1
|
Chowdhury A, Manohar N, Guruprasad G, Chen AT, Lanzaro A, Blanco M, Johnston KP, Truskett TM. Characterizing Experimental Monoclonal Antibody Interactions and Clustering Using a Coarse-Grained Simulation Library and a Viscosity Model. J Phys Chem B 2023; 127:1120-1137. [PMID: 36716270 DOI: 10.1021/acs.jpcb.2c07616] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attractive protein-protein interactions in concentrated monoclonal antibody (mAb) solutions may lead to the formation of clusters that increase viscosity. Here, we propose an analytical model that relates mAb solution viscosity to clustering by accounting for the contributions of suboptimal mAb packing within a cluster and cluster fractal dimension. The influence of short-range, anisotropic attractions and long-range Coulombic repulsion on cluster properties is investigated by analyzing the cluster-size distributions, cluster fractal dimensions, radial distribution functions, and static structure factors from a library of coarse-grained molecular dynamics simulations. The library spans a vast range of mAb charges and attractive interactions in solutions of varying ionic strength. We present a framework for combining the viscosity model and simulation library to successfully characterize the attraction, repulsion, and clustering of an experimental mAb in three different pH and cosolute conditions by fitting the measured viscosity or structure factor from small-angle X-ray scattering. At low ionic strength, the cluster-size distribution is impacted by strong charges, and both the viscosity and net charge or structure factor and net charge must be considered to deconvolute the effects of short-range attraction and long-range repulsion.
Collapse
Affiliation(s)
- Amjad Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Neha Manohar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Geetika Guruprasad
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Amy T Chen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Marco Blanco
- Analytical Enabling Capabilities, Analytical R&D, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States.,Department of Physics, The University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
2
|
How neutron scattering techniques benefit investigating structures and dynamics of monoclonal antibody. Biochim Biophys Acta Gen Subj 2022; 1866:130206. [PMID: 35872327 DOI: 10.1016/j.bbagen.2022.130206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
Abstract
Over the past several decades, great progresses have been made for the pharmaceutical industry of monoclonal antibody (mAb). More and more mAb products were approved for human therapeutics. This review describes the state of art of utilizing neutron scattering to investigate mAbs, in the aspects of structures, dynamics, physicochemical stability, functionality, etc. Firstly, brief histories of mAbs and neutron scattering, as well as some basic knowledges and principles of neutron scattering were introduced. Then specific examples were demonstrated. For the structure and structural evolution investigation of in dilute and concentrated mAbs solution, in situ small angle neutron scattering (SANS) was frequently utilized. Neutron reflectometry (NR) is powerful to probe the absorption behaviors of mAbs on various surfaces and interfaces. While for dynamic investigation, quasi-elastic scattering techniques such as neutron spin echo (NSE) demonstrate the capabilities. With this review, how to utilize and take advantages of neutron scattering on investigating structures and dynamics of mAbs were demonstrated and discussed.
Collapse
|
3
|
Mahapatra S, Polimeni M, Gentiluomo L, Roessner D, Frieß W, Peters GHJ, Streicher WW, Lund M, Harris P. Self-Interactions of Two Monoclonal Antibodies: Small-Angle X-ray Scattering, Light Scattering, and Coarse-Grained Modeling. Mol Pharm 2021; 19:508-519. [PMID: 34939811 DOI: 10.1021/acs.molpharmaceut.1c00627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using light scattering (LS), small-angle X-ray scattering (SAXS), and coarse-grained Monte Carlo (MC) simulations, we studied the self-interactions of two monoclonal antibodies (mAbs), PPI03 and PPI13. With LS measurements, we obtained the osmotic second virial coefficient, B22, and the molecular weight, Mw, of the two mAbs, while with SAXS measurements, we studied the mAbs' self-interaction behavior in the high protein concentration regime up to 125 g/L. Through SAXS-derived coarse-grained representations of the mAbs, we performed MC simulations with either a one-protein or a two-protein model to predict B22. By comparing simulation and experimental results, we validated our models and obtained insights into the mAbs' self-interaction properties, highlighting the role of both ion binding and charged patches on the mAb surfaces. Our models provide useful information about mAbs' self-interaction properties and can assist the screening of conditions driving to colloidal stability.
