1
|
Zhou C, Wang Y, Huang Y, An Y, Fu X, Yang D, Wang Y, Zhang J, Mitchell LA, Bader JS, Cai Y, Dai J, Boeke JD, Cai Z, Xie Z, Shen Y, Huang W. The de novo design and synthesis of yeast chromosome XIII facilitates investigations on aging. Nat Commun 2024; 15:10139. [PMID: 39578428 PMCID: PMC11584788 DOI: 10.1038/s41467-024-54130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
In the era of synthetic biology, design, construction, and utilization of synthetic chromosomes with unique features provide a strategy to study complex cellular processes such as aging. Herein, we successfully construct the 884 Kb synXIII of Saccharomyces cerevisiae to investigate replicative aging using these synthetic strains. We verify that up-regulation of a rRNA-related transcriptional factor, RRN9, positively influence replicative lifespan. Using SCRaMbLE system that enables inducible whole-genome rearrangement on synXIII, we obtain 20 SCRaMbLEd synXIII strains with extended lifespan. Transcriptome analysis reveal the expression of genes involve in global protein synthesis is up-regulated in longer-lived strains. We establish causal links between genotypic change and the long-lived phenotype via reconstruction of some key structural variations observed in post-SCRaMbLE strains and further demonstrate combinatorial effects of multiple aging regulators on lifespan extension. Our findings underscore the potential of synthetic yeasts in unveiling the function of aging-related genes.
Collapse
Affiliation(s)
- Chun Zhou
- The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center of Shenzhen University, Shenzhen, 518039, China
- BGI Research, Changzhou, 213299, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- China College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Yikun Huang
- The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center of Shenzhen University, Shenzhen, 518039, China
| | - Yongpan An
- Peking University International Cancer Institute, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Xian Fu
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Daqian Yang
- Peking University International Cancer Institute, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Yilin Wang
- The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center of Shenzhen University, Shenzhen, 518039, China
| | - Jintao Zhang
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
- Neochromosome, Inc., Long Island City, NY, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Junbiao Dai
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- China College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Zhiming Cai
- The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center of Shenzhen University, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, China.
| | - Yue Shen
- BGI Research, Changzhou, 213299, China.
- China College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Weiren Huang
- The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center of Shenzhen University, Shenzhen, 518039, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
- Guangdong Engineering Technology Research Center for clinical application of cancer genome, Guangdong, China.
| |
Collapse
|
2
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Rojas J, Hose J, Dutcher HA, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. CELL GENOMICS 2024; 4:100656. [PMID: 39317188 PMCID: PMC11602619 DOI: 10.1016/j.xgen.2024.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74%-94% of the variance in aneuploid strains' growth rates is explained by the cumulative cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of small nucleolar RNAs (snoRNAs) and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, Ostrov N, Liu M, Wang M, Zheng Q, Hu F, Chen K, Rudolph A, Chen D, Ahn J, Spencer O, Ayalavarapu V, Tarver A, Harmon-Smith M, Hamilton M, Blaby I, Yoshikuni Y, Hajian B, Jin A, Kintses B, Szamel M, Seregi V, Shen Y, Li Z, Church GM. Synthetic genomes unveil the effects of synonymous recoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599206. [PMID: 38915524 PMCID: PMC11195188 DOI: 10.1101/2024.06.16.599206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers1-4. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored. Here, we explore these effects using whole-genome synthesis, multiplexed directed evolution, and genome-transcriptome-translatome-proteome co-profiling on multiple recoded genomes. Using this information, we assemble a synthetic Escherichia coli genome in seven sections using only 57 codons to encode proteins. By discovering the rules responsible for the lethality of synonymous recoding and developing a data-driven multi-omics-based genome construction workflow that troubleshoots synthetic genomes, we overcome the lethal effects of 62,007 synonymous codon swaps and 11,108 additional genomic edits. We show that synonymous recoding induces transcriptional noise including new antisense RNAs, leading to drastic transcriptome and proteome perturbation. As the elimination of select codons from an organism's genetic code results in the widespread appearance of cryptic promoters, we show that synonymous codon choice may naturally evolve to minimize transcriptional noise. Our work provides the first genome-scale description of how synonymous codon changes influence organismal fitness and paves the way for the construction of functional genomes that provide genetic firewalls from natural ecosystems and safely produce biopolymers, drugs, and enzymes with an expanded chemistry.
