1
|
Xia H, Yang J, Song F, Pu G, Dong F, Liang Z, Zhang J. Development of ion-triggered in situ gel containing ketoconazole/hydroxypropyl-β-cyclodextrin for ocular delivery: in vitro and in vivo evaluation. Drug Deliv 2024; 31:2424217. [PMID: 39533742 PMCID: PMC11562027 DOI: 10.1080/10717544.2024.2424217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The application of ketoconazole (KET) in ocular drug delivery is restricted by its poor aqueous solubility though its broad-spectrum antifungal activity. The aim of this study is to develop an ion-sensitive in situ gel (ISG) of KET to promote its ocular bioavailability in topical application. The solubility of KET in water was increased by complexation with hydroxypropyl-β-cyclodextrin (HPβCD), then KET-HPβCD inclusion complex (KET-IC) was fabricated into an ion-sensitive ISG triggered by sodium alginate (SA). The in vitro drug release and antifungal activities investigations demonstrated that the KET-IC-ISG formulation increased drug release and anti-fungal activities compared to pure KET. The ex vivo rabbit corneal permeation studied demonstrated higher permeability of KET-IC-ISG formulation (Papp of (6.34 ± 0.21) × 10-4 cm/h) than pure KET (Papp of (3.09 ± 0.09) × 10-4 cm/h). The cytotoxicity assay and the ocular irritation study in rabbits confirmed the KET-IC-ISG safety and well tolerance. The ocular pharmacokinetics of KET in rabbits was investigated and the results showed that the KET-IC-ISG increased its bioavailability in cornea by 47-fold. In conclusion, the KET-IC-ISG system promoted the precorneal retention, the ocular drug bioavailability and the developed formulation is a potential strategy to treat mycotic keratitis.
Collapse
Affiliation(s)
- Huiyun Xia
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Fei Song
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Guojuan Pu
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Fudan Dong
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Al_Gawhari FJ. Factors affecting on in vitro release of miconazole from in situ ocular gel. J Adv Pharm Technol Res 2023; 14:294-298. [PMID: 38107457 PMCID: PMC10723164 DOI: 10.4103/japtr.japtr_91_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 12/19/2023] Open
Abstract
The reason for conducting this study is to prolong release of miconazole in the ocular site of action by ocular-based gels (OBGs) formulations. The formulation factors affecting on the release from OBG should be studied using various gelling agents in various concentrations to achieve the improvement in retention and residence time in response to prolonged release. In this study, the formulations were prepared using carbopol 940, pectin, sodium alginate, poloxamer 407, and poly(methacrylic acid) at 0.5%, 1%, and 1.5% w/v, respectively. Hydroxypropyl methylcellulose E5 (HPMC E5) 1% was added as thickening agent/viscosity builder. The formulation containing carbopol 940, pectin and sodium alginate at 1.5% w/v, displayed a noticable improvement in viscosity, gelling capacity, and extended release for 7 h in comparison with the reference drug. Overall, the release showed that the sodium alginate with HPMC E5 form in situ gel which had longer time of release reach to 12 h compared with other polymers. the release of miconazole from the OBGs affected significantly by two factors includes gelling capacity and viscosity builder. The novelty of this study is supporting the delivery of ocular drugs through a cornea as an important key of the eye instead of dependence on an internal blood supply using an oral or a parental administration.
Collapse
|
3
|
Vincze A, Facskó R, Budai-Szűcs M, Katona G, Gyarmati B, Csorba A, Zelkó R, Nagy ZZ, Szente L, Balogh GT. Cyclodextrin-enabled nepafenac eye drops with improved absorption open a new therapeutic window. Carbohydr Polym 2023; 310:120717. [PMID: 36925244 DOI: 10.1016/j.carbpol.2023.120717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Nepafenac is a highly effective NSAID used for treating postoperative ocular inflammation and pain after cataract surgery and its advantage over conventional topical NSAIDs has been proved many times. However, Nevanac® is a suspension eye drop, which clearly lacks patient compliance causing irritation, blurred vision, foreign body sensation along with problematic dosage due to its sticky, inhomogeneous consistence. In this study, nepafenac containing eye drops were prepared using hydroxypropyl-β-cyclodextrin to ensure complete dissolution of nepafenac, sodium hyaluronate to provide mucoadhesion and adequate viscosity and a preservative-free officinal formula, Oculogutta Carbomerae containing carbomer (just like Nevanac®), therefore providing a similar base for the new formulations. According to an experimental design, 11 formulations were tested in vitro including two reference formulations by measuring their viscosity, mucoadhesion, drug release and corneal permeability. Finally, two formulations were found promising and investigated further on porcine eyes ex vivo and corneal distribution of nepafenac was determined by RAMAN mapping. The results showed that one formulation possessed better bioavailability ex vivo than Nevanac® 0.1 % suspension, while the other formulation containing only 60 % of the original dose were ex vivo equivalent with Nevanac® opening the way to nepafenac-containing eye drops with better patient compliance in the future.
