1
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
2
|
Utilizing Sphingomyelinase Sensitizing Liposomes in Imaging Intestinal Inflammation in Dextran Sulfate Sodium-Induced Murine Colitis. Biomedicines 2022; 10:biomedicines10020413. [PMID: 35203622 PMCID: PMC8962329 DOI: 10.3390/biomedicines10020413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, resulting in severe symptoms. At the moment, the goal of medical treatments is to reduce inflammation. IBD is treated with systemic anti-inflammatory compounds, but they have serious side effects. The treatment that is most efficient and causes the fewest side effects would be the delivery of the drugs on the disease site. This study aimed to investigate the suitability of sphingomyelin (SM) containing liposomes to specifically target areas of inflammation in dextran sulfate sodium-induced murine colitis. Sphingomyelin is a substrate to the sphingomyelinase enzyme, which is only present outside cells in cell stress, like inflammation. When sphingomyelin consisting of liposomes is predisposed to the enzyme, it causes the weakening of the membrane structure. We demonstrated that SM-liposomes are efficiently taken up in intestinal macrophages, indicating their delivery potential. Furthermore, our studies showed that sphingomyelinase activity and release are increased in a dextran sulfate sodium-induced IBD mouse model. The enzyme appearance in IBD disease was also traced in intestine samples of the dextran sulfate sodium-treated mice and human tissue samples. The results from the IBD diseased animals, treated with fluorescently labeled SM-liposomes, demonstrated that the liposomes were taken up preferentially in the inflamed colon. This uptake efficiency correlated with sphingomyelinase activity.
Collapse
|
3
|
Shim S, Park HE, Soh SH, Im YB, Yoo HS. Induction of Th2 response through TLR2-mediated MyD88-dependent pathway in human microfold cells stimulated with chitosan nanoparticles loaded with Brucella abortus Mdh. Microb Pathog 2020; 142:104040. [PMID: 32032767 DOI: 10.1016/j.micpath.2020.104040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
Drug delivery by the nasal or oral route is considered the preferred route of administration because it can induce systemic mucosal immunity. However, few studies have examined the immunogenicity and transport of antigen at the level of the microfold (M) cell, the epithelial cell that specializes in antigen sampling at mucosal surfaces. In our previous study, Brucella abortus malate dehydrogenase (Mdh) was loaded in chitosan nanoparticles (CNs), and it induced high production of proinflammatory cytokines in THP-1 cells and systemic IgA in BALB/C mice. In the present study, an in vitro M cell model was used in which Caco-2 cells and Raji B cells were co-cultured to investigate the impact of the uptake and immunogenicity of B. abortus Mdh on nanoparticle transport in human M cells. Our results showed that loaded CNs induced enhanced transport of Mdh in the M cell model. ELISAs showed significantly higher production of IL-1β and IL-6 in the CN-Mdh stimulation group than that seen in the Mdh stimulation group. The observed increase of gene expression of TLR2, MyD88, TRAF6, IRF4 and CD14 implied that MyD88-dependent TLR2 signaling was activated by stimulation with CNs-Mdh. These results suggest that Mdh and CNs may function synergistically to enhance Th2-related responses triggered by the MyD88-dependent TLR2 signaling pathway and could induce an inflammatory response in M cells as an M cell-targeted delivery system. This study will contribute to the development of not only effective antigens for intracellular bacteria, including B. abortus, but also vaccine delivery systems that target M cells.
Collapse
Affiliation(s)
- Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Hyun-Eui Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Sang Hee Soh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Lee Y, Kim SJ, Park JK. Chips-on-a-plate device for monitoring cellular migration in a microchannel-based intestinal follicle-associated epithelium model. BIOMICROFLUIDICS 2019; 13:064127. [PMID: 31893012 PMCID: PMC6930141 DOI: 10.1063/1.5128640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 05/05/2023]
Abstract
This paper describes a chips-on-a-plate (COP) device for monitoring the migration of Raji cells in the Caco-2/Raji coculture. To generate a model of the human intestinal follicle-associated epithelium (FAE), the coculture method using a conventional Transwell cell culture insert was established. Due to the structural limitations of the Transwell insert, live-cell tracking studies have not been performed previously using the existing FAE model. In this study, we designed a COP device to conduct long-term live-cell tracking of Raji cell migration using a microchannel-based FAE model. The COP device incorporates microfluidic chips integrated on a standard well plate, consistent humidity control to allow live-cell microscopy for 2 days, and microchannels connecting the two cell culture chambers of the COP device, which serve as a monitoring area for cellular migration. Using the COP device, we provide the first analysis of various migratory characteristics of Raji cells, including their chemotactic index in the microchannel-based FAE model. We showed that the migration of Raji cells could be controlled by modulating the geometry of the connecting microchannels. Cellular treatments with cytokines revealed that the cytokines increased the permeability of an FAE model with a detachment of Caco-2 cells. Live-cell monitoring of Raji cells treated with a fluorescent reagent also indicated exocytosis as a key agent of the Caco-2/Raji interaction. The COP device allows live-cell tracking analyses of cocultured cells in the microchannel-based FAE model, providing a promising tool for investigating cellular behavior associated with the recruitment of Raji to Caco-2 cells.
