1
|
Dong L, Zhuang X. Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters. Int J Mol Sci 2024; 25:4671. [PMID: 38731891 PMCID: PMC11083391 DOI: 10.3390/ijms25094671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaomei Zhuang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| |
Collapse
|
2
|
Hickey AJ, Maloney SE, Kuehl PJ, Phillips JE, Wolff RK. Practical Considerations in Dose Extrapolation from Animals to Humans. J Aerosol Med Pulm Drug Deliv 2024; 37:77-89. [PMID: 38237032 DOI: 10.1089/jamp.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
Animal studies are an important component of drug product development and the regulatory review process since modern practices have been in place, for almost a century. A variety of experimental systems are available to generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharmacological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of variability between species include the formulation, delivery system, and species-specific biological factors. It is important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.
Collapse
Affiliation(s)
- Anthony J Hickey
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Sara E Maloney
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Phillip J Kuehl
- Division: Scientific Core Laboratories; Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jonathan E Phillips
- Amgen, Inc., Inflammation Discovery Research, Thousand Oaks, California, USA
| | | |
Collapse
|
3
|
Xia W, Kolli AR, Kuczaj AK, Szostak J, Lam S, Toh WW, Purwanti A, Tan WT, Ng R, Phillips B, Peitsch MC, Hoeng J. Aerosol delivery and spatiotemporal tissue distribution of hydroxychloroquine in rat lung. Eur J Pharm Sci 2024; 194:106693. [PMID: 38184016 DOI: 10.1016/j.ejps.2024.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Inhalation enables the delivery of drugs directly to the lung, increasing the retention for prolonged exposure and maximizing the therapeutic index. However, the differential regional lung exposure kinetics and systemic pharmacokinetics are not fully known, and their estimation is critical for pulmonary drug delivery. The study evaluates the pharmacokinetics of hydroxychloroquine in different regions of the respiratory tract for multiple routes of administration. We also evaluated the influence of different inhaled formulations on systemic and lung pharmacokinetics by identifying suitable nebulizers followed by early characterization of emitted aerosol physicochemical properties. The salt- and freebase-based formulations required different nebulizers and generated aerosol with different physicochemical properties. An administration of hydroxychloroquine by different routes resulted in varied systemic and lung pharmacokinetics, with oral administration resulting in low tissue concentrations in all regions of the respiratory tract. A nose-only inhalation exposure resulted in higher and sustained lung concentrations of hydroxychloroquine with a lung parenchyma-to-blood ratio of 386 after 1440 min post-exposure. The concentrations of hydroxychloroquine in different regions of the respiratory tract (i.e., nasal epithelium, larynx, trachea, bronchi, and lung parenchyma) varied over time, indicating different retention kinetics. The spatiotemporal distribution of hydroxychloroquine in the lung is different due to the heterogeneity of cell types, varying blood perfusion rate, clearance mechanisms, and deposition of inhaled aerosol along the respiratory tract. In addition to highlighting the varied lung physiology, these results demonstrate the ability of the lung to retain increased levels of inhaled lysosomotropic drugs. Such findings are critical for the development of future inhalation-based therapeutics, aiming to optimize target site exposure, enable precision medicine, and ultimately enhance clinical outcomes.
Collapse
Affiliation(s)
- Wenhao Xia
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Aditya R Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel CH-2000, Switzerland.