Collapse
Affiliation(s)
- Sujata Mahapatra
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark.,Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Marco Polimeni
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Naturvetarvägen 14, 223 62 Lund, Sweden
| | - Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | | | - Mikael Lund
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Naturvetarvägen 14, 223 62 Lund, Sweden.,Advanced X-ray and Neutron Science (LINXS), Lund University, Scheelevägen 19, 22370 Lund, Sweden
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Narvekar A, Gawali SL, Hassan PA, Jain R, Dandekar P. pH dependent aggregation and conformation changes of rituximab using SAXS and its comparison with the standard regulatory approach of biophysical characterization. Int J Biol Macromol 2020; 164:3084-3097. [PMID: 32835797 DOI: 10.1016/j.ijbiomac.2020.08.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Development of biologics and biosimilars involves extensive physical and structural characterization, which underlines the further course of its implementation. These characterization techniques require considerable standardization and are labor intensive. It is therefore, important to have an immediate, independent and affordable characterization strategy that may meet the regulatory guidelines. In this study, we have compared the standard biophysical characterization of an anti-CD 20 antibody with characterization by small angle x ray scattering (SAXS). Aggregation of this mAb was analyzed using standard techniques like size exclusion HPLC, dynamic light scattering and sedimentation velocity - analytical ultracentrifugation, whereas structure analysis was conducted using mass spectrometry, circular dichroism spectroscopy and fluorescence spectroscopy. Our results demonstrated that the inferences about the state of mAb aggregation and its structure deduced using the standard approaches were comparable to the data interpreted using SAXS. The radius of gyration and the P(r) distribution plot obtained using the SAXS scattering data allowed analysis of aggregation and conformation of mAb via a single experiment. Thus, SAXS can be used as an independent technique to complement orthogonal analysis for determining the aggregation profile and structure of mAbs.
Collapse
Affiliation(s)
- Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Santosh L Gawali
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Puthusserickal A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
5
|
Law-Hine D, Rudiuk S, Bonestebe A, Ienco R, Huille S, Tribet C. Distinctive Low-Resolution Structural Features of Dimers of Antibody-Drug Conjugates and Parent Antibody Determined by Small-Angle X-ray Scattering. Mol Pharm 2019; 16:4902-4912. [PMID: 31618040 DOI: 10.1021/acs.molpharmaceut.9b00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural features of lysine-conjugated antibody-drug conjugate (ADC) from humanized IgG1 were studied by small-angle X-ray scattering (SAXS). As the physicochemical properties of the cytotoxic drug (payload) and linker may impact the conformational and colloidal stabilities of the conjugated monoclonal antibody (mAb), it is essential to characterize how the conjugation may affect the overall higher order structure and therefore the physical stability and integrity of the ADCs upon storage conditions. Here, the ADC monomer and aggregates generated upon thermal stress were analyzed by high performance liquid chromatography coupled to SAXS with a particular focus on the fraction of dimers (3-10% depending on the storage conditions at 25 and 40 °C). In addition to average parameters such as radius of gyration, molecular weight, and maximal end-to-end distance, the structural information obtained from SAXS patterns were visualized as a low-resolution average envelope of both monomers and dimers (implementation of two methods: ab initio reconstruction and modeling Fab and Fc as rigid bodies with a flexible hinge). We showed that the monomer envelope of the ADC was similar to the corresponding (nonconjugated) parent monoclonal antibody (mAb). ADC dimers appeared more compact and less polydisperse than the dimers of mAb, which was also confirmed by atomic force microscopy. The generated envelopes of the mAb dimers suggest elongated structures with one or few inter-mAb contacts at the outermost region of Fab or Fc domains. The structural features of ADC dimers are independent of the tested pH buffering system (pH 5.0/acetate and pH 6.0/histidine with or without NaCl) and characterized by multiple, tighter contacts between the Fab and Fc domains and distortion of the monomer native shape. Results from the SAXS structural study show in the present case that conjugation has favored innermost inter-ADC contacts in the dimer, which differ from the inter-mAb ones. In general, it is likely that many parameters affect inter-ADC association, including the chemical nature of linkers and drugs, degree of conjugation, conjugation sites, etc. Making a qualitative difference between mAb and ADC dimers as a function of these parameters can help point to the presence of tight associations that must be abolished in protein drug formulations.
