. Statistical tests for the interaction coefficients are also provided. We also present an efficient matrix based algorithm for permutation testing for two-way epistasis. We offer a proof and experimental evidence that methods that look for epistasis only at loci that have main effects may not be justified. Given the computational efficiency of the algorithm, we applied the method to a rat data set and mouse data set, with at least 10,000 loci and 1,000 samples each, using the standard Cartesian model and the XOR model to explore body mass index. RESULTS This study reveals that although many of the loci found to exhibit significant statistical epistasis overlap between models in rats, the pairs are mostly distinct. Further, the XOR model found greater evidence for statistical epistasis in many more pairs of loci in both data sets with almost all significant epistasis in mice identified using XOR. In the rat data set, loci involved in epistasis under the XOR model are enriched for biologically relevant pathways. CONCLUSION Our results in both species show that many biologically relevant epistatic relationships would have been undetected if only one interaction model was applied, providing evidence that varied interaction models should be implemented to explore epistatic interactions that occur in living systems.
Collapse
Affiliation(s)
- Sandra Batista
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| | | | - Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
- Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| |
Collapse
|
11
|
Lei H, Li J, Zhao B, Kou SH, Xiao F, Chen T, Wang SM. Evolutionary origin of germline pathogenic variants in human DNA mismatch repair genes. Hum Genomics 2024; 18:5. [PMID: 38287404 PMCID: PMC10823654 DOI: 10.1186/s40246-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mismatch repair (MMR) system is evolutionarily conserved for genome stability maintenance. Germline pathogenic variants (PVs) in MMR genes that lead to MMR functional deficiency are associated with high cancer risk. Knowing the evolutionary origin of germline PVs in human MMR genes will facilitate understanding the biological base of MMR deficiency in cancer. However, systematic knowledge is lacking to address the issue. In this study, we performed a comprehensive analysis to know the evolutionary origin of human MMR PVs. METHODS We retrieved MMR gene variants from the ClinVar database. The genomes of 100 vertebrates were collected from the UCSC genome browser and ancient human sequencing data were obtained through comprehensive data mining. Cross-species conservation analysis was performed based on the phylogenetic relationship among 100 vertebrates. Rescaled ancient sequencing data were used to perform variant calling for archeological analysis. RESULTS Using the phylogenetic approach, we traced the 3369 MMR PVs identified in modern humans in 99 non-human vertebrate genomes but found no evidence for cross-species conservation as the source for human MMR PVs. Using the archeological approach, we searched the human MMR PVs in over 5000 ancient human genomes dated from 45,045 to 100 years before present and identified a group of MMR PVs shared between modern and ancient humans mostly within 10,000 years with similar quantitative patterns. CONCLUSION Our study reveals that MMR PVs in modern humans were arisen within the recent human evolutionary history.
Collapse
Affiliation(s)
- Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tianhui Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
12
|
Hale JJ, Matsui T, Goldstein I, Mullis MN, Roy KR, Ville CN, Miller D, Wang C, Reynolds T, Steinmetz LM, Levy SF, Ehrenreich IM. Genome-scale analysis of interactions between genetic perturbations and natural variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.06.539663. [PMID: 38293072 PMCID: PMC10827069 DOI: 10.1101/2023.05.06.539663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Interactions between genetic perturbations and segregating loci can cause perturbations to show different phenotypic effects across genetically distinct individuals. To study these interactions on a genome scale in many individuals, we used combinatorial DNA barcode sequencing to measure the fitness effects of 7,700 CRISPRi perturbations targeting 1,712 distinct genes in 169 yeast cross progeny (or segregants). We identified 460 genes whose perturbation has different effects across segregants. Several factors caused perturbations to show variable effects, including baseline segregant fitness, the mean effect of a perturbation across segregants, and interacting loci. We mapped 234 interacting loci and found four hub loci that interact with many different perturbations. Perturbations that interact with a given hub exhibit similar epistatic relationships with the hub and show enrichment for cellular processes that may mediate these interactions. These results suggest that an individual's response to perturbations is shaped by a network of perturbation-locus interactions that cannot be measured by approaches that examine perturbations or natural variation alone.
Collapse
Affiliation(s)
- Joseph J. Hale
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilan Goldstein
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin N. Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kevin R. Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Chris Ne Ville
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Darach Miller
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Charley Wang
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Trevor Reynolds
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lars M. Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sasha F. Levy
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Present address: BacStitch DNA, Los Altos, California, USA
| | - Ian M. Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Aguirre L, Hendelman A, Hutton SF, McCandlish DM, Lippman ZB. Idiosyncratic and dose-dependent epistasis drives variation in tomato fruit size. Science 2023; 382:315-320. [PMID: 37856609 PMCID: PMC10602613 DOI: 10.1126/science.adi5222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Epistasis between genes is traditionally studied with mutations that eliminate protein activity, but most natural genetic variation is in cis-regulatory DNA and influences gene expression and function quantitatively. In this study, we used natural and engineered cis-regulatory alleles in a plant stem-cell circuit to systematically evaluate epistatic relationships controlling tomato fruit size. Combining a promoter allelic series with two other loci, we collected over 30,000 phenotypic data points from 46 genotypes to quantify how allele strength transforms epistasis. We revealed a saturating dose-dependent relationship but also allele-specific idiosyncratic interactions, including between alleles driving a step change in fruit size during domestication. Our approach and findings expose an underexplored dimension of epistasis, in which cis-regulatory allelic diversity within gene regulatory networks elicits nonlinear, unpredictable interactions that shape phenotypes.
Collapse
Affiliation(s)
- Lyndsey Aguirre
- Cold Spring Harbor Laboratory, School of Biological Sciences, Cold Spring Harbor, NY, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | | | - Zachary B. Lippman
- Cold Spring Harbor Laboratory, School of Biological Sciences, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
14
|
Chen SAA, Kern AF, Ang RML, Xie Y, Fraser HB. Gene-by-environment interactions are pervasive among natural genetic variants. CELL GENOMICS 2023; 3:100273. [PMID: 37082145 PMCID: PMC10112290 DOI: 10.1016/j.xgen.2023.100273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/09/2022] [Accepted: 01/31/2023] [Indexed: 04/22/2023]
Abstract
Gene-by-environment (GxE) interactions, in which a genetic variant's phenotypic effect is condition specific, are fundamental for understanding fitness landscapes and evolution but have been difficult to identify at the single-nucleotide level. Although many condition-specific quantitative trait loci (QTLs) have been mapped, these typically contain numerous inconsequential variants in linkage, precluding understanding of the causal GxE variants. Here, we introduce BARcoded Cas9 retron precise parallel editing via homology (CRISPEY-BAR), a high-throughput precision genome editing strategy, and use it to map GxE interactions of naturally occurring genetic polymorphisms impacting yeast growth. We identified hundreds of GxE variants within condition-specific QTLs, revealing unexpected genetic complexity. Moreover, we found that 93.7% of non-neutral natural variants within ergosterol biosynthesis pathway genes showed GxE interactions, including many impacting antifungal drug resistance through diverse molecular mechanisms. In sum, our results suggest an extremely complex, context-dependent fitness landscape characterized by pervasive GxE interactions while also demonstrating massively parallel genome editing as an effective means for investigating this complexity.
Collapse
Affiliation(s)
- Shi-An A. Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexander F. Kern
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roy Moh Lik Ang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yihua Xie
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|