1
|
Mensah GAK, Schaefer KG, Roberts AG, King GM, Bartlett MG. Probing the Mechanisms Underlying the Transport of the Vinca Alkaloids by P-glycoprotein. J Pharm Sci 2024; 113:1960-1974. [PMID: 38527618 DOI: 10.1016/j.xphs.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
The efficacy of many cancer drugs is hindered by P-glycoprotein (Pgp), a cellular pump that removes drugs from cells. To improve chemotherapy, drugs capable of evading Pgp must be developed. Despite similarities in structure, vinca alkaloids (VAs) show disparate Pgp-mediated efflux ratios. ATPase activity and binding affinity studies show at least two binding sites for the VAs: high- and low-affinity sites that stimulate and inhibit the ATPase activity rate, respectively. The affinity for ATP from the ATPase kinetics curve for vinblastine (VBL) at the high-affinity site was 2- and 9-fold higher than vinorelbine (VRL) and vincristine (VCR), respectively. Conversely, VBL had the highest Km (ATP) for the low-affinity site. The dissociation constants (KDs) determined by protein fluorescence quenching were in the order VBL < VRL< VCR. The order of the KDs was reversed at higher substrate concentrations. Acrylamide quenching of protein fluorescence indicate that the VAs, either at 10 µM or 150 µM, predominantly maintain Pgp in an open-outward conformation. When 3.2 mM AMPPNP was present, 10 µM of either VBL, VRL, or VCR cause Pgp to shift to an open-outward conformation, while 150 µM of the VAs shifted the conformation of Pgp to an intermediate orientation, between opened inward and open-outward. However, the conformational shift induced by saturating AMPPNP and VCR condition was less than either VBL or VRL in the presence of AMPPNP. At 150 µM, atomic force microscopy (AFM) revealed that the VAs shift Pgp population to a predominantly open-inward conformation. Additionally, STDD NMR studies revealed comparable groups in VBL, VRL, and VCR are in contact with the protein during binding. Our results, when coupled with VAs-microtubule structure-activity relationship studies, could lay the foundation for developing next-generation VAs that are effective as anti-tumor agents. A model that illustrates the intricate process of Pgp-mediated transport of the VAs is presented.
Collapse
Affiliation(s)
- Gershon A K Mensah
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA; Joint with Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Nguyen PH, Cui S, Kozarich AM, Rautio A, Roberts AG, Xiong MP. Utilizing surface plasmon resonance as a novel method for monitoring in-vitro P-glycoprotein efflux. FRONTIERS IN BIOPHYSICS 2024; 2:1367511. [PMID: 38645731 PMCID: PMC11027885 DOI: 10.3389/frbis.2024.1367511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
P-glycoprotein (Pgp) is known for its dichotomous roles as both a safeguarding efflux transporter against xenobiotics and as a catalyst for multidrug resistance. Given the susceptibility of numerous therapeutic compounds to Pgp-mediated resistance, compliance with Food and Drug Administration (FDA) guidelines mandates an in-depth in vitro transport assay during drug development. This study introduces an innovative transport assay that aligns with these regulatory imperatives but also addresses limitations in the currently established techniques. Using Pgp-reconstituted liposomes and employing surface plasmon resonance (SPR), this study developed a distinct method of measuring the relative transport rates of Pgp substrates in a controlled microenvironment. The Pgp substrates selected for this study-quinidine, methadone, and desipramine-resulted in transport ratios that corroborate with trends previously observed. To assess the kinetics of Pgp-mediated transport, the results were analyzed by fitting the data to both currently proposed Pgp substrate translocation models-the vacuum cleaner and flippase models. While the resulting kinetic analysis in this study lends support predominantly to the vacuum cleaner model, this study most notably developed a novel method of assessing Pgp-mediated transport rates and real-time kinetics using surface plasmon resonance.
