1
|
Patel K, Shah S, Patel J. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: A comprehensive review. Daru 2022; 30:165-189. [PMID: 35437630 PMCID: PMC9114203 DOI: 10.1007/s40199-022-00440-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Solubility limited bioavailability is one of the crucial parameters that affect the formulation development of the new chemical entities. Thus the major constraint in the pharmaceutical product development is the suitable solubility enhancement technique for Active Pharmaceutical Ingredient. Solid dispersion (SD) is an established and preferred method for improving the solubility which ultimately may be helpful to enhance bioavailability. For long period of time Amorphous solid dispersion (ASD) have been preferred for improving solubility, but since last two decades, ASD approach have been combined with different modified release approaches to improvise the stability and site specificity of SD to grasp a hold over the specific advantages associated with such dosage forms. It is an established fact now that the SD technique not only improves solubility limited bioavailability, but it may be combined with other approaches to modify the drug release profile from the formulation as per the requirement based on the apt selection of SD carriers and suitable technology. This review covers the comprehensive overview of all such formulations where SD technology is used to serve dual purpose rather than only the sole purpose of solubility enhancement. The SD approach has been successfully implemented for some of the poorly soluble herbal drugs and still there is a vast scope of advancement in that area. The current review will provide a broad outcome in the area of SD technology for modified release formulations along with the description of current status and future prospective of SD. The SD formed by dispersing drug within the conventional carrier to form ASD increases solubility, dissolution rate and bioavailability; whereas fourth generation hydrophobic carriers provide added advantage of controlled release (CR) or sustained release (SR) profile along with enhanced stability of SD. On the other frontier, pH dependant carriers enable the SD to achieve site specificity or delayed release (DR) profile.
Collapse
Affiliation(s)
- Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India.
- Gujarat Technological University, Ahmedabad, 382424, India.
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
| | - Jaymin Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
| |
Collapse
|
2
|
Gangolu J, Balaiah S, Nandi S, Roy H. Optimization and Quest of HPMC loaded Stavudine Controlled Release Dosage Development by Central Composite Design utilizing Reduced Factorial Screening Technique. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
3
|
Gundu R, Pekamwar S, Shelke S, Kulkarni D, Shep S. Development, optimization and pharmacokinetic evaluation of biphasic extended-release osmotic drug delivery system of trospium chloride for promising application in treatment of overactive bladder. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00311-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The research was aimed with an approach to formulate biphasic extended-release system of trospium chloride resulting in controlled release of drug up to 24 h with prospects of better control on urinary frequency, efficacy, tolerability, and improved patient compliance. The push–pull osmotic pump (PPOP) bi-layered tablet of trospium chloride (60 mg) was developed with the use of immediate-release polymers in the pull layer (30 mg drug) and polyethylene oxide in the push layer (remaining 30 mg drug). The tablet was formulated by compression after non-aqueous granulation, seal coating, and semipermeable coating. The tablet prepared was laser drilled to create an orifice for drug release.
Results
Comparative in vitro dissolution and in vivo pharmacokinetic analysis of available marketed formulations demonstrated the complete drug release within 16–18 h; hence the developed biphasic extended-release system has its great importance as it provides zero-order release up to 24 h.
Conclusions
The developed biphasic extended-release drug delivery system of trospium chloride provides the drug release for 24 h with effective plasma concentration in comparison with the available marketed formulation. Extended release of drug from the developed formulation provides scope for its promising application in the treatment of overactive bladder (OAB).
Collapse
|
4
|
Tran PHL, Lee BJ, Tran TTD. Fast-Dissolving Solid Dispersions for the Controlled Release of Poorly Watersoluble Drugs. Curr Pharm Des 2021; 27:1498-1506. [PMID: 33087026 DOI: 10.2174/1381612826666201021125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Solid dispersions offer many advantages for oral drug delivery of poorly water-soluble drugs over other systems, including an increase in drug solubility and drug dissolution. An improvement in drug absorption and the higher bioavailability of active pharmaceutical ingredients in the gastrointestinal tract have been reported in various studies. In certain circumstances, a rapid pharmacological effect is required for patients. Fastdissolving solid dispersions provide an ideal formulation in such cases. This report will provide an overview of current studies on fast-dissolving solid dispersions, including not only solid dispersion powders with fast dissolution rates but also specific dose form for the controlled release of poorly water-soluble drugs. Specifically, the applications of fast-dissolving solid dispersions will be described in every specific case. Moreover, pharmaceutical approaches and the utilization of polymers will be summarized. The classification and analysis of fastdissolving solid dispersions could provide insight into strategies and potential applications in future drug delivery developments.