Collapse
Affiliation(s)
- Anna Vincze
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, H-1111 Budapest, Hungary
| | - Réka Facskó
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, H-1111 Budapest, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, H-1111 Budapest, Hungary
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, Mária Street 39, 1085 Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, 7-9 Hőgyes Street, H-1092 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Mária Street 39, 1085 Budapest, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin R. and D. Laboratory, Ltd, H-1070 Budapest, Illatos Street 7. Hungary.
| | - György T Balogh
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, H-1111 Budapest, Hungary; Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary.
| |
Collapse
|
4
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Thermoresponsive in-situ gel containing hyaluronic acid and indomethacin for the treatment of corneal chemical burn. Int J Pharm 2023; 631:122468. [PMID: 36503038 DOI: 10.1016/j.ijpharm.2022.122468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Ocular chemical burns are prevalent injuries that must have immediate and effective treatment to avoid complications. Aiming to improve bioavailability and efficacy, a poloxamer-based thermoresponsive in-situ gelling system containing hyaluronic acid and indomethacin was developed. Formulations with different polymeric proportions were screened through rheological measurements resulting in an optimized system (F2) with gelling temperature of 34.2 ± 0.11 °C. Its maximum viscosity varied from 77.33 mPa (25 °C) to 82.95 mPa (34 °C) following a non-Newtonian profile and a pH of 6.86 ± 0.01. No incompatibilities were found after infrared analysis. Polarized light microscopy and cryo-transmission electron microscopy have demonstrated micelles of nano-sized dimensions (21.86 nm) with indomethacin entrapped in the core, forming a polymeric network under heating. In vitro tests revealed a cumulative release of 59.75 ± 3.17 % up to 24 h under a sustained release profile. Results from HET-CAM assay indicated that F2 was well tolerated. Corneal wound healing was significantly faster in animals treated with F2 compared to a commercial formulation and an untreated group. These findings suggests that F2 could be an efficient system to delivery drugs into the ocular surface improving wound healing.
Collapse
|
6
|
Rathod S. Interpenetrating polymeric network (IPNs) in ophthalmic drug delivery: Breaking the barriers. Int Ophthalmol 2022; 43:1063-1074. [PMID: 36053474 DOI: 10.1007/s10792-022-02482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
To maintain the therapeutic drug concentration for a prolonged period of time in aqueous and vitreous humor is primary challenge for ophthalmic drug delivery. Majority of the locally administered drug into the eye is lost as to natural reflexes like blinking and lacrimation resulting in the short span of drug residence. Consequently, less than 5% of the applied drug penetrate through the cornea and reaches the intraocular tissues. The major targets for optimal ophthalmic drug delivery are increasing drug residence time in cul-de-sac of the eye, prolonging intraocular exposure, modulating drug release from the delivery system, and minimizing pre-corneal drug loss. Development of in situ gel, contact lens, intraocular lens, inserts, artificial cornea, scaffold, etc., for ophthalmic drug delivery are few approaches to achieve these major targeted objectives for delivering the drug optimally. Interpenetrating polymeric network (IPN) or smart hydrogels or stimuli sensitive hydrogels are the class of polymers that can help to achieve the targets in ophthalmic drug delivery due to their versatility, biocompatibility and biodegradability. These novel ''smart" materials can alter their molecular configuration and result in volume phase transition in response to environmental stimuli, such as temperature, pH, ionic strength, electric and magnetic field. Hydrogel and tissue interaction, mechanical/tensile properties, pore size and surface chemistry of IPNs can also be modulated for tuning the drug release kinetics. Stimuli sensitive IPNs has been widely exploited to prepare in situ gelling formulations for ophthalmic drug delivery. Low refractive index hydrogel biomaterials with high water content, soft tissue-like physical properties, wettability, oxygen, glucose permeability and desired biocompatibility makes IPNs versatile candidate for contact lenses and corneal implants. This review article focuses on the exploration of these smart polymeric networks/IPNs for therapeutically improved ophthalmic drug delivery that has unfastened novel arenas in ophthalmic drug delivery.
Collapse
Affiliation(s)
- Sachin Rathod
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat, 394350, India. .,Parul Institute of Pharmacy and Research, Parul University, Waghodia, Vadodara, 391760, India.
| |
Collapse
|
7
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
8
|
Sun J, Sun X. Preparation of a novel tacrolimus ion sensitive ocular in situ gel and in vivo evaluation of curative effect of immune conjunctivitis. Pharm Dev Technol 2022; 27:399-405. [PMID: 35579910 DOI: 10.1080/10837450.2022.2067870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The aim of this study was to formulate a novel TAC preparation into an in situ gel for ocular drug delivery, in order to prolong the residence time on mucosal surfaces and increase patient compliance. METHODS The optimal formulation was characterized by surface morphology, gelling capacity, viscosity, stability and in vitro release. In vivo studies were also conducted to evaluate the precorneal retention and pharmacodynamic results. RESULTS In this study, the TAC in situ gel can be prepared by a simple solvent stirring method, and the optimized formulation exhibited good stability within 3 months. During storage, the initial viscosity of the formula had little change. The results of viscosity measurement showed that TAC in situ gel was typical of pseudo plastic systems and exhibited a marked increase in viscosity stimulated with STF. In vitro and in vivo studies illustrated that TAC in situ gel administration facilitated the retention and sustained release of TAC. CONCLUSIONS TAC combined with in situ gelling agents demonstrates an efficient topical drug delivery platform.
Collapse
Affiliation(s)
- Jinfu Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Formulation and Evaluation of Nano Lipid Carrier-Based Ocular Gel System: Optimization to Antibacterial Activity. Gels 2022; 8:gels8050255. [PMID: 35621552 PMCID: PMC9140781 DOI: 10.3390/gels8050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
The present research work was designed to prepare Azithromycin (AM)-loaded nano lipid carriers (NLs) for ocular delivery. NLs were prepared by the emulsification–homogenization method and further optimized by the Box Behnken design. AM-NLs were optimized using the independent constraints of homogenization speed (A), surfactant concentration (B), and lipid concentration (C) to obtain optimal NLs (AM-NLop). The selected AM-NLop was further converted into a sol-gel system using a mucoadhesive polymer blend of sodium alginate and hydroxyl propyl methyl cellulose (AM-NLopIG). The sol-gel system was further characterized for drug release, permeation, hydration, irritation, histopathology, and antibacterial activity. The prepared NLs showed nano-metric size particles (154.7 ± 7.3 to 352.2 ± 15.8 nm) with high encapsulation efficiency (48.8 ± 1.1 to 80.9 ± 2.9%). AM-NLopIG showed a more prolonged drug release (98.6 ± 4.6% in 24 h) than the eye drop (99.4 ± 5.3% in 3 h). The ex vivo permeation result depicted AM-NLopIG, AM-IG, and eye drop. AM-NLopIG exhibited significant higher AM permeation (60.7 ± 4.1%) than AM-IG (33.46 ± 3.04%) and eye drop (23.3 ± 3.7%). The corneal hydration was found to be 76.45%, which is within the standard limit. The histopathology and HET-CAM results revealed that the prepared formulation is safe for ocular use. The antibacterial study revealed enhanced activity from the AM-NLopIG.