Collapse
Affiliation(s)
- Didier Law-Hine
- Département de Chimie, PASTEUR, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Sergii Rudiuk
- Département de Chimie, PASTEUR, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Audrey Bonestebe
- Biologics Formulation & Process Development, Biologics Development, SANOFI R&D, 13 quai Jules Guesde- BP 14, Vitry-sur-Seine 94403, France
| | - Romain Ienco
- Biologics Formulation & Process Development, Biologics Development, SANOFI R&D, 13 quai Jules Guesde- BP 14, Vitry-sur-Seine 94403, France
| | - Sylvain Huille
- Biologics Formulation & Process Development, Biologics Development, SANOFI R&D, 13 quai Jules Guesde- BP 14, Vitry-sur-Seine 94403, France
| | - Christophe Tribet
- Département de Chimie, PASTEUR, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| |
Collapse
|
6
|
Degueldre M, Wielant A, Girot E, Burkitt W, O'Hara J, Debauve G, Gervais A, Jone C. Native peptide mapping - A simple method to routinely monitor higher order structure changes and relation to functional activity. MAbs 2019; 11:1391-1401. [PMID: 31223055 PMCID: PMC6816347 DOI: 10.1080/19420862.2019.1634460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the biopharmaceutical environment, controlling the Critical Quality Attributes (CQA) of a product is essential to prevent changes that affect its safety or efficacy. Physico-chemical techniques and bioassays are used to screen and monitor these CQAs. The higher order structure (HOS) is a CQA that is typically studied using techniques that are not commonly considered amenable to quality control laboratories. Here, we propose a peptide mapping-based method, named native peptide mapping, which could be considered as straightforward for HOS analysis and applicable for IgG4 and IgG1 antibodies. The method was demonstrated to be fit-for-purpose as a stability-indicating assay by showing differences at the peptide level between stressed and unstressed material. The unfolding pathway induced by a heat stress was also studied via native peptide mapping assay. Furthermore, we demonstrated the structure–activity relationship between HOS and biological activity by analyzing different types of stressed samples with a cell-based assay and the native peptide mapping. The correlation between both sets of results was highlighted by monitoring peptides located in the complementary-determining regions and the relative potency of the biotherapeutic product. This relationship represents a useful approach to interrogate the criticality of HOS as a CQA of a drug.
Collapse
Affiliation(s)
- Michel Degueldre
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Annemie Wielant
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Eglantine Girot
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Will Burkitt
- Department of Analytical Science Biologicals, UCB , Slough , UK
| | - John O'Hara
- Department of Analytical Science Biologicals, UCB , Slough , UK
| | - Gaël Debauve
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Annick Gervais
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| | - Carl Jone
- Department of Analytical Science Biologicals, UCB , Braine L'Alleud , Belgium
| |
Collapse
|
7
|
Yanaka S, Yogo R, Inoue R, Sugiyama M, Itoh SG, Okumura H, Miyanoiri Y, Yagi H, Satoh T, Yamaguchi T, Kato K. Dynamic Views of the Fc Region of Immunoglobulin G Provided by Experimental and Computational Observations. Antibodies (Basel) 2019; 8:antib8030039. [PMID: 31544845 PMCID: PMC6784063 DOI: 10.3390/antib8030039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023] Open
Abstract
The Fc portion of immunoglobulin G (IgG) is a horseshoe-shaped homodimer, which interacts with various effector proteins, including Fcγ receptors (FcγRs). These interactions are critically dependent on the pair of N-glycans packed between the two CH2 domains. Fucosylation of these N-glycans negatively affects human IgG1-FcγRIIIa interaction. The IgG1-Fc crystal structures mostly exhibit asymmetric quaternary conformations with divergent orientations of CH2 with respect to CH3. We aimed to provide dynamic views of IgG1-Fc by performing long-timescale molecular dynamics (MD) simulations, which were experimentally validated by small-angle X-ray scattering and nuclear magnetic resonance spectroscopy. Our simulation results indicated that the dynamic conformational ensembles of Fc encompass most of the previously reported crystal structures determined in both free and complex forms, although the major Fc conformers in solution exhibited almost symmetric, stouter quaternary structures, unlike the crystal structures. Furthermore, the MD simulations suggested that the N-glycans restrict the motional freedom of CH2 and endow quaternary-structure plasticity through multiple intramolecular interaction networks. Moreover, the fucosylation of these N-glycans restricts the conformational freedom of the proximal tyrosine residue of functional importance, thereby precluding its interaction with FcγRIIIa. The dynamic views of Fc will provide opportunities to control the IgG interactions for developing therapeutic antibodies.