| | - Arkadiusz K Kuczaj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel CH-2000, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel CH-2000, Switzerland
| | - Sharon Lam
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Wei Wen Toh
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Asef Purwanti
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Wei Teck Tan
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Raymond Ng
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel CH-2000, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel CH-2000, Switzerland
| |
Collapse
|
4
|
Herbert J, Kelty JS, Laskin JD, Laskin DL, Gow AJ. Menthol flavoring in e-cigarette condensate causes pulmonary dysfunction and cytotoxicity in precision cut lung slices. Am J Physiol Lung Cell Mol Physiol 2023; 324:L345-L357. [PMID: 36692165 PMCID: PMC10026991 DOI: 10.1152/ajplung.00222.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
E-cigarette consumption is under scrutiny by regulatory authorities due to concerns about product toxicity, lack of manufacturing standards, and increasing reports of e-cigarette- or vaping-associated acute lung injury. In vitro studies have demonstrated cytotoxicity, mitochondrial dysfunction, and oxidative stress induced by unflavored e-cigarette aerosols and flavoring additives. However, e-cigarette effects on the complex lung parenchyma remain unclear. Herein, the impact of e-cigarette condensates with or without menthol flavoring on functional, structural, and cellular responses was investigated using mouse precision cut lung slices (PCLS). PCLS were exposed to e-cigarette condensates prepared from aerosolized vehicle, nicotine, nicotine + menthol, and menthol e-fluids at doses from 50 to 500 mM. Doses were normalized to the glycerin content of vehicle. Video-microscopy of PCLS revealed impaired contractile responsiveness of airways to methacholine and dampened ciliary beating following exposure to menthol-containing condensates at concentrations greater than 300 mM. Following 500 mM menthol-containing condensate exposure, epithelial exfoliation in intrabronchial airways was identified in histological sections of PCLS. Measurement of lactate dehydrogenase release, mitochondrial water-soluble-tetrazolium salt-1 conversion, and glutathione content supported earlier findings of nicotine or nicotine + menthol e-cigarette-induced dose-dependent cytotoxicity and oxidative stress responses. Evaluation of PCLS metabolic activity revealed dose-related impairment of mitochondrial oxidative phosphorylation and glycolysis after exposure to menthol-containing condensates. Taken together, these data demonstrate prominent menthol-induced pulmonary toxicity and impairment of essential physiological functions in the lung, which warrants concerns about e-cigarette consumer safety and emphasizes the need for further investigations of molecular mechanisms of toxicity and menthol effects in an experimental model of disease.
Collapse
Affiliation(s)
- Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Jacklyn S Kelty
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| |
Collapse
|
5
|
Matera MG, Rinaldi B, Belardo C, Calzetta L, Cazzola M. Pharmacokinetic considerations surrounding triple therapy for uncontrolled asthma. Expert Opin Drug Metab Toxicol 2023; 19:345-355. [PMID: 37376964 DOI: 10.1080/17425255.2023.2230130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/12/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Solid pharmacological rationale and clinical evidence support the use of a combination of an inhaled corticosteroid (ICS), a long-acting β2-agonist, and a long-acting muscarinic antagonist in severe asthma, which clinically results in increased lung function, improved symptoms, and decreased exacerbation rates. AREAS COVERED We examined the pharmacokinetic issues associated with triple therapy for uncontrolled asthma. We considered the pharmacokinetic characteristics of the three drug classes, the role of inhalers in influencing their pharmacokinetic behavior, and the impact of severe asthma on the pharmacokinetics of inhaled drugs. EXPERT OPINION The pharmacokinetics of ICSs and bronchodilators are not affected to a great extent by severe asthma, according to a detailed review of the currently accessible literature. Compared to healthy people, patients with severe asthma show only minor variations in a few pharmacokinetic characteristics, which are unlikely to have therapeutic significance and do not require particular attention. However, the difficulty of obtaining pharmacokinetic profiles of the three drugs included in a triple therapy suggests that the clinical response should be followed over time, which can be considered a good surrogate indicator of whether the drugs have reached sufficient concentrations in the lung to exert a valid pharmacological action.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Carmela Belardo
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
6
|
Possible Extraction of Drugs from Lung Tissue During Broncho-alveolar Lavage Suggest Uncertainty in the Procedure's Utility for Quantitative Assessment of Airway Drug Exposure. J Pharm Sci 2021; 111:852-858. [PMID: 34890629 DOI: 10.1016/j.xphs.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
Following inhaled dosing, broncho-alveolar lavage (BAL) is often used for sampling epithelial lining fluid (ELF) to determine drug concentration in the lungs. This study aimed to explore the technique's suitability. Urea is typically used to estimate the dilution factor between the BAL fluid and physiological ELF, since it readily permeates through all fluids in the body. As representatives of permeable small molecule drugs with high, medium and low tissue distribution properties, propranolol, diazepam, indomethacin and AZD4721 were infused intravenously to steady state to ensure equal unbound drug concentrations throughout the body. The results showed that propranolol had higher unbound concentrations in the ELF compared to the plasma whilst this was not the case for the other compounds. Experiments with different BAL volumes and repeated lavaging indicated that the amount of drug extracted is very sensitive to experimental procedure. In addition, the results show that the unbound concentrations in ELF compared to plasma differs dependent on molecule class and tissue distribution properties. Overall data suggests that lavaging can remove drug from lung tissue in addition to ELF and highlights significant uncertainty in the robustness of the procedure for determining ELF drug concentrations.