Collapse
|
10
|
Bai L, Lei F, Luo R, Fei Q, Zheng Z, He N, Gui S. Development of a thermosensitive in-situ gel formulations of vancomycin hydrochloride: design, preparation, in vitro and in vivo evaluation. J Pharm Sci 2022; 111:2552-2561. [DOI: 10.1016/j.xphs.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
11
|
Manna S, Jana S. Marine Polysaccharides in Tailor- Made Drug Delivery. Curr Pharm Des 2022; 28:1046-1066. [DOI: 10.2174/1381612828666220328122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
Abstract
Abstract:
Marine sources have attracted much interest as an emerging source of biomaterials in drug delivery applications. Amongst all other marine biopolymers, polysaccharides have been the mostly investigated class of biomaterials. The low cytotoxic behavior, in combination with the newly explored health benefits of marine polysaccharides has made it one of the prime research areas in the pharmaceutical and biomedical fields. In this review, we focused on all available marine polysaccharides, including their classification based on biological sources. The applications of several marine polysaccharides in recent years for tissue-specific novel drug delivery including gastrointestinal, brain tissue, transdermal, ocular, liver, and lung have also been discussed here. The abundant availability in nature, cost-effective extraction, and purification process along with a favorable biodegradable profile will encourage researchers to continue investigating marine polysaccharides for exploring newer applications in targeting specific delivery of therapeutics.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal -700125, India
| | - Sougata Jana
- Department of Pharmaceutics, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata, India
| |
Collapse
|
12
|
Preparation of NLCs-Based Topical Erythromycin Gel: In Vitro Characterization and Antibacterial Assessment. Gels 2022; 8:gels8020116. [PMID: 35200497 PMCID: PMC8871625 DOI: 10.3390/gels8020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
In the present study, erythromycin (EM)-loaded nanostructured lipid carriers (NLCs) were prepared by the emulsification and ultra-sonication method. EM-NLCs were optimized by central composite design using the lipid (A), pluronic F127 (B) and sonication time (C) as independent variables. Their effects were evaluated on particle size (Y1) and entrapment efficiency (Y2). The optimized formulation (EM-NLCs-opt) showed a particle size of 169.6 ± 4.8 nm and entrapment efficiency of 81.7 ± 1.4%. EM-NLCs-opt further transformed into an in-situ gel system by using the carbopol 940 and chitosan blend as a gelling agent. The optimized EM-NLCs in situ gel (EM-NLCs-opt-IG4) showed quick gelation and were found to be stable for more than 24 h. EM-NLCs-opt-IG4 showed prolonged drug release compared to EM in situ gel. It also revealed significant high permeation (56.72%) and flux (1.51-fold) than EM in situ gel. The irritation and hydration study results depicted no damage to the goat cornea. HET-CAM results also confirmed its non-irritant potential (zero score). EM-NLCs-opt-IG4 was found to be isotonic and also showed significantly (p < 0.05) higher antimicrobial activity than EM in situ gel. The findings of the study concluded that NLCs laden in situ gel is an alternative delivery of erythromycin for the treatment of bacterial conjunctivitis.
Collapse
|
13
|
Suvarna P, Chaudhari P, Birangal S, Mallela LS, Roy S, Koteshwara A, Aranjani JM, Lewis SA. Voriconazole-Cyclodextrin Supramolecular Ternary Complex-Loaded Ocular Films for Management of Fungal Keratitis. Mol Pharm 2022; 19:258-273. [PMID: 34928610 DOI: 10.1021/acs.molpharmaceut.1c00746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal keratitis is one of the leading causes of ophthalmic mycosis affecting the vision due to corneal scarring. Voriconazole (VRC) is the most preferred azole antifungal agent for treating ocular mycotic infections. Ocular drug delivery is challenging due to the shorter corneal residence time of the formulation requiring frequent administration, leading to poor patient compliance. The present study aimed at improving the solubility, transcorneal permeation, and efficacy of voriconazole via the formation of cyclodextrin-based ternary complexes and incorporation of the complex into mucoadhesive films. A phase solubility study suggested a ∼14-fold improvement in VRC solubility, whereas physicochemical characterization confirmed the inclusion of VRC in the cyclodextrin inner cavity. In silico docking studies were performed to predict the docking conformation and stability of the inclusion complex. Complex-loaded films showed sustained release of voriconazole from the films and improved transcorneal permeation by ∼4-fold with an improved flux of 8.36 μg/(cm2 h) for ternary complex-loaded films compared to 1.86 μg/(cm2 h) for the pure VRC film. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and hen's egg-chorioallantoic membrane test (HET-CAM) assays confirmed that the complexes and ocular films were nonirritant and safe for ocular administration. The antifungal study performed using Aspergillus fumigatus and Fusarium oxysporum suggested improved antifungal activity compared to the pure drug film. In conclusion, the supramolecular cyclodextrin ternary complex proved to be a promising strategy for enhancing the solubility and permeability and augmenting the antifungal activity of voriconazole in the management of fungal keratitis.