Collapse
Affiliation(s)
- Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Regan Flynn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shirui Yan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- BGI Research, Shenzhen 518083, China
| | - Nili Ostrov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | | | | | | | | | - Alexandra Rudolph
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dawn Chen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny Ahn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Owen Spencer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Angela Tarver
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miranda Harmon-Smith
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew Hamilton
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ian Blaby
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yasuo Yoshikuni
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Behnoush Hajian
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Adeline Jin
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | - Balint Kintses
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Monika Szamel
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Viktoria Seregi
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Yue Shen
- BGI Research, Shenzhen 518083, China
- BGI Research, Changzhou 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
| | - Zilong Li
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Yu W, Zhang S, Zhao S, Chen LG, Cao J, Ye H, Yan J, Zhao Q, Mo B, Wang Y, Jiao Y, Ma Y, Huang X, Qian W, Dai J. Designing a synthetic moss genome using GenoDesigner. NATURE PLANTS 2024; 10:848-856. [PMID: 38831044 DOI: 10.1038/s41477-024-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/10/2024] [Indexed: 06/05/2024]
Abstract
The de novo synthesis of genomes has made unprecedented progress and achieved milestones, particularly in bacteria and yeast. However, the process of synthesizing a multicellular plant genome has not progressed at the same pace, due to the complexity of multicellular plant genomes, technical difficulties associated with large genome size and structure, and the intricacies of gene regulation and expression in plants. Here we outline the bottom-up design principles for the de novo synthesis of the Physcomitrium patens (that is, earthmoss) genome. To facilitate international collaboration and accessibility, we have developed and launched a public online design platform called GenoDesigner. This platform offers an intuitive graphical interface enabling users to efficiently manipulate extensive genome sequences, even up to the gigabase level. This tool is poised to greatly expedite the synthesis of the P. patens genome, offering an essential reference and roadmap for the synthesis of plant genomes.
Collapse
Affiliation(s)
- Wenfei Yu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Zhang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Ge Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hao Ye
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Beixin Mo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ying Wang
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuling Jiao
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yingxin Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoluo Huang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Wenfeng Qian
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Lindeboom TA, Sanchez Olmos MDC, Schulz K, Brinkmann CK, Ramírez Rojas AA, Hochrein L, Schindler D. An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts. ACS Synth Biol 2024; 13:1116-1127. [PMID: 38597458 PMCID: PMC11036488 DOI: 10.1021/acssynbio.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.
Collapse
Affiliation(s)
- Timon A Lindeboom
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | | | - Karina Schulz
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Cedric K Brinkmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Adán A Ramírez Rojas
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Lena Hochrein
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35032Marburg, Germany
| |
Collapse
|
7
|
Rojas J, Hose J, Auguste Dutcher H, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588778. [PMID: 38645209 PMCID: PMC11030387 DOI: 10.1101/2024.04.09.588778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Bai S, Luo H, Tong H, Wu Y. Application and Technical Challenges in Design, Cloning, and Transfer of Large DNA. Bioengineering (Basel) 2023; 10:1425. [PMID: 38136016 PMCID: PMC10740618 DOI: 10.3390/bioengineering10121425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In the field of synthetic biology, rapid advancements in DNA assembly and editing have made it possible to manipulate large DNA, even entire genomes. These advancements have facilitated the introduction of long metabolic pathways, the creation of large-scale disease models, and the design and assembly of synthetic mega-chromosomes. Generally, the introduction of large DNA in host cells encompasses three critical steps: design-cloning-transfer. This review provides a comprehensive overview of the three key steps involved in large DNA transfer to advance the field of synthetic genomics and large DNA engineering.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Taghon GJ, Strychalski EA. Rise of synthetic yeast: Charting courses to new applications. CELL GENOMICS 2023; 3:100438. [PMID: 38020966 PMCID: PMC10667549 DOI: 10.1016/j.xgen.2023.100438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Microbes have long provided us with important capabilities, and the genome engineering of microbes has greatly empowered research and applications in biotechnology. This is especially true with the emergence of synthetic biology and recent advances in genome engineering to control microbial behavior. A fully synthetic, rationally designed genome promises opportunities for unprecedented control of cellular function. As a eukaryotic workhorse for research and industrial use, yeast is an organism at the forefront of synthetic biology; the tools and engineered cellular platform being delivered by the Sc2.0 consortium are enabling a new era of bespoke biology. This issue highlights recent advances delivered by this consortium, but hurdles remain to maximize the impact of engineered eukaryotic cells more broadly.