Collapse
Affiliation(s)
- Young Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Author to whom correspondence should be addressed:. Tel.: +82-42-350-4315. Fax: +82-42-350-4310
| |
Collapse
|
5
|
Ahmad T, Gogarty M, Walsh EG, Brayden DJ. A comparison of three Peyer's patch "M-like" cell culture models: particle uptake, bacterial interaction, and epithelial histology. Eur J Pharm Biopharm 2017; 119:426-436. [PMID: 28754262 DOI: 10.1016/j.ejpb.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/18/2023]
Abstract
Intestinal Peyer's patch (PP) microfold (M) cells transport microbes and particulates across the follicle-associated epithelium (FAE) as part of the mucosal immune surveillance system. In vitro human M-like cell co-culture models are used as screens to investigate uptake of antigens-in-nanoparticles, but the models are labour-intensive and there is inter-laboratory variability. We compared the three most established filter-grown Caco-2/Raji B cell co-culture systems. These were Model A (Kernéis et al., 1997), Model B (Gullberg et al., 2000), and Model C (Des Rieux et al. 2007). The criteria used were transepithelial resistance (TEER), the apparent permeability coefficient (Papp) of [14C]-mannitol, M cell-like histology, as well as latex particle and Salmonella typhimurium translocation. Each co-culture model displayed substantial increases in particle translocation. Truncated microvilli compared to mono-cultures was their most consistent feature. The inverted model developed by des Rieux et al. (2007) displayed reductions in TEER and an increased (Papp), accompanied by the largest increase in particle translocation compared to the other two models. The normally-oriented model developed by Gullberg et al. (2000) was the only one to consistently display an increased translocation of Salmonella typhimurium. By applying a double Matrigel™ coating on filters, altering the medium feeding regime for Raji B cells, and restricting the passage number of B cells, improvements to the Gullberg model B were achieved, as reflected by increased particle translocation and improved histology. In conclusion, this is the first time all three designs have been compared in one study and each displays phenotypic features of M-like cells. While Model C was the most robust co-culture, the Model B protocol could be improved by optimizing several variables and is less complicated to establish than the two inverted models.
Collapse
Affiliation(s)
- Tauseef Ahmad
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martina Gogarty
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edwin G Walsh
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Beloqui A, Brayden DJ, Artursson P, Préat V, des Rieux A. A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nat Protoc 2017; 12:1387-1399. [PMID: 28617450 DOI: 10.1038/nprot.2017.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The specialized microfold cells (M cells) in the follicle-associated epithelium (FAE) of intestinal Peyer's patches serve as antigen-sampling cells of the intestinal innate immune system. Unlike 'classical' enterocytes, they are able to translocate diverse particulates without digesting them. They act as pathways for microorganism invasion and mediate food tolerance by transcellular transport of intestinal microbiota and antigens. Their ability to transcytose intact particles can be used to develop oral drug delivery and oral immunization strategies. This protocol describes a reproducible and versatile human M-cell-like in vitro model. This model can be exploited to evaluate M-cell transport of microparticles and nanoparticles for protein, drug or vaccine delivery and to study bacterial adherence and translocation across M cells. The inverted in vitro M-cell model consists of three main steps. First, Caco-2 cells are seeded at the apical side of the inserts. Second, the inserts are inverted and B lymphocytes are seeded at the basolateral side of the inserts. Third, the conversion to M cells is assessed. Although various M-cell culture systems exist, this model provides several advantages over the rest: (i) it is based on coculture with well-established differentiated human cell lines; (ii) it is reproducible under the conditions described herein; (iii) it can be easily mastered; and (iv) it does not require the isolation of primary cells or the use of animals. The protocol requires skills in cell culture and microscopy analysis. The model is obtained after 3 weeks, and transport experiments across the differentiated model can be carried out over periods of up to 10 h.
Collapse
Affiliation(s)
- Ana Beloqui
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - David J Brayden
- Veterinary Biosciences Section, School of Veterinary Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Véronique Préat
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne des Rieux
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Institute of the Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|