Collapse
Affiliation(s)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Liw JJ, Teoh XY, Teoh AXY, Chan SY. The Effect of Carrier-Drug Ratios on Dissolution Performances of Poorly Soluble Drug in Crystalline Solid Dispersion System. J Pharm Sci 2021; 111:95-101. [PMID: 34174289 DOI: 10.1016/j.xphs.2021.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
The choice of carrier and drug ratio are critical factors as far as the type of solid dispersion is concerned. Amorphous solid dispersion has been cited as the most desirable type among the different types of solid dispersion due to the benefit of amorphicity in increasing the drug solubility of a poorly soluble drug. Recent reports delineated that a partially crystalline solid dispersion system may perform better due to the inherent issue of solution mediated recrystallisation of a completely amorphous system. In oppose to the conventional choice of using amorphous polymer, this study aimed to investigate the use of a crystalline carrier, polyethylene glycol (PEG) for dissolution enhancement of a model poorly soluble drug, Flurbiprofen (FBP), a BCS Class II candidate. Solid dispersions of different FBP to PEG 6000 molar ratios via solvent evaporation were prepared. Physical characterisation of preparations was performed using differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and optical microscope. DSC and ATR-FTIR analyses suggest the obtained solid dispersion exhibits crystalline FBP. This is then supported by the optical microscope analysis as the birefringence of crystals was noted. Further increasing the drug-carrier molar ratio to one-to-three and one-to-six showed that there was an amorphous FBP constituent in the system. DSC analysis revealed the melting point depression of FBP by the carrier which signifies interaction between the drug and polymer. Dissolution study showed the solid dispersion of FBP improves the drug solubility and drug release compared to the pure drug. A higher carrier ratio in the formulation results in a higher drug release.
Collapse
Affiliation(s)
- Jyi Jun Liw
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Xin-Yi Teoh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Xing Yee Teoh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Siok-Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
6
|
Gao S, Chen Y, Hu R, Lu W, Yu L, Chen J, Liu S, Guo Y, Shen Q, Wang B, Fang W. Visualized analysis and evaluation of simultaneous controlled release of metformin hydrochloride and gliclazide from sandwiched osmotic pump capsule. Drug Dev Ind Pharm 2020; 46:1776-1786. [PMID: 32895014 DOI: 10.1080/03639045.2020.1821047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to develop the Metformin Hydrochloride and Gliclazide (MH-GZ) sandwiched osmotic pump capsule which could overcome the problems associated with short half-life and burst release. The system could deliver drugs with different solubility simultaneously at zero-order rate, in which MH-GZ were filled in both sides of the push layer respectively. The single factor and orthogonal test were employed to obtain the optimized formulation with the evaluation index of similarity factor (ƒ2). R language was used to visualized analyze the main influence factors of drug release and their correlations. Pharmacokinetic study was performed in beagle dogs compared to the marketed conventional product, which showed decreased Cmax, prolonged Tmax, and improved bioavailability, independent of pH and agitational speed but related to osmotic pressure differences across the semi permeable membrane. The designed sandwiched osmotic pump capsule proposed a promising substitute for the marketed product for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Song Gao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yanjun Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.,College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lingfei Yu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jiayi Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Songlin Liu
- Anhui Huangshan Capsule Co., Ltd, Huangshan, Anhui, China
| | - Yuxing Guo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Qiang Shen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenyou Fang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Tran PH, Tran TT. Dosage form designs for the controlled drug release of solid dispersions. Int J Pharm 2020; 581:119274. [DOI: 10.1016/j.ijpharm.2020.119274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