Collapse
|
7
|
Sadiq MW, Holz O, Ellinghusen BD, Faulenbach C, Müller M, Badorrek P, Eriksson UG, Fridén M, Stomilovic S, Lundqvist AJ, Hohlfeld JM. Lung pharmacokinetics of inhaled and systemic drugs: A clinical evaluation. Br J Pharmacol 2021; 178:4440-4451. [PMID: 34250588 DOI: 10.1111/bph.15621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Human pharmacokinetic studies of lung-targeted drugs are typically limited to measurements of systemic plasma concentrations, which provide no direct information on lung target-site concentrations. We aimed to evaluate lung pharmacokinetics of commonly prescribed drugs by sampling different lung compartments after inhalation and oral administration. EXPERIMENTAL APPROACH Healthy volunteers received single, sequential doses of either inhaled salbutamol, salmeterol and fluticasone propionate (n = 12), or oral salbutamol and propranolol (n = 6). Each participant underwent bronchoscopies and gave breath samples for analysis of particles in exhaled air at two points after drug administration (1 and 6, 2 and 9, 3 and 12, or 4 and 18 h). Lung samples were taken via bronchosorption, bronchial brush, mucosal biopsy and bronchoalveolar lavage during each bronchoscopy. Blood samples were taken during the 24 h after administration. Pharmacokinetic profiles were generated by combining data from multiple individuals, covering all sample timings. KEY RESULTS Pharmacokinetic profiles were obtained for each drug in lung epithelial lining fluid, lung tissue and plasma. Inhalation of salbutamol resulted in approximately 100-fold higher concentrations in lung than in plasma. Salmeterol and fluticasone concentration ratios in lung versus plasma were higher still. Bronchosorption- and bronchoalveolar-lavage-generated profiles of inhaled drugs in epithelial lining fluid were comparable. For orally administered drugs, epithelial-lining-fluid concentrations were overestimated in bronchoalveolar-lavage-generated profiles. CONCLUSION AND IMPLICATIONS Combining pharmacokinetic data derived from several individuals and techniques sampling different lung compartments enabled generation of pharmacokinetic profiles for evaluation of lung targeting after inhaled and oral drug delivery.
Collapse
Affiliation(s)
- Muhammad Waqas Sadiq
- Clinical and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden.,Clinical Pharmacology and Safety Sciences, AstraZeneca, Gothenburg, Sweden.,R&D, AstraZeneca, Gothenburg, Sweden
| | - Olaf Holz
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Birthe D Ellinghusen
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Cornelia Faulenbach
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meike Müller
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Philipp Badorrek
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Ulf G Eriksson
- Clinical and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden.,Clinical Pharmacology and Safety Sciences, AstraZeneca, Gothenburg, Sweden.,R&D, AstraZeneca, Gothenburg, Sweden
| | - Markus Fridén
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Pharmaceutical Biosciences, Division of Pharmacokinetics and Drug Therapy, Uppsala University, Uppsala, Sweden
| | - Stina Stomilovic
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders J Lundqvist
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jens M Hohlfeld
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Drivers of absolute systemic bioavailability after oral pulmonary inhalation in humans. Eur J Pharm Biopharm 2021; 164:36-53. [PMID: 33895293 DOI: 10.1016/j.ejpb.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022]
Abstract
There are few studies in humans dealing with the relationship between physico-chemical properties of drugs and their systemic bioavailability after administration via oral inhalation route (Fpulm). Getting further insight in the determinants of Fpulm after oral pulmonary inhalation could be of value for drugs considered for a systemic delivery as a result of poor oral bioavailability, as well as for drugs considered for a local delivery to anticipate their undesirable systemic effects. To better delineate the parameters influencing the systemic delivery after oral pulmonary inhalation in humans, we studied the influence of physico-chemical and permeability properties obtained in silico on the rate and extent of Fpulm in a series of 77 compounds with or without marketing approval for pulmonary delivery, and intended either for local or for systemic delivery. Principal component analysis (PCA) showed mainly that Fpulm was positively correlated with Papp and negatively correlated with %TPSA, without a significant influence of solubility and ionization fraction, and no apparent link with lipophilicity and drug size parameters. As a result of the small sample set, the performance of the different models as predictive of Fpulm were quite average with random forest algorithm displaying the best performance. As a whole, the different models captured between 50 and 60% of the variability with a prediction error of less than 20%. Tmax data suggested a significant positive influence of lipophilicity on absorption rate while charge apparently had no influence. A significant linear relationship between Cmax and dose (R2 = "0.79) highlighted that Cmax was primarily dependent on dose and absorption rate and could be used to estimate Cmax in humans for new inhaled drugs.