Collapse
Affiliation(s)
- Pooja Suvarna
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Ananthamurthy Koteshwara
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shaila Angela Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
14
|
Narayana S, Ahmed MG. Design and evaluation of ocular hydrogel containing combination of ofloxacin and dexamethasone for the treatment of conjunctivitis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Yang J, Ma Y, Luo Q, Liang Z, Lu P, Song F, Zhang Z, Zhou T, Zhang J. Improving the solubility of vorinostat using cyclodextrin inclusion complexes: The physicochemical characteristics, corneal permeability and ocular pharmacokinetics of the drug after topical application. Eur J Pharm Sci 2022; 168:106078. [PMID: 34838620 DOI: 10.1016/j.ejps.2021.106078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023]
Abstract
Vorinostat (suberoylanilide hydroxamic acid, SAHA), an FDA-approved drug for cutaneous T cell lymphoma, has antiangiogenic and anti-inflammatory activity and thus has therapeutic potential for inflammatory corneal neovascularization (CNV). However, its practical administration is limited due to its poor aqueous solubility and permeability. This study aimed to enhance the corneal permeability of SAHA by promoting its inclusion into a complex with hydroxypropyl-β-CD (HPβCD) for topical application. In phase-solubility studies, the solubility of SAHA with HPβCD and sulfobutyl ether-β-CD (SEβCD) was assessed at different temperatures, and complexation efficiencies (K) were calculated. The inclusion complexes (ICs) were prepared and characterized by differential scanning calorimetry (DSC), infrared spectrometry (IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) after freeze-drying. The phase-solubility study showed that the complexation efficiencies of SAHA were higher in HPβCD solutions (297.35 M-1, 115.28 M-1 and 122.75 M-1) than in SEβCD solutions (169.75 M-1, 91.33 M-1 and 96.49 M-1) at 4 °C, 25 °C and 37 °C. HPβCD was selected for SAHA-IC preparation, and characterization revealed IC formation. SAHA existed in an amorphous state in the ICs. The ex vivo corneal permeability of SAHA was also evaluated and found to be greater when formulated as an HPβCD solution than as a suspension. Irritation assays in rabbit eyes showed that the SAHA-IC solution was not irritating after topical application. The ocular pharmacokinetics of SAHA in New Zealand White rabbits were assessed following topical administration (0.2%), and a 0.2% SAHA suspension was used as the control. Compared to its formulation as a suspension, the formulation of SAHA as an HPβCD solution increased its corneal bioavailability by more than 3-fold and its conjunctival bioavailability by more than 2-fold. Thus, IC formation was effective at improving the ocular bioavailability of SAHA. This study provides an important alternative approach for developing liquid pharmaceutical formulations of SAHA for topical ocular applications.
Collapse
Affiliation(s)
- Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Yu Ma
- Henan University of Traditional Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450000, China
| | - Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Fei Song
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Zhen Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Tianyang Zhou
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China.
| |
Collapse
|
16
|
Wu W, Cao W, Chen J, Cai Y, Dong B, Chu X. In Situ Liquid Crystal Gel as a Promising Strategy for Improving Ocular Administration of Dexamethasone: Preparation, Characterization, and Evaluation. AAPS PharmSciTech 2021; 23:36. [PMID: 34951001 DOI: 10.1208/s12249-021-02193-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
The purpose of this study was to design an in situ liquid crystal gel (ISLG) as an ophthalmic drug delivery system for dexamethasone (DEX) to enhance its eye retention and ocular bioavailability. The in situ liquid crystal gels (ISLGs) were prepared using a phytantriol/PEG400/water (65:30:5, w/w) ternary system. Polarized light microscope (PLM), small-angle X-ray scattering (SAXS), and rheology analysis confirmed that the internal structure of the preparations was Pn3m cubic phase liquid crystal gels with pseudoplastic fluid properties. Meanwhile, in vitro release behavior of the preparations conforms to the Higuchi equation. Corneal penetration experiments showed that compared with DEX sodium phosphate eye drops, DEX-ISLGs(F2) produced a 5.45-fold increase in the Papp value, indicating a significant enhancement of corneal penetration. In addition, in vivo experiments have confirmed that the ISLGs have better biocompatibility and longer retention time in the cornea. Simultaneously, corneal hydration level, eye irritation experiments, and histological observations proved the safety of the preparations. Pharmacokinetic studies have shown that the ISLG could maintain the DEX concentration in aqueous humor for at least 12 h after administration, which significantly improves the bioavailability of the drug. Collectively, these results indicated that ISLG would be a potential drug carrier for the treatment of diabetic retinopathy (DR).