Collapse
Affiliation(s)
- Phuong H. Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Shuolin Cui
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Amanda M. Kozarich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Alex Rautio
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Arthur G. Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - May P. Xiong
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Mensah GAK, Schaefer KG, Bartlett MG, Roberts AG, King GM. Drug-Induced Conformational Dynamics of P-Glycoprotein Underlies the Transport of Camptothecin Analogs. Int J Mol Sci 2023; 24:16058. [PMID: 38003248 PMCID: PMC10671697 DOI: 10.3390/ijms242216058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
P-glycoprotein (Pgp) plays a pivotal role in drug bioavailability and multi-drug resistance development. Understanding the protein's activity and designing effective drugs require insight into the mechanisms underlying Pgp-mediated transport of xenobiotics. In this study, we investigated the drug-induced conformational changes in Pgp and adopted a conformationally-gated model to elucidate the Pgp-mediated transport of camptothecin analogs (CPTs). While Pgp displays a wide range of conformations, we simplified it into three model states: 'open-inward', 'open-outward', and 'intermediate'. Utilizing acrylamide quenching of Pgp fluorescence as a tool to examine the protein's tertiary structure, we observed that topotecan (TPT), SN-38, and irinotecan (IRT) induced distinct conformational shifts in the protein. TPT caused a substantial shift akin to AMPPNP, suggesting ATP-independent 'open-outward' conformation. IRT and SN-38 had relatively moderate effects on the conformation of Pgp. Experimental atomic force microscopy (AFM) imaging supports these findings. Further, the rate of ATPase hydrolysis was correlated with ligand-induced Pgp conformational changes. We hypothesize that the separation between the nucleotide-binding domains (NBDs) creates a conformational barrier for substrate transport. Substrates that reduce the conformational barrier, like TPT, are better transported. The affinity for ATP extracted from Pgp-mediated ATP hydrolysis kinetics curves for TPT was about 2-fold and 3-fold higher than SN-38 and IRT, respectively. On the contrary, the dissociation constants (KD) determined by fluorescence quenching for these drugs were not significantly different. Saturation transfer double difference (STDD) NMR of TPT and IRT with Pgp revealed that similar functional groups of the CPTs are accountable for Pgp-CPTs interactions. Efforts aimed at modifying these functional groups, guided by available structure-activity relationship data for CPTs and DNA-Topoisomerase-I complexes, could pave the way for the development of more potent next-generation CPTs.
Collapse
Affiliation(s)
- Gershon A. K. Mensah
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Katherine G. Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA;
| | - Michael G. Bartlett
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Arthur G. Roberts
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA;
- Joint with Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Inoue Y, Yamaguchi T, Otsuka T, Utsunomiya Y, Pan D, Ogawa H, Kato H. Structure-based alteration of tryptophan residues of the multidrug transporter CmABCB1 to assess substrate binding using fluorescence spectroscopy. Protein Sci 2022; 31:e4331. [PMID: 35634783 PMCID: PMC9123602 DOI: 10.1002/pro.4331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 09/17/2023]
Abstract
ABCB1, also known as P-glycoprotein, is an essential component of many physiological barriers and extrudes a variety of hydrophobic chemicals out of the cell. Structures of ABCB1 provided insights into the structural changes that occur upon ATP binding and the characteristic architecture of the substrate binding site. Yet, the structure-function relationship between substrate binding and transporting still remains largely obscured because there is no robust method for accurately measuring substrate binding constants. The methods currently used cannot identify whether the bound substrates are located in the inner chamber of the molecule in the transmembrane region or not because of the low spatial resolution. Here, we report a system for measuring the affinity of substrate binding to the Cyanidioschyzon merolae ABCB1 (CmABCB1) using site-specific tryptophan (Trp) fluorescence quenching. We designed a CmABCB1 mutant with an extrinsic Trp residue introduced into the inner chamber. Trp fluorescence was quenched by three substrates and one inhibitor, including rhodamine 6G, in a saturable fashion, allowing for accurate estimation of the dissociation constant (KD ) for each molecule. The KD for rhodamine 6G is similar to that determined using a reciprocal fluorescence quenching assay using rhodamine 6G fluorescence, suggesting that Trp fluorescence of the mutant was quenched by the interaction between the extrinsic Trp and substrates bound in the inner chamber. Structural comparison of the ABCB1 structures suggests that the system presented in this study could be ideal method of choice to determine the substrate binding affinities of compounds bound to the chamber of mammalian ABCB1.
Collapse
Affiliation(s)
- Yoshiki Inoue
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Tomohiro Yamaguchi
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Tetsuo Otsuka
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Yuto Utsunomiya
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Dongqing Pan
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Hiroaki Kato
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Advanced Photon Technology DivisionRIKEN Harima Institute at SPring‐8Sayo‐gunHyogoJapan
| |
Collapse
|
6
|
Wang L, O'Mara ML. Effect of the Force Field on Molecular Dynamics Simulations of the Multidrug Efflux Protein P-Glycoprotein. J Chem Theory Comput 2021; 17:6491-6508. [PMID: 34506133 DOI: 10.1021/acs.jctc.1c00414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular dynamics (MD) simulations have been used extensively to study P-glycoprotein (P-gp), a flexible multidrug transporter that is a key player in the development of multidrug resistance to chemotherapeutics. A substantial body of literature has grown from simulation studies that have employed various simulation conditions and parameters, including AMBER, CHARMM, OPLS, GROMOS, and coarse-grained force fields, drawing conclusions from simulations spanning hundreds of nanoseconds. Each force field is typically parametrized and validated on different data and observables, usually of small molecules and peptides; there have been few comparisons of force field performance on large protein-membrane systems. Here we compare the conformational ensembles of P-gp embedded in a POPC/cholesterol bilayer generated over 500 ns of replicate simulation with five force fields from popular biomolecular families: AMBER 99SB-ILDN, CHARMM 36, OPLS-AA/L, GROMOS 54A7, and MARTINI. We find considerable differences among the ensembles with little conformational overlap, although they correspond to similar extents to structural data obtained from electron paramagnetic resonance and cross-linking studies. Moreover, each trajectory was still sampling new conformations at a high rate after 500 ns of simulation, suggesting the need for more sampling. This work highlights the need to consider known limitations of the force field used (e.g., biases toward certain secondary structures) and the simulation itself (e.g., whether sufficient sampling has been achieved) when interpreting accumulated results of simulation studies of P-gp and other transport proteins.