Collapse
Affiliation(s)
- Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Rina Yogo
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Osaka 590-0494, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Takumi Yamaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi 923-1292, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
- Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
8
|
Dear BJ, Bollinger JA, Chowdhury A, Hung JJ, Wilks LR, Karouta CA, Ramachandran K, Shay TY, Nieto MP, Sharma A, Cheung JK, Nykypanchuk D, Godfrin PD, Johnston KP, Truskett TM. X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations. J Phys Chem B 2019; 123:5274-5290. [DOI: 10.1021/acs.jpcb.9b04478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barton J. Dear
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan A. Bollinger
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Amjad Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica J. Hung
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Logan R. Wilks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Carl A. Karouta
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kishan Ramachandran
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tony Y. Shay
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria P. Nieto
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ayush Sharma
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jason K. Cheung
- Biophysical and Biochemical Characterization, Sterile Formulation Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033 United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - P. Douglas Godfrin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keith P. Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Hebditch M, Warwicker J. Web-based display of protein surface and pH-dependent properties for assessing the developability of biotherapeutics. Sci Rep 2019; 9:1969. [PMID: 30760735 PMCID: PMC6374528 DOI: 10.1038/s41598-018-36950-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/25/2018] [Indexed: 11/17/2022] Open
Abstract
Protein instability leads to reversible self-association and irreversible aggregation which is a major concern for developing new biopharmaceutical leads. Protein solution behaviour is dictated by the physicochemical properties of the protein and the solution. Optimising protein solutions through experimental screens and targeted protein engineering can be a difficult and time consuming process. Here, we describe development of the protein-sol web server, which was previously restricted to protein solubility prediction from amino acid sequence. Tools are presented for calculating and mapping patches of hydrophobicity and charge on the protein surface. In addition, predictions of folded state stability and net charge are displayed as a heatmap for a range of pH and ionic strength conditions. Tools are evaluated in the context of antibodies, their fragments and interactions. Surprisingly, antibody-antigen interfaces are, on average, at least as polar as Fab surfaces. This benchmarking process provides the user with thresholds with which to assess non-polar surface patches, and possible solubility implications, in proteins of interest. Stability heatmaps compare favourably with experimental data for CH2 and CH3 domains. Display and quantification of surface polarity and pH/ionic strength dependence will be useful generally for investigation of protein biophysics.
Collapse
Affiliation(s)
- Max Hebditch
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jim Warwicker
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
10
|
Hung JJ, Dear BJ, Karouta CA, Chowdhury AA, Godfrin PD, Bollinger JA, Nieto MP, Wilks LR, Shay TY, Ramachandran K, Sharma A, Cheung JK, Truskett TM, Johnston KP. Protein-Protein Interactions of Highly Concentrated Monoclonal Antibody Solutions via Static Light Scattering and Influence on the Viscosity. J Phys Chem B 2019; 123:739-755. [PMID: 30614707 DOI: 10.1021/acs.jpcb.8b09527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to design and formulate mAbs to minimize attractive interactions at high concentrations is important for protein processing, stability, and administration, particularly in subcutaneous delivery, where high viscosities are often challenging. The strength of protein-protein interactions (PPIs) of an IgG1 and IgG4 monoclonal antibody (mAb) from low to high concentration was determined by static light scattering (SLS) and used to understand viscosity data. The PPI were tuned using NaCl and five organic ionic co-solutes. The PPI strength was quantified by the normalized structure factor S(0)/ S(0)HS and Kirkwood-Buff integral G22/ G22,HS (HS = hard sphere) determined from the SLS data and also by fits with (1) a spherical Yukawa potential and (2) an interacting hard sphere (IHS) model, which describes attraction in terms of hypothetical oligomers. The IHS model was better able to capture the scattering behavior of the more strongly interacting systems (mAb and/or co-solute) than the spherical Yukawa potential. For each descriptor of PPI, linear correlations were obtained between the viscosity at high concentration (200 mg/mL) and the interaction strengths evaluated both at low (20 mg/mL) and high concentrations (200 mg/mL) for a given mAb. However, the only parameter that provided a correlation across both mAbs was the oligomer mass ratio ( moligomer/ mmonomer+dimer) from the IHS model, indicating the importance of self-association (in addition to the direct influence of the attractive PPI) on the viscosity.