|
8
|
Nie X, Wang B, Hu R, Lu W, Chen J, Liu S, Jin D, Sun C, Gao S, Guo Y, Fang W, Hao H. Development and Evaluation of Controlled and Simultaneous Release of Compound Danshen Based on a Novel Colon-Specific Osmotic Pump Capsule. AAPS PharmSciTech 2020; 21:38. [PMID: 31897797 DOI: 10.1208/s12249-019-1603-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/03/2019] [Indexed: 01/17/2023] Open
Abstract
In the study, we developed a novel oral dosage form of Compound Danshen to resolve the problems of low bioavailability, disequilibrium in drug release, and stomach degradation of active components of Compound Danshen in conventional formulas. A colon-specific osmotic pump capsule (COPC) of Compound Danshen was prepared using a semipermeable shell with the core components. Using a single-factor method, we obtained the optimal formulation that consisted of Salvia miltiorrhiza extract, Panax notoginseng extract, Borneol, sodium chloride, polyethylene oxide wsr-N10, hydroxypropyl-β-cyclodextrin, and ludipress. Moreover, in vitro dissolution test showed simultaneous releases of active ingredients from Compound Danshen COPC over 12 h at pH 7.8, displaying zero-order release characteristics. The impetus of drug release mainly depended on the difference in osmotic pressure across the capsule shell. Next, scanning electron microscopy showed morphological changes in the capsule shell during the dissolution test. More importantly, pharmacokinetic study in beagle dogs indicated that relative bioavailability was 330.58% and retention time was greatly prolonged in Compound Danshen COPC, compared with those in marketed Compound Danshen tablet products. Finally, in vivo imaging studies in beagle dogs showed that COPC was stable in gastrointestinal tract and the drug was specifically released in the colon region. A colon-specific osmotic pump capsule (COPC) of Compound Danshen was developed and optimized to achieve simultaneous zero-order release of multiple active components of Compound Danshen in the colon. More importantly, the COPC have proved to improve the bioavailability and prolong the retention time of Compound Danshen, compared with those in a marketed product.
Collapse
|
9
|
Ji HB, Kim SN, Lee SH, Huh BK, Shin BH, Lee C, Cho YC, Heo CY, Choy YB. Soft implantable device with drug-diffusion channels for the controlled release of diclofenac. J Control Release 2019; 318:176-184. [PMID: 31838204 DOI: 10.1016/j.jconrel.2019.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
We propose the use of an implantable device with multiple embedded drug diffusion channels, each of which is connected to a drug reservoir, for the controlled release of diclofenac. To minimize the size of the incision needed during device implantation, the device used herein was made of the soft biocompatible material polydimethylsiloxane (PDMS), thereby allowing for folding during device implantation. We aimed to achieve a profile of diclofenac release that was reproducible even after folding, and thus the channel was filled with cross-linked gelatin, which could be swollen via the infiltration of a bodily fluid to compensate for any possible defects formed during folding. We first assessed the use of individual channels of varying lengths of 1-12 mm, and the onset time and average rate varied from 1 to 14 days and from 0.31-4.3%/day, respectively. According to these results, we prepared a device with multiple integrated pairs of drug reservoirs and channels of different lengths (i.e., the SDD_I), in which the channel combination was selected to achieve the long-term, zero-order release of the largest amount of drug. Thus, the SDD_I used herein exhibited almost zero-order drug release for 55 days at a release rate of 1.19%/day (179.8 μg/day), which did not vary even after the device was folded multiple times due to the presence of gelatin in the channel. When tested in living rats, the SDD_I device could be folded and inserted subcutaneously through an incision less than half the size of that needed for the implantation of the unfolded, intact SDD_I. For both the unfolded and folded SDD_I devices, the drug concentration in blood was observed to be maintained within a similar range due to the almost zero-order, reproducible release of diclofenac.