Collapse
|
17
|
Chaudhari P, Naik R, Sruthi Mallela L, Roy S, Birangal S, Ghate V, Balladka Kunhanna S, Lewis SA. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int J Pharm 2021; 613:121409. [PMID: 34952148 DOI: 10.1016/j.ijpharm.2021.121409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/04/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
The incidence of corneal fungal infections continues to be a growing concern worldwide. Ocular delivery of anti-fungal drugs is challenging due to the anatomical and physiological barriers of the eye. The ocular bioavailability of ketoconazole (KTZ), a widely prescribed antifungal agent, is hampered by its limited aqueous solubility and permeation. In the study, the physicochemical properties of KTZ were improved by complexation with sulfobutylether-β-cyclodextrin (SBE-β-CD).KTZ-SBE-β-CD complex was studied in silico with docking and dynamics simulations, followed by wet-lab experiments.The optimized KTZ-SBE-β-CD complex was loaded into a thermosensitivein situ gel to increase corneal bioavailability. The supramolecular complex increased the solubility of KTZ by 5-folds and exhibited a 10-fold increment in drug release compared to the pure KTZ. Owing to the diffusion, thein situ gel exhibited a more sustained drug release profile. Theex vivocorneal permeation studies showed higher permeation from KTZ-SBE-β-CD in situ gel (flux of ∼19.11 µg/cm2/h) than KTZin situ gel (flux of ∼1.17 µg/cm2/h). The cytotoxicity assays and the hen's egg chorioallantoic membrane assay (HET-CAM) confirmed the formulations' safety and non-irritancy. In silico guided design of KTZ-SBE-β-CD inclusion complexes successfully modified the physicochemical properties of KTZ. In addition, the loading of the KTZ-SBE-β-CD complex into an in situ gel significantly increased the precorneal retention and permeation of KTZ, indicating that the developed formulation is a viable modality to treat fungal keratitis.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ranjitha Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sarojini Balladka Kunhanna
- Department of Industrial Chemistry, Mangalore University, Mangalagangothri, Mangalore 574199, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
18
|
Burhan AM, Klahan B, Cummins W, Andrés-Guerrero V, Byrne ME, O’Reilly NJ, Chauhan A, Fitzhenry L, Hughes H. Posterior Segment Ophthalmic Drug Delivery: Role of Muco-Adhesion with a Special Focus on Chitosan. Pharmaceutics 2021; 13:1685. [PMID: 34683978 PMCID: PMC8539343 DOI: 10.3390/pharmaceutics13101685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
Posterior segment eye diseases (PSEDs) including age macular degeneration (AMD) and diabetic retinopathy (DR) are amongst the major causes of irreversible blindness worldwide. Due to the numerous barriers encountered, highly invasive intravitreal (IVT) injections represent the primary route to deliver drugs to the posterior eye tissues. Thus, the potential of a more patient friendly topical route has been widely investigated. Mucoadhesive formulations can decrease precorneal clearance while prolonging precorneal residence. Thus, they are expected to enhance the chances of adherence to corneal and conjunctival surfaces and as such, enable increased delivery to the posterior eye segment. Among the mucoadhesive polymers available, chitosan is the most widely explored due to its outstanding mucoadhesive characteristics. In this review, the major PSEDs, their treatments, barriers to topical delivery, and routes of topical drug absorption to the posterior eye are presented. To enable the successful design of mucoadhesive ophthalmic drug delivery systems (DDSs), an overview of mucoadhesion, its theory, characterization, and considerations for ocular mucoadhesion is given. Furthermore, chitosan-based DDs that have been explored to promote topical drug delivery to the posterior eye segment are reviewed. Finally, challenges of successful preclinical to clinical translation of these DDSs for posterior eye drug delivery are discussed.
Collapse
Affiliation(s)
- Ayah Mohammad Burhan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Butsabarat Klahan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Wayne Cummins
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain;
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Niall J. O’Reilly
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA;
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Helen Hughes
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| |
Collapse
|
19
|
Leone G, Pepi S, Consumi M, Mahdizadeh FF, Lamponi S, Magnani A. Phosphorylated xanthan gum-Ag(I) complex as antibacterial viscosity enhancer for eye drops formulation. Carbohydr Polym 2021; 267:118196. [PMID: 34119163 DOI: 10.1016/j.carbpol.2021.118196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
Topical instillation of eye drops represents the treatment of choice for many ocular diseases. Ophthalmic formulations must meet general requirements, i.e. pH, osmolality, transparency and viscosity to ensure adequate retention without inducing irritation and the development of eye infections. We developed a phosphorylated xanthan gum-Ag(I) complex (XGP-Ag) showing pH (pH = 7.1 ± 0.3) and osmolality values (311 ± 2 mOsm/kg) close to that of human tears (pH = 6.5-7.6 and 304 ± 23 mOsm/kg) thanks to the presence of phosphate moieties along the chain. The presence of phosphate groups covalently bound to the XG chains avoids their dispersion in fluid, thus reducing the risk of corneal calcification. 0.02% w/v XGP-Ag solution showed high transparency (higher than 95% along the entire visible range), adequate refractive index (1.334 ± 0.001) and viscosity in the range: γ 1 s-1-10,000 s- 1 (26.4 ± 0.8-2.1 ± 0.4 mPa·s). Its cytotoxicity and capability to hinder bacterial proliferation was also verified.
Collapse
Affiliation(s)
- Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; INSTM, via G. Giusti 9, 50121 Firenze, Italy
| | - Fariba Fahmideh Mahdizadeh
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; INSTM, via G. Giusti 9, 50121 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
20
|
Wróblewska KB, Jadach B, Muszalska-Kolos I. Progress in drug formulation design and delivery of medicinal substances used in ophthalmology. Int J Pharm 2021; 607:121012. [PMID: 34400274 DOI: 10.1016/j.ijpharm.2021.121012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Due to the very low bioavailability of drugs administered to the surface of the eyeball, issues related to the formulation of an ophthalmic drug pose a technological challenge. The essence of an ophthalmic drug is the selection of an appropriate active substance (API), but also auxiliary substances that determine the desired drug quality and API availability. The ophthalmic drug is not only classic eye drops. Therefore, on the basis of the literature data, the properties and application of auxiliary substances increasing the pharmaceutical availability of API, improving the penetration of API into the eye structures and modifying the viscosity of eye drops were characterized. The possibility of chemical modification of API and the use of prodrugs in ophthalmic drug forms was also noted. Taking into account the progress in the field of ophthalmic drug formulation, the use of multi-compartment systems (lipid particles, nanoparticles, microparticles, liposomes, niosomes, dendrimers) and modern ophthalmic drug delivery systems (inserts, implants, microneedles, contact lenses, ionophoretic systems) have been indicated. Examples of solutions already used by manufacturers, as well as those in the phase of laboratory or clinical trials, were indicated.