Collapse
Affiliation(s)
- Lily Wang
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
8
|
Ramli FF. Pharmacogenomics biomarkers for personalized methadone maintenance treatment: The mechanism and its potential use. Bosn J Basic Med Sci 2021; 21:145-154. [PMID: 32841585 PMCID: PMC7982063 DOI: 10.17305/bjbms.2020.4897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Methadone has a wide pharmacokinetic interindividual variability, resulting in unpredicted treatment response. Pharmacogenomic biomarkers seem promising for personalized methadone maintenance treatment. The evidence supports the use of ABCB1 single-nucleotide polymorphism (SNP) 1236C>T with genotypes C/T or C/C (Jewish) and haplotypes AGCTT carrier, AGCGC heterozygote, or non-carrier (Caucasian), which have a predicted lower methadone dose requirement. In contrast, ABCB1 SNP 1236C>T with genotype T/T (Jewish); haplotypes AGCGC homozygote, AGCTT non-carrier (Caucasian), and ABCB1 3435C>T variant carrier; and haplotypes CGT, TTC, and TGT (Han Chinese) have a predicted higher methadone dose. For methadone plasma levels, ABCB1 diplotype non-CGC/TTT (Malay) predicted lower, and diplotype CGC/TTT (Malay), 3435C>T allelic carrier, haplotypes (CGT, TTC, TGT) (Han Chinese) predicted higher methadone levels. In terms of metabolism biomarkers, a lower methadone requirement was related to carriers of CYP2B6 genotypes *4(G/G) and *9(T/T) among Jewish patients, CYP2B6*9 genotype (T/T) and haplotypes (TA/TG); and CYP2C19(*2/*2,*2/*3, and *3/*3; Han Chinese). Higher methadone dose was observed in CYP2C19*1 allelic carriers (Han Chinese) and CYP2D6 ultrarapid metabolizer (Caucasian). Lower methadone levels were reported in CYP2B6 SNPs, haplotypes TTT, and AGATAA (Han Chinese), CYP2C19 genotype *1/*1 (Han Chinese), allelic carrier *1xN (Caucasian), and CYP3A4 genotype *1/*1 (Caucasian). Carriers of CYP2B6 genotype *6/*6 (Caucasian), CYP2B6 haplotypes ATGCAG and ATGCTG (Han Chinese), and CYP3A4 genotype *1/*1B (Caucasian) had predicted higher methadone plasma levels. Specific pharmacokinetics biomarkers have potential uses for personalized methadone treatment in specific populations.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Iwersen-Bergmann S, Plattner S, Hischke S, Müller A, Andresen-Streichert H, Jungen H, Erb R, Beer-Sandner B. Brain/blood ratios of methadone and ABCB1 polymorphisms in methadone-related deaths. Int J Legal Med 2021; 135:473-482. [PMID: 33454797 PMCID: PMC7870766 DOI: 10.1007/s00414-021-02502-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023]
Abstract
Methadone is an opioid that often leads to fatalities. Interpretation of toxicological findings can be challenging if no further information about the case history is available. The aims of this study were (1) to determine whether brain/blood ratios can assist in the interpretation of methadone findings in fatalities; (2) to examine whether polymorphisms in the gene encoding the P-glycoprotein (also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1 (ABCB1)), which functions as a multispecific efflux pump in the blood-brain barrier, affect brain/blood ratios of methadone. Femoral venous blood and brain tissue (medulla oblongata and cerebellum) from 107 methadone-related deaths were analysed for methadone by gas chromatography-mass spectrometry. In addition, all the samples were genotyped for three common ABCB1 single nucleotide polymorphisms (SNPs rs1045642, rs1128503, and rs2032582) using ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry (ICEMS). In nearly all cases, methadone concentrations were higher in the brain than in the blood. Inter-individual brain/blood ratios varied (0.6-11.6); the mean ratio was 2.85 (standard deviation 1.83, median 2.35). Moreover, significant differences in mean brain/blood ratios were detected among the synonymous genotypes of rs1045642 in ABCB1 (p = 0.001). Cases with the T/T genotype had significantly higher brain/blood ratios than cases with the other genotypes (T/T vs. T/C difference (d) = 1.54, 95% CI [1.14, 2.05], p = 0.002; T/T vs. C/C d = 1.60, 95% CI [1.13, 2.29], p = 0.004). Our results suggest that the rs1045642 polymorphisms in ABCB1 may affect methadone concentrations in the brain and its site of action and may be an additional factor influencing methadone toxicity.