Collapse
Affiliation(s)
- Jessica J Hung
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Barton J Dear
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Carl A Karouta
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Amjad A Chowdhury
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - P Douglas Godfrin
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jonathan A Bollinger
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Center for Integrated Nanotechnologies , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - Maria P Nieto
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Logan R Wilks
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Tony Y Shay
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Kishan Ramachandran
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ayush Sharma
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jason K Cheung
- Pharmaceutical Sciences , MRL, Merck & Co., Inc. , Kenilworth , New Jersey 07033 , United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
11
|
What Can We Learn from Wide-Angle Solution Scattering? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1009:131-147. [PMID: 29218557 DOI: 10.1007/978-981-10-6038-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extending collection of x-ray solution scattering data into the wide-angle regime (WAXS) can provide information not readily extracted from small angle (SAXS) data. It is possible to accurately predict WAXS scattering on the basis of atomic coordinate sets and thus use it as a means of testing molecular models constructed on the basis of crystallography, molecular dynamics (MD), cryo-electron microscopy or ab initio modeling. WAXS data may provide insights into the secondary, tertiary and quaternary structural organization of macromolecules. It can provide information on protein folding and unfolding beyond that attainable from SAXS data. It is particularly sensitive to structural fluctuations in macromolecules and can be used to generate information about the conformational make up of ensembles of structures co-existing in solution. Novel approaches to modeling of structural fluctuations can provide information on the spatial extent of large-scale structural fluctuations that are difficult to obtain by other means. Direct comparison with the results of MD simulations are becoming possible. Because it is particularly sensitive to small changes in structure and flexibility it provides unique capabilities for the screening of ligand libraries for detection of functional interactions. WAXS thereby provides an important extension of SAXS that can generate structural and dynamic information complementary to that obtainable by other biophysical techniques.
Collapse
|
12
|
Castellanos MM, Howell SC, Gallagher DT, Curtis JE. Characterization of the NISTmAb Reference Material using small-angle scattering and molecular simulation. Anal Bioanal Chem 2018; 410:2141-2159. [DOI: 10.1007/s00216-018-0868-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
|
13
|
Characterization of the NISTmAb Reference Material using small-angle scattering and molecular simulation. Anal Bioanal Chem 2018; 410:2161-2171. [DOI: 10.1007/s00216-018-0869-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022]
|
14
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Corbett D, Hebditch M, Keeling R, Ke P, Ekizoglou S, Sarangapani P, Pathak J, Van Der Walle CF, Uddin S, Baldock C, Avendaño C, Curtis RA. Coarse-Grained Modeling of Antibodies from Small-Angle Scattering Profiles. J Phys Chem B 2017; 121:8276-8290. [DOI: 10.1021/acs.jpcb.7b04621] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel Corbett
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| | - Max Hebditch
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| | - Rose Keeling
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| | - Peng Ke
- Formulation
Sciences, MedImmune Ltd, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | - Sofia Ekizoglou
- Formulation
Sciences, MedImmune Ltd, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | - Prasad Sarangapani
- Regeneron Pharmaceuticals, 777
Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Jai Pathak
- Vaccine
Research Center, National Institute of Health, 9 West Watkins Mill Road, Suite
250, Gaithersburg, Maryland 20878, United States
| | | | - Shahid Uddin
- Formulation
Sciences, MedImmune Ltd, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | - Clair Baldock
- Division
of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K
| | - Carlos Avendaño
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| | - Robin A. Curtis
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| |
Collapse
|