Collapse
Affiliation(s)
- Katarzyna B Wróblewska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
21
|
Okur NÜ, Yağcılar AP, Siafaka PI. Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels. Curr Drug Deliv 2021; 17:675-693. [PMID: 32510291 DOI: 10.2174/1567201817666200608145748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy. OBJECTIVE in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases. METHODS This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route. RESULTS Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable. CONCLUSION To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Pınar Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Wang L, Zhou MB, Zhang H. The Emerging Role of Topical Ocular Drugs to Target the Posterior Eye. Ophthalmol Ther 2021; 10:465-494. [PMID: 34218424 PMCID: PMC8319259 DOI: 10.1007/s40123-021-00365-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of chronic fundus diseases is increasing with the aging of the general population. The treatment of these intraocular diseases relies on invasive drug delivery because of the globular structure and multiple barriers of the eye. Frequent intraocular injections bring heavy burdens to the medical care system and patients. The use of topical drugs to treat retinal diseases has always been an attractive solution. The fast development of new materials and technologies brings the possibility to develop innovative topical formulations. This article reviews anatomical and physiological barriers of the eye which affect the bioavailability of topical drugs. In addition, we summarize innovative topical formulations which enhance the permeability of drugs through the ocular surface and/or extend the drug retention time in the eye. This article also reviews the differences of eyes between different laboratory animals to address the translational challenges of preclinical models. The fast development of in vitro eye models may provide more tools to increase the clinical translationality of topical formulations for intraocular diseases. Clinical successes of topical formulations rely on continuous and collaborative efforts between different disciplines.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hui Zhang
- Yuanpu Eye Biopharmaceutical Co. Ltd., Chengdu, China.
- , No. 14 Jiuxing Avenue, Gaoxin District, Chengdu, China.
| |
Collapse
|
23
|
Rudko M, Urbaniak T, Musiał W. Recent Developments in Ion-Sensitive Systems for Pharmaceutical Applications. Polymers (Basel) 2021; 13:1641. [PMID: 34070206 PMCID: PMC8158499 DOI: 10.3390/polym13101641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022] Open
Abstract
Stimuli-responsive carriers of pharmaceutical agents have been extensively researched in recent decades due to the possibility of distinctively precise targeted drug delivery. One of the potentially beneficial strategies is based on the response of the medical device to changes in the ionic environment. Fluctuations in ionic strength and ionic composition associated with pathological processes may provide triggers sufficient to induce an advantageous carrier response. This review is focused on recent developments and novel strategies in the design of ion-responsive drug delivery systems. A variety of structures i.e., polymeric matrices, lipid carriers, nucleoside constructs, and metal-organic frameworks, were included in the scope of the summary. Recently proposed strategies aim to induce different pharmaceutically beneficial effects: localized drug release in the desired manner, mucoadhesive properties, increased residence time, or diagnostic signal emission. The current state of development of ion-sensitive drug delivery systems enabled the marketing of some responsive topical formulations. Concurrently, ongoing research is focused on more selective and complex systems for different administration routes. The potential benefits in therapeutic efficacy and safety associated with the employment of multi-responsive systems will prospectively result in further research and applicable solutions.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.R.); (T.U.)
| |
Collapse
|
24
|
Pandey M, Choudhury H, binti Abd Aziz A, Bhattamisra SK, Gorain B, Su JST, Tan CL, Chin WY, Yip KY. Potential of Stimuli-Responsive In Situ Gel System for Sustained Ocular Drug Delivery: Recent Progress and Contemporary Research. Polymers (Basel) 2021; 13:1340. [PMID: 33923900 PMCID: PMC8074213 DOI: 10.3390/polym13081340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 12/19/2022] Open
Abstract
Eyesight is one of the most well-deserved blessings, amid all the five senses in the human body. It captures the raw signals from the outside world to create detailed visual images, granting the ability to witness and gain knowledge about the world. Eyes are exposed directly to the external environment; they are susceptible to the vicissitudes of diseases. The World Health Organization has predicted that the number of individuals affected by eye diseases will rise enormously in the next decades. However, the physical barriers of the eyes and the problems associated with conventional ocular formulations are significant challenges in ophthalmic drug development. This has generated the demand for a sustained ocular drug delivery system, which serves to deliver effective drug concentration at a reduced frequency for consistent therapeutic effect and better patient treatment adherence. Recent advancement in pharmaceutical dosage design has demonstrated that a stimuli-responsive in situ gel system exhibits the favorable characteristics for providing sustained ocular drug delivery and enhanced ocular bioavailability. Stimuli-responsive in situ gels undergo a phase transition (solution-gelation) in response to the ocular environmental temperature, pH, and ions. These stimuli transform the formulation into a gel at the cul de sac to overcome the shortcomings of conventional eye drops, such as rapid nasolacrimal drainage and short contact time with the ocular surface This review highlights the recent successful research outcomes of stimuli-responsive in situ gelling systems in treating in vivo models with glaucoma and various ocular infections. Additionally, it also presents the mechanism, recent development, and safety considerations of stimuli-sensitive in situ gel as the potential sustained ocular delivery system for treating common eye disorders.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Azila binti Abd Aziz
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Jocelyn Sziou Ting Su
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Choo Leey Tan
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Woon Yee Chin
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Khar Yee Yip
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| |
Collapse
|
25
|
Kozak J, Rabiskova M, Lamprecht A. Muscle Tissue as a Surrogate for In Vitro Drug Release Testing of Parenteral Depot Microspheres. AAPS PharmSciTech 2021; 22:119. [PMID: 33782794 PMCID: PMC8007510 DOI: 10.1208/s12249-021-01965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the importance of drug release testing of parenteral depot formulations, the current in vitro methods still require ameliorations in biorelevance. We have investigated here the use of muscle tissue components to better mimic the intramuscular administration. For convenient handling, muscle tissue was used in form of a freeze-dried powder, and a reproducible process of incorporation of tested microspheres to an assembly of muscle tissue of standardized dimensions was successfully developed. Microspheres were prepared from various grades of poly(lactic-co-glycolic acid) (PLGA) or ethyl cellulose, entrapping flurbiprofen, lidocaine, or risperidone. The deposition of microspheres in the muscle tissue or addition of only isolated lipids into the medium accelerated the release rate of all model drugs from microspheres prepared from ester-terminated PLGA grades and ethyl cellulose, however, not from the acid-terminated PLGA grades. The addition of lipids into the release medium increased the solubility of all model drugs; nonetheless, also interactions of the lipids with the polymer matrix (ad- and absorption) might be responsible for the faster drug release. As the in vivo drug release from implants is also often faster than in simple buffers in vitro, these findings suggest that interactions with the tissue lipids may play an important role in these still unexplained observations.