Collapse
Affiliation(s)
- Geoffrey J. Taghon
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | |
Collapse
|
10
|
Luo J, Vale-Silva LA, Raghavan AR, Mercy G, Heldrich J, Sun X, Li MK, Zhang W, Agmon N, Yang K, Cai J, Stracquadanio G, Thierry A, Zhao Y, Coelho C, McCulloch LH, Lauer S, Kaback DB, Bader JS, Mitchell LA, Mozziconacci J, Koszul R, Hochwagen A, Boeke JD. Synthetic chromosome fusion: Effects on mitotic and meiotic genome structure and function. CELL GENOMICS 2023; 3:100439. [PMID: 38020967 PMCID: PMC10667551 DOI: 10.1016/j.xgen.2023.100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
We designed and synthesized synI, which is ∼21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems.
Collapse
Affiliation(s)
- Jingchuan Luo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Biochemistry, Cellular and Molecular Biology Graduate program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | - Guillaume Mercy
- Institut Pasteur, CNRS UMR3525, Université de Paris, Unité Régulation Spatiale des Génomes, 75015 Paris, France
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Jonna Heldrich
- Department of Biology, New York University, New York, NY 10003, USA
| | - Xiaoji Sun
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mingyu Kenneth Li
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Kun Yang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, JHU, Baltimore, MD 21218, USA
| | - Jitong Cai
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, JHU, Baltimore, MD 21218, USA
| | - Giovanni Stracquadanio
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, JHU, Baltimore, MD 21218, USA
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Université de Paris, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Camila Coelho
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Laura H. McCulloch
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David B. Kaback
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, International Center for Public Health, Newark, NJ 07101-1709, USA
| | - Joel S. Bader
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie A. Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Julien Mozziconacci
- Structure and instability of Genomes Lab, UMR 7196, Muséum National d'Histoire Naturelle (MNHN), 75005 Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université de Paris, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | | | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
11
|
Lauer S, Luo J, Lazar-Stefanita L, Zhang W, McCulloch LH, Fanfani V, Lobzaev E, Haase MA, Easo N, Zhao Y, Yu F, Cai J, Bader JS, Stracquadanio G, Boeke JD. Context-dependent neocentromere activity in synthetic yeast chromosome VIII. CELL GENOMICS 2023; 3:100437. [PMID: 38020969 PMCID: PMC10667555 DOI: 10.1016/j.xgen.2023.100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Pioneering advances in genome engineering, and specifically in genome writing, have revolutionized the field of synthetic biology, propelling us toward the creation of synthetic genomes. The Sc2.0 project aims to build the first fully synthetic eukaryotic organism by assembling the genome of Saccharomyces cerevisiae. With the completion of synthetic chromosome VIII (synVIII) described here, this goal is within reach. In addition to writing the yeast genome, we sought to manipulate an essential functional element: the point centromere. By relocating the native centromere sequence to various positions along chromosome VIII, we discovered that the minimal 118-bp CEN8 sequence is insufficient for conferring chromosomal stability at ectopic locations. Expanding the transplanted sequence to include a small segment (∼500 bp) of the CDEIII-proximal pericentromere improved chromosome stability, demonstrating that minimal centromeres display context-dependent functionality.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jingchuan Luo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Laura H. McCulloch
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Max A.B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Nicole Easo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Fangzhou Yu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| |
Collapse
|