Collapse
Affiliation(s)
- Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Beom Kang Huh
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Ho Shin
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong Chan Cho
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan Yeong Heo
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Plastic and Reconstructive Surgery, Seoul National University, Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
10
|
|
11
|
Li N, Fan L, Wu B, Dai G, Jiang C, Guo Y, Wang D. Preparation and in vitro/in vivo evaluation of azilsartan osmotic pump tablets based on the preformulation investigation. Drug Dev Ind Pharm 2019; 45:1079-1088. [PMID: 30909753 DOI: 10.1080/03639045.2019.1593441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The objective of this study was to design and evaluate azilsartan osmotic pump tablets. Preformulation properties of azilsartan were investigated for formulation design. Azilsartan osmotic pump tablets were prepared by incorporation of drug in the core and subsequent coating with cellulose acetate and polyethylene glycol 4000 as semi-permeable membrane, then drilled an orifice at the center of one side. The influence of different cores, compositions of semipermeable membrane and orifice diameter on azilsartan release were evaluated. The formulation of core tablet was optimized by orthogonal design and the release profiles of various formulations were evaluated by similarity factor (f2). The optimal formulation achieved to deliver azilsartan at an approximate zero-order up to 14 h. The pharmacokinetic study was performed in beagle dogs. The azilsartan osmotic pump tablets exhibited less fluctuation in blood concentration and higher bioavailability compared to immediate-release tablets. Moreover, there was a good correlation between the in vitro dissolution and in vivo absorption of the tablets. In summary, azilsartan osmotic pump tablets presented controlled release in vitro, high bioavailability in vivo and a good in vitro-in vivo correlation.
Collapse
Affiliation(s)
- Nini Li
- a School of Pharmacy , Anhui University of Chinese Medicine , Hefei , Anhui , China
| | - Ling Fan
- a School of Pharmacy , Anhui University of Chinese Medicine , Hefei , Anhui , China.,b Clinical Drug Trial Institution , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui , China
| | - Biao Wu
- c Hefei Jiunuo Pharmaceutical Technology CO., LTD , Hefei , Anhui , China
| | - Genlai Dai
- c Hefei Jiunuo Pharmaceutical Technology CO., LTD , Hefei , Anhui , China
| | - Chengjun Jiang
- a School of Pharmacy , Anhui University of Chinese Medicine , Hefei , Anhui , China
| | - Yan Guo
- a School of Pharmacy , Anhui University of Chinese Medicine , Hefei , Anhui , China
| | - Dianlei Wang
- a School of Pharmacy , Anhui University of Chinese Medicine , Hefei , Anhui , China
| |
Collapse
|
12
|
Zhu C, Xu S, Han X, Wang W, He W, Yin L, Yang L, Qin C. Sustained Release Bilayer Tablet of Ibuprofen and Phenylephrine Hydrochloride: Preparation and Pharmacokinetics in Beagle Dogs. AAPS PharmSciTech 2019; 20:86. [PMID: 30673916 DOI: 10.1208/s12249-018-1271-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022] Open
Abstract
Cold is a global common infectious disease accompanied by symptoms such as headache and stuffy nose. Ibuprofen (IBU) and phenylephrine hydrochloride (PE) were commonly used for common cold due to their different effects in relieving fever and the main symptoms such as nasal congestion and high sinus pressure. However, the commercial tablets of IBU and PE have to be administered 2 to 3 times per day due to their short half-life, with inconvenience for patient and fluctuations of plasma concentration. Bilayer tablet technology was utilized to design the IBU-PE sustained release tablets because of the significantly different solubility of IBU and PE in release media. The formulations of IBU layer and PE layer contain different viscosity grades of hydroxypropyl methylcellulose (HPMC) as sustained-release matrix, hydrophilic diluent, and traditional glidant and lubricant. The sustained release bilayer tablet exhibited satisfying sustained release performance with the mechanisms of diffusion and matrix erosion. Compared with the conventional tablets, the IBU-PE sustained release bilayer tablet expressed significantly sustained-release behavior with decreased Cmax and prolonged Tmax in fasted conditions for IBU and PE. Though IBU of IBU-PE sustained release bilayer tablet was bioequivalent to the commercial IBU tablet, the relative bioavailability of PE from the bilayer tablets was 87.49 ± 20.00% (90% confidence interval was 72.3 to 102.5%), indicating bioinequivalence probably due to the "first pass" effect.
Collapse
|