Collapse
Affiliation(s)
- Jan Kozak
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121, Bonn, Germany
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203/8, 500 05, Hradec Kralove, Czech Republic
| | - Miloslava Rabiskova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203/8, 500 05, Hradec Kralove, Czech Republic
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121, Bonn, Germany.
| |
Collapse
|
26
|
Miranda GM, Santos VORE, Bessa JR, Teles YCF, Yahouédéhou SCMA, Goncalves MS, Ribeiro-Filho J. Inclusion Complexes of Non-Steroidal Anti-Inflammatory Drugs with Cyclodextrins: A Systematic Review. Biomolecules 2021; 11:biom11030361. [PMID: 33673414 PMCID: PMC7996898 DOI: 10.3390/biom11030361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely used classes of medicines in the treatment of inflammation, fever, and pain. However, evidence has demonstrated that these drugs can induce significant toxicity. In the search for innovative strategies to overcome NSAID-related problems, the incorporation of drugs into cyclodextrins (CDs) has demonstrated promising results. This study aims to review the impact of cyclodextrin incorporation on the biopharmaceutical and pharmacological properties of non-steroidal anti-inflammatory drugs. A systematic search for papers published between 2010 and 2020 was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol and the following search terms: “Complexation”; AND “Cyclodextrin”; AND “non-steroidal anti-inflammatory drug”. A total of 24 different NSAIDs, 12 types of CDs, and 60 distinct inclusion complexes were identified, with meloxicam and β-CD appearing in most studies. The results of the present review suggest that CDs are drug delivery systems capable of improving the pharmacological and biopharmaceutical properties of non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gustavo Marinho Miranda
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Vitória Ohana Ramos e Santos
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Jonatas Reis Bessa
- Institute of Psychology (IPS), Federal University of Bahia (UFBA), Salvador, BA 40170-055, Brazil;
| | - Yanna C. F. Teles
- Agrarian Sciences Center (CCA), Department of Chemistry and Physics (DQF), Federal University of Paraiba (UFPB), Areia, PB 58397-000, Brazil;
| | - Setondji Cocou Modeste Alexandre Yahouédéhou
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Marilda Souza Goncalves
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Jaime Ribeiro-Filho
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
- Correspondence: ; Tel.: +55-71-3126-2226
| |
Collapse
|
27
|
Lorenzo-Veiga B, Diaz-Rodriguez P, Alvarez-Lorenzo C, Loftsson T, Sigurdsson HH. In Vitro and Ex Vivo Evaluation of Nepafenac-Based Cyclodextrin Microparticles for Treatment of Eye Inflammation. NANOMATERIALS 2020; 10:nano10040709. [PMID: 32283583 PMCID: PMC7221994 DOI: 10.3390/nano10040709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study was to design and evaluate novel cyclodextrin (CD)-based aggregate formulations to efficiently deliver nepafenac topically to the eye structure, to treat inflammation and increase nepafenac levels in the posterior segment, thus attenuating the response of inflammatory mediators. The physicochemical properties of nine aggregate formulations containing nepafenac/γ-CD/hydroxypropyl-β (HPβ)-CD complexes as well as their rheological properties, mucoadhesion, ocular irritancy, corneal and scleral permeability, and anti-inflammatory activity were investigated in detail. The results were compared with a commercially available nepafenac suspension, Nevanac® 3 mg/mL. All formulations showed microparticles, neutral pH, and negative zeta potential (–6 to –27 mV). They were non-irritating and nontoxic and showed high permeation through bovine sclera. Formulations containing carboxymethyl cellulose (CMC) showed greater anti-inflammatory activity, even higher than the commercial formulation, Nevanac® 0.3%. The optimized formulations represent an opportunity for topical instillation of drugs to the posterior segment of the eye.
Collapse
Affiliation(s)
- Blanca Lorenzo-Veiga
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland; (B.L.-V.); (T.L.)
| | - Patricia Diaz-Rodriguez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud, Universidad de la Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain;
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland; (B.L.-V.); (T.L.)
| | - Hakon Hrafn Sigurdsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland; (B.L.-V.); (T.L.)