Collapse
|
9
|
Hartung N, Borghardt JM. A mechanistic framework for a priori pharmacokinetic predictions of orally inhaled drugs. PLoS Comput Biol 2020; 16:e1008466. [PMID: 33320846 PMCID: PMC7771877 DOI: 10.1371/journal.pcbi.1008466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/29/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
The fate of orally inhaled drugs is determined by pulmonary pharmacokinetic processes such as particle deposition, pulmonary drug dissolution, and mucociliary clearance. Even though each single process has been systematically investigated, a quantitative understanding on the interaction of processes remains limited and therefore identifying optimal drug and formulation characteristics for orally inhaled drugs is still challenging. To investigate this complex interplay, the pulmonary processes can be integrated into mathematical models. However, existing modeling attempts considerably simplify these processes or are not systematically evaluated against (clinical) data. In this work, we developed a mathematical framework based on physiologically-structured population equations to integrate all relevant pulmonary processes mechanistically. A tailored numerical resolution strategy was chosen and the mechanistic model was evaluated systematically against data from different clinical studies. Without adapting the mechanistic model or estimating kinetic parameters based on individual study data, the developed model was able to predict simultaneously (i) lung retention profiles of inhaled insoluble particles, (ii) particle size-dependent pharmacokinetics of inhaled monodisperse particles, (iii) pharmacokinetic differences between inhaled fluticasone propionate and budesonide, as well as (iv) pharmacokinetic differences between healthy volunteers and asthmatic patients. Finally, to identify the most impactful optimization criteria for orally inhaled drugs, the developed mechanistic model was applied to investigate the impact of input parameters on both the pulmonary and systemic exposure. Interestingly, the solubility of the inhaled drug did not have any relevant impact on the local and systemic pharmacokinetics. Instead, the pulmonary dissolution rate, the particle size, the tissue affinity, and the systemic clearance were the most impactful potential optimization parameters. In the future, the developed prediction framework should be considered a powerful tool for identifying optimal drug and formulation characteristics.
Collapse
Affiliation(s)
- Niklas Hartung
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Jens Markus Borghardt
- Drug Discovery Sciences, Research DMPK, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
10
|
Davies M, Jones RDO, Grime K, Jansson-Löfmark R, Fretland AJ, Winiwarter S, Morgan P, McGinnity DF. Improving the Accuracy of Predicted Human Pharmacokinetics: Lessons Learned from the AstraZeneca Drug Pipeline Over Two Decades. Trends Pharmacol Sci 2020; 41:390-408. [PMID: 32359836 DOI: 10.1016/j.tips.2020.03.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 01/15/2023]
Abstract
During drug discovery and prior to the first human dose of a novel candidate drug, the pharmacokinetic (PK) behavior of the drug in humans is predicted from preclinical data. This helps to inform the likelihood of achieving therapeutic exposures in early clinical development. Once clinical data are available, the observed human PK are compared with predictions, providing an opportunity to assess and refine prediction methods. Application of best practice in experimental data generation and predictive methodologies, and a focus on robust mechanistic understanding of the candidate drug disposition properties before nomination to clinical development, have led to maximizing the probability of successful PK predictions so that 83% of AstraZeneca drug development projects progress in the clinic with no PK issues; and 71% of key PK parameter predictions [64% of area under the curve (AUC) predictions; 78% of maximum concentration (Cmax) predictions; and 70% of half-life predictions] are accurate to within twofold. Here, we discuss methods to predict human PK used by AstraZeneca, how these predictions are assessed and what can be learned from evaluating the predictions for 116 candidate drugs.