Collapse
Affiliation(s)
- S Iwersen-Bergmann
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - S Plattner
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - S Hischke
- Institute for Health Services Research in Dermatology and Nursing, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - A Müller
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - H Andresen-Streichert
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Köln, Germany
| | - H Jungen
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - R Erb
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - B Beer-Sandner
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
10
|
The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences. Biochem Pharmacol 2020; 174:113813. [PMID: 31954717 DOI: 10.1016/j.bcp.2020.113813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023]
Abstract
P-glycoprotein (Pgp) is an ATP-dependent efflux transporter and plays a major role in anti-cancer drug resistance by pumping a chemically diverse range of cytotoxic drugs from cancerous tumors. Despite numerous studies with the transporter, the molecular features that drive anti-cancer drug efflux are not well understood. Even subtle differences in the anti-cancer drug molecular structure can lead to dramatic differences in their transport rates. To unmask these structural differences, this study focused on two closely-related anthracycline drugs, daunorubicin (DNR), and doxorubicin (DOX), with mouse Pgp. While only differing by a single hydroxyl functional group, DNR has a 4 to 5-fold higher transport rate than DOX. They both non-competitively inhibited Pgp-mediated ATP hydrolysis below basal levels. The Km of Pgp-mediated ATP hydrolysis extracted from the kinetics curves was lower for DOX than DNR. However, the dissociation constants (KDs) for these drugs determined by fluorescence quenching were virtually identical. Acrylamide quenching of Pgp tryptophan fluorescence to probe the tertiary structure of Pgp suggested that DNR shifts Pgp to a "closed" conformation, while DOX shifts Pgp to an "intermediate" conformation. The effects of these drugs on the Pgp conformational distributions in a lipid bilayer were also examined by atomic force microscopy (AFM). Analysis of AFM images revealed that DNR and DOX cause distinct and significant shifts in the conformational distribution of Pgp. The results were combined to build a conformational distribution model for anthracycline transport by Pgp.
Collapse
|
11
|
Sigdel KP, Wilt LA, Marsh BP, Roberts AG, King GM. The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy. Biochem Pharmacol 2018; 156:302-311. [PMID: 30121251 DOI: 10.1016/j.bcp.2018.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022]
Abstract
The membrane-bound P-glycoprotein (Pgp) transporter plays a major role in human disease and drug disposition because of its ability to efflux a chemically diverse range of drugs through ATP hydrolysis and ligand-induced conformational changes. Deciphering these structural changes is key to understanding the molecular basis of transport and to developing molecules that can modulate efflux. Here, atomic force microscopy (AFM) is used to directly image individual Pgp transporter molecules in a lipid bilayer under physiological pH and ambient temperature. Analysis of the Pgp AFM images revealed "small" and "large" protrusions from the lipid bilayer with significant differences in protrusion height and volume. The geometry of these "small" and "large" protrusions correlated to the predicted extracellular (EC) and cytosolic (C) domains of the Pgp X-ray crystal structure, respectively. To assign these protrusions, simulated AFM images were produced from the Pgp X-ray crystal structures with membrane planes defined by three computational approaches, and a simulated 80 Å AFM cantilever tip. The theoretical AFM images of the EC and C domains had similar heights and volumes to the "small" and "large" protrusions in the experimental AFM images, respectively. The assignment of the protrusions in the AFM images to the EC and C domains was confirmed by changes in protrusion volume by Pgp-specific antibodies. The Pgp domains showed a considerable degree of conformational dynamics in time resolved AFM images. With this information, a model of Pgp conformational dynamics in a lipid bilayer is proposed within the context of the known Pgp X-ray crystal structures.
Collapse
Affiliation(s)
- K P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States
| | - L A Wilt
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - B P Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States
| | - A G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States.
| | - G M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States; Joint with Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|