- Correspondence:
| |
Collapse
|
28
|
Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: A potential nanoplatform for the ocular delivery of kaempferol. Eur J Pharm Sci 2020; 147:105289. [DOI: 10.1016/j.ejps.2020.105289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
|
29
|
Wang H, Li X, Yang H, Wang J, Li Q, Qu R, Wu X. Nanocomplexes based polyvinylpyrrolidone K-17PF for ocular drug delivery of naringenin. Int J Pharm 2020; 578:119133. [DOI: 10.1016/j.ijpharm.2020.119133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
|
30
|
Dai M, Bai L, Zhang H, Ma Q, Luo R, Lei F, Fei Q, He N. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: Design, physicochemical characteristics and inspection. Int J Pharm 2020; 576:119027. [PMID: 31953090 DOI: 10.1016/j.ijpharm.2020.119027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/01/2022]
Abstract
We developed a safe and efficacious drug delivery system for treatment of brain diseases. A novel in-situ gel system was prepared using soybean oil, stearic acid and N-methyl-2-pyrrolidinone (NMP) (10:1:3, v/w/v). This system had low viscosity as a sol in vitro and turned into a solid or semi-solid gel in situ after administration. The poorly water-soluble drug flunarizine hydrochloride (FNZ) was incorporated into this "organogel" system. Organogel-FNZ was characterized by light microscopy, differential scanning calorimetry (DSC) and rheology. Drug release in vitro was investigated. The initial "burst" effect did not occur in organogel-FNZ, which is different from other gels formed in situ. Pharmacokinetic studies were undertaken in rats using gel administration (14 mg kg-1), intravenous administration (5 mg kg-1) and administration using drops (14 mg kg-1). Organogel-FNZ could reduce the clearance rate and prolong the duration of action, in the plasma and brain tissues of rats. The peak serum concentration, area under the curve and absolute bioavailability of the organogel-FNZ group were higher than those of the intraocular- drops group. Organogel-FNZ is a promising drug-delivery system for treatment of brain diseases by intraocular administration.
Collapse
Affiliation(s)
- Manman Dai
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Luyu Bai
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Huimin Zhang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Qun Ma
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Rui Luo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Fang Lei
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Qingsong Fei
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, People's Republic of China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, Hefei 230012, People's Republic of China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, People's Republic of China.
| |
Collapse
|
31
|
Rathod VR, Shah DA, Dave RH. Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: preformulation screening studies and statistical hybrid-design for optimization of variables. Drug Dev Ind Pharm 2020; 46:443-455. [DOI: 10.1080/03639045.2020.1724135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Vishal R. Rathod
- Department of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | - Rutesh H. Dave
- Department of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| |
Collapse
|
32
|
Supramolecular cyclodextrin complex: Diversity, safety, and applications in ocular therapeutics. Exp Eye Res 2019; 189:107829. [PMID: 31605685 DOI: 10.1016/j.exer.2019.107829] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Approximately 30-70% of the existing and new chemical entities exhibit poor aqueous solubility. For topical ocular delivery, drug molecules need to possess both hydrophilic and lipophilic nature to enable absorption through the aqueous tear layer and permeation through the corneal lipophilic barrier. To overcome the aqueous solubility related issues, various techniques such as solid dispersion, particle size reduction, cyclodextrin complexation, co-solvency, prodrug, derivatization, and salt formation are being explored in the healthcare sector. Cyclodextrin inclusion complexation techniques have been established by several pharmaceutical industries for systemic administration allowing a transition from the lab to the clinics. Though cyclodextrins are exploited in ocular drug delivery, there are prevailing concerns regarding its absorption enhancing capacity and mechanism, retention at the ocular surfaces and, irritation and toxicity profiles. In the present review, the efforts taken by various research groups to address the concerns of using cyclodextrin and its derivatives in ocular therapeutics are summarized. Also, considerations and utility of cyclodextrin systems in fabricating newer formulations such as contact lens, inserts, and implants have been discussed in the review.
Collapse
|
33
|
Mittal N, Kaur G. Leucaena leucocephala (Lam.) galactomannan nanoparticles: Optimization and characterization for ocular delivery in glaucoma treatment. Int J Biol Macromol 2019; 139:1252-1262. [DOI: 10.1016/j.ijbiomac.2019.08.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
|
34
|
Lynch C, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Advances in Biodegradable Nano-Sized Polymer-Based Ocular Drug Delivery. Polymers (Basel) 2019; 11:E1371. [PMID: 31434273 PMCID: PMC6722735 DOI: 10.3390/polym11081371] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
The effective delivery of drugs to the eye remains a challenge. The eye has a myriad of defense systems and physiological barriers that leaves ocular drug delivery systems with low bioavailability profiles. This is mainly due to poor permeability through the epithelia and rapid clearance from the eye following administration. However, recent advances in both polymeric drug delivery and biomedical nanotechnology have allowed for improvements to be made in the treatment of ocular conditions. The employment of biodegradable polymers in ocular formulations has led to improved retention time, greater bioavailability and controlled release through mucoadhesion to the epithelia in the eye, amongst other beneficial properties. Nanotechnology has been largely investigated for uses in the medical field, ranging from diagnosis of disease to treatment. The nanoscale of these developing drug delivery systems has helped to improve the penetration of drugs through the various ocular barriers, thus improving bioavailability. This review will highlight the physiological barriers encountered in the eye, current conventional treatment methods as well as how polymeric drug delivery and nanotechnology can be employed to optimize drug penetration to both the anterior and posterior segment of the eye.
Collapse
Affiliation(s)
- Courtney Lynch
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
35
|
Current Approaches to Use Cyclodextrins and Mucoadhesive Polymers in Ocular Drug Delivery—A Mini-Review. Sci Pharm 2019. [DOI: 10.3390/scipharm87030015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ocular drug delivery provides a challenging opportunity to develop optimal formulations with proper therapeutic effects and acceptable patient compliance because there are many restricting factors involved, such as complex anatomical structures, defensive mechanisms, rapid drainage, and applicability issues. Fortunately, recent advances in the field mean that these problems can be overcome through the formulation of innovative ophthalmic products. Through the addition of solubility enhancer cyclodextrin derivatives and mucoadhesive polymers, the permeability