Collapse
Affiliation(s)
- Michael Davies
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK.
| | - Rhys D O Jones
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ken Grime
- DMPK, Research and Early Development, Respiratory, Inflammation and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Adrian J Fretland
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Susanne Winiwarter
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Paul Morgan
- Mechanistic Safety and ADME Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Dermot F McGinnity
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
11
|
Himstedt A, Braun C, Wicha SG, Borghardt JM. Towards a Quantitative Mechanistic Understanding of Localized Pulmonary Tissue Retention-A Combined In Vivo/In Silico Approach Based on Four Model Drugs. Pharmaceutics 2020; 12:E408. [PMID: 32365674 PMCID: PMC7284631 DOI: 10.3390/pharmaceutics12050408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/25/2023] Open
Abstract
Increasing affinity to lung tissue is an important strategy to achieve pulmonary retention and to prolong the duration of effect in the lung. As the lung is a very heterogeneous organ, differences in structure and blood flow may influence local pulmonary disposition. Here, a novel lung preparation technique was employed to investigate regional lung distribution of four drugs (salmeterol, fluticasone propionate, linezolid, and indomethacin) after intravenous administration in rats. A semi-mechanistic model was used to describe the observed drug concentrations in the trachea, bronchi, and the alveolar parenchyma based on tissue specific affinities (Kp) and blood flows. The model-based analysis was able to explain the pulmonary pharmacokinetics (PK) of the two neutral and one basic model drugs, suggesting up to six-fold differences in Kp between trachea and alveolar parenchyma for salmeterol. Applying the same principles, it was not possible to predict the pulmonary PK of indomethacin, indicating that acidic drugs might show different pulmonary PK characteristics. The separate estimates for local Kp, tracheal and bronchial blood flow were reported for the first time. This work highlights the importance of lung physiology- and drug-specific parameters for regional pulmonary tissue retention. Its understanding is key to optimize inhaled drugs for lung diseases.
Collapse
Affiliation(s)
- Anneke Himstedt
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany;
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany;
| | - Sebastian Georg Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;
| | - Jens Markus Borghardt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany;
| |
Collapse
|
12
|
Herbert J, Thiermann H, Worek F, Wille T. COPD and asthma therapeutics for supportive treatment in organophosphate poisoning. Clin Toxicol (Phila) 2019; 57:644-651. [PMID: 30696282 DOI: 10.1080/15563650.2018.1540785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Context: Nerve agents like sarin or VX have repeatedly been used in military conflicts or homicidal attacks, as seen in Syria or Malaysia 2017. Together with pesticides, nerve agents assort as organophosphorus compounds (OP), which inhibit the enzyme acetylcholinesterase. To counteract subsequent fatal symptoms due to acetylcholine (ACh) accumulation, oximes plus atropine are administered, a regimen that lacks efficacy in several cases of OP poisoning. New therapeutics are in development, but still need evaluation before clinical employment. Supportive treatment with already approved drugs presents an alternative, whereby compounds from COPD and asthma therapy are likely options. A recent pilot study by Chowdhury et al. included β2-agonist salbutamol in the treatment of OP-pesticide poisoned patients, yielding ambiguous results concerning the addition. Here, we provide experimental data for further investigations regarding the value of these drugs in OP poisoning. Methods: By video-microscopy, changes in airway area were analyzed in VX-poisoned rat precision cut lung slices (PCLS) after ACh-induced airway contraction and subsequent application of selected anticholinergics/β2-agonists. Results: Glycopyrrolate and ipratropium efficiently antagonized an ACh-induced airway contraction in VX-poisoned PCLS (EC50 glycopyrrolate 15.8 nmol/L, EC50 ipratropium 2.3 nmol/L). β2-agonists formoterol and salbutamol had only negligible effects when solely applied in the same setting. However, combination of formoterol or salbutamol with low dosed glycopyrrolate or atropine led to an additive effect compared to the sole application [50.6 ± 8.8% airway area increase after 10 nmol/L formoterol +1 nmol/L atropine versus 11.7 ± 9.2% (10 nmol/L formoterol) or 8.6 ± 5.9% (1 nmol/L atropine)]. Discussion: We showed antagonizing effects of anticholinergics and β2-agonists on ACh-induced airway contractions in VX-poisoned PCLS, thus providing experimental data to support a prospective comprehensive clinical study. Conclusions: Our results indicate that COPD and asthma therapeutics could be a valuable addition to the treatment of OP poisoning.
Collapse
Affiliation(s)
- Julia Herbert
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Horst Thiermann
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Franz Worek
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Timo Wille
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| |
Collapse
|
13
|
Matera MG, Rinaldi B, Page C, Rogliani P, Cazzola M. Pharmacokinetic considerations concerning the use of bronchodilators in the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Metab Toxicol 2018; 14:1101-1111. [DOI: 10.1080/17425255.2018.1530215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Barbara Rinaldi
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, King’s College London, London, UK
| | - Paola Rogliani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Bäckström E, Hamm G, Nilsson A, Fihn BM, Strittmatter N, Andrén P, Goodwin RJA, Fridén M. Uncovering the regional localization of inhaled salmeterol retention in the lung. Drug Deliv 2018; 25:838-845. [PMID: 29587546 PMCID: PMC6058612 DOI: 10.1080/10717544.2018.1455762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Treatment of respiratory disease with a drug delivered via inhalation is generally held as being beneficial as it provides direct access to the lung target site with a minimum systemic exposure. There is however only limited information of the regional localization of drug retention following inhalation. The aim of this study was to investigate the regional and histological localization of salmeterol retention in the lungs after inhalation and to compare it to systemic administration. Lung distribution of salmeterol delivered to rats via nebulization or intravenous (IV) injection was analyzed with high-resolution mass spectrometry imaging (MSI). Salmeterol was widely distributed in the entire section at 5 min after inhalation, by 15 min it was preferentially retained in bronchial tissue. Via a novel dual-isotope study, where salmeterol was delivered via inhalation and d3-salmeterol via IV to the same rat, could the effective gain in drug concentration associated with inhaled delivery relative to IV, expressed as a site-specific lung targeting factor, was 5-, 31-, and 45-fold for the alveolar region, bronchial sub-epithelium and epithelium, respectively. We anticipate that this MSI-based framework for quantifying regional and histological lung targeting by inhalation will accelerate discovery and development of local and more precise treatments of respiratory disease.
Collapse
Affiliation(s)
- Erica Bäckström
- a Drug Metabolism and Pharmacokinetics, Respiratory, Inflammation and Autoimmunity IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| | - Gregory Hamm
- b Pathology Sciences, Drug Safety & Metabolism IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Anna Nilsson
- c Biomolecular Mass Spectrometry Imaging, National Resource for MSI, Science for Life Laboratory, Dept. of Pharmaceutical Biosciences , Uppsala University , Uppsala , Sweden
| | - Britt-Marie Fihn
- a Drug Metabolism and Pharmacokinetics, Respiratory, Inflammation and Autoimmunity IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| | - Nicole Strittmatter
- b Pathology Sciences, Drug Safety & Metabolism IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Per Andrén
- c Biomolecular Mass Spectrometry Imaging, National Resource for MSI, Science for Life Laboratory, Dept. of Pharmaceutical Biosciences , Uppsala University , Uppsala , Sweden
| | - Richard J A Goodwin
- b Pathology Sciences, Drug Safety & Metabolism IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Markus Fridén
- a Drug Metabolism and Pharmacokinetics, Respiratory, Inflammation and Autoimmunity IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden.,d Translational PKPD Group, Department of Pharmaceutical Biosciences , Uppsala University , Uppsala , Sweden
| |
Collapse
|
15
|
Borghardt JM, Kloft C, Sharma A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can Respir J 2018; 2018:2732017. [PMID: 30018677 PMCID: PMC6029458 DOI: 10.1155/2018/2732017] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 11/18/2022] Open
Abstract
The inhalation route is frequently used to administer drugs for the management of respiratory diseases such as asthma or chronic obstructive pulmonary disease. Compared with other routes of administration, inhalation offers a number of advantages in the treatment of these diseases. For example, via inhalation, a drug is directly delivered to the target organ, conferring high pulmonary drug concentrations and low systemic drug concentrations. Therefore, drug inhalation is typically associated with high pulmonary efficacy and minimal systemic side effects. The lung, as a target, represents an organ with a complex structure and multiple pulmonary-specific pharmacokinetic processes, including (1) drug particle/droplet deposition; (2) pulmonary drug dissolution; (3) mucociliary and macrophage clearance; (4) absorption to lung tissue; (5) pulmonary tissue retention and tissue metabolism; and (6) absorptive drug clearance to the systemic perfusion. In this review, we describe these pharmacokinetic processes and explain how they may be influenced by drug-, formulation- and device-, and patient-related factors. Furthermore, we highlight the complex interplay between these processes and describe, using the examples of inhaled albuterol, fluticasone propionate, budesonide, and olodaterol, how various sequential or parallel pulmonary processes should be considered in order to comprehend the pulmonary fate of inhaled drugs.
Collapse
Affiliation(s)
- Jens Markus Borghardt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Ashish Sharma
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
16
|
Sapalidis K, Zarogoulidis P, Huang H, Bai C, Wen Y, Wang L, Boniou K, Karapantzos I, Karapantzou C, Karanikas M, Thomaidis V, Kosmidis C, Sardeli C, Benhassen N, Man YG, Florou MC, Mantalovas S, Laskou S, Giannakidis D, Koulouris C, Amaniti A, Kesisoglou I, Hohenforst-Schmidt W. Inhaled Immunotherapy Administration for Lung Cancer; Efficient? Certainly Possible. J Cancer 2018; 9:1121-1126. [PMID: 29581792 PMCID: PMC5868180 DOI: 10.7150/jca.24397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is still diagnosed at a late stage in most lung cancer patients. Regarding Non-small Cell lung cancer there are novel therapies such as; tyrosine kinase inhibitors and immunotherapy. Currently we have two immunotherapies that can be used either as first-line treatment or second line treatment; pembrolizumab and nivolumab. A third one is being investigated as a combination of immunotherapy; ipilimumab. Aerosol treatment has been investigated for many diseases not only for the lung, but also for systematic diseases. The design of cups was found the most significant factor in producing significant effects. The comparison of cups reveals the design J as the most capable of reducing the droplets at a minimum size of mass median aerodynamic diameter (MMAD) MMAD=1.99. Drug effect comes second in sequence (F=62.04) showing that nivolumab is the most drastic preparation at low particle sizes (1.89), two drugs share an intermediate particle diameter (pembrolizumab and ipilimumab). In total drugs demonstrate a decreasing droplet size: Ipilimumab>Pembrolizumab> Nivolumab.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuting Wen
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Konstantina Boniou
- Radiation-Oncology Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | - Ilias Karapantzos
- Ear, Nose and Throat Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece
| | - Chrysanthi Karapantzou
- Ear, Nose and Throat Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece
| | - Michael Karanikas
- 1 st University Surgery Department, University General Hospital of Alexandroupolis, Democritus University of Alexandroupolis, Alexandroupolis, Greece
| | - Vasilis Thomaidis
- Anatomy Department, Democritus University of Alexandroupolis, Alexandroupolis, Greece
| | | | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Naim Benhassen
- Medical Clinic I, "Fuerth" Hospital, University of Erlangen, Fuerth, Germany
| | - Yan-Gao Man
- Department of Pathology, Hackensack Meridian Health-Hackensack University Medical Center, NJ, USA
| | - Maria C Florou
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Stylianos Mantalovas
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Stella Laskou
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Dimitris Giannakidis
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Charilaos Koulouris
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Aikaterini Amaniti
- Anesthesiology Department, "AHEPA" University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaak Kesisoglou
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology / Pulmonology / Intensive Care / Nephrology, ''Hof'' Clinics, University of Erlangen, Hof, Germany
| |
Collapse
|
17
|
Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. Eur J Pharm Sci 2018; 113:171-184. [DOI: 10.1016/j.ejps.2017.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023]
|
18
|
Hendrickx R, Lamm Bergström E, Janzén DLI, Fridén M, Eriksson U, Grime K, Ferguson D. Translational model to predict pulmonary pharmacokinetics and efficacy in man for inhaled bronchodilators. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 7:147-157. [PMID: 29280349 PMCID: PMC5869554 DOI: 10.1002/psp4.12270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/11/2023]
Abstract
Translational pharmacokinetic (PK) models are needed to describe and predict drug concentration‐time profiles in lung tissue at the site of action to enable animal‐to‐man translation and prediction of efficacy in humans for inhaled medicines. Current pulmonary PK models are generally descriptive rather than predictive, drug/compound specific, and fail to show successful cross‐species translation. The objective of this work was to develop a robust compartmental modeling approach that captures key features of lung and systemic PK after pulmonary administration of a set of 12 soluble drugs containing single basic, dibasic, or cationic functional groups. The model is shown to allow translation between animal species and predicts drug concentrations in human lungs that correlate with the forced expiratory volume for different classes of bronchodilators. Thus, the pulmonary modeling approach has potential to be a key component in the prediction of human PK, efficacy, and safety for future inhaled medicines.
Collapse
Affiliation(s)
- Ramon Hendrickx
- DMPK, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Eva Lamm Bergström
- DMPK, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - David L I Janzén
- DMPK, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Markus Fridén
- DMPK, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ulf Eriksson
- Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ken Grime
- DMPK, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Douglas Ferguson
- DMPK, Oncology, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Ehrhardt C, Bäckman P, Couet W, Edwards C, Forbes B, Fridén M, Gumbleton M, Hosoya KI, Kato Y, Nakanishi T, Takano M, Terasaki T, Yumoto R. Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. J Pharm Sci 2017; 106:2234-2244. [DOI: 10.1016/j.xphs.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
20
|
Perry MWD, Björhall K, Bonn B, Carlsson J, Chen Y, Eriksson A, Fredlund L, Hao H, Holden NS, Karabelas K, Lindmark H, Liu F, Pemberton N, Petersen J, Rodrigo Blomqvist S, Smith RW, Svensson T, Terstiege I, Tyrchan C, Yang W, Zhao S, Öster L. Design and Synthesis of Soluble and Cell-Permeable PI3Kδ Inhibitors for Long-Acting Inhaled Administration. J Med Chem 2017; 60:5057-5071. [PMID: 28520415 DOI: 10.1021/acs.jmedchem.7b00401] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PI3Kδ is a lipid kinase that is believed to be important in the migration and activation of cells of the immune system. Inhibition is hypothesized to provide a powerful yet selective immunomodulatory effect that may be beneficial for the treatment of conditions such as asthma or rheumatoid arthritis. In this work, we describe the identification of inhibitors based on a thiazolopyridone core structure and their subsequent optimization for inhalation. The initially identified compound (13) had good potency and isoform selectivity but was not suitable for inhalation. Addition of basic substituents to a region of the molecule pointing to solvent was tolerated (enzyme inhibition pIC50 > 9), and by careful manipulation of the pKa and lipophilicity, we were able to discover compounds (20b, 20f) with good lung retention and cell potency that could be taken forward to in vivo studies where significant target engagement could be demonstrated.
Collapse
Affiliation(s)
- Matthew W D Perry
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Karin Björhall
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Britta Bonn
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | | | - Yunhua Chen
- Pharmaron Beijing Co., Ltd. , No. 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Anders Eriksson
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | | | - Hai'e Hao
- Pharmaron Beijing Co., Ltd. , No. 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Neil S Holden
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Kostas Karabelas
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | | | - Feifei Liu
- Pharmaron Beijing Co., Ltd. , No. 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Nils Pemberton
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | | | - Sandra Rodrigo Blomqvist
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Reed W Smith
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Tor Svensson
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Ina Terstiege
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Christian Tyrchan
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca Gothenburg , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Wenzhen Yang
- Pharmaron Beijing Co., Ltd. , No. 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Shuchun Zhao
- Pharmaron Beijing Co., Ltd. , No. 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | | |
Collapse
|
21
|
Ufuk A, Assmus F, Francis L, Plumb J, Damian V, Gertz M, Houston JB, Galetin A. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages. Mol Pharm 2017; 14:1033-1046. [PMID: 28252969 DOI: 10.1021/acs.molpharmaceut.6b00908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (Kp,cell) of all drugs (5 μM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH4Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro Kp,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in Kp,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean Kp,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH4Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Frauke Assmus
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Laura Francis
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Jonathan Plumb
- Respiratory and Allergy Clinical Research Facility, University Hospital of South Manchester , Manchester, U.K
| | - Valeriu Damian
- Computational Modeling Sciences, DDS, GlaxoSmithKline , Upper Merion, Pennsylvania 19406, United States
| | - Michael Gertz
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K.,Pharmaceutical Sciences, pRED, Roche Innovation Center , Basel, Switzerland
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| |
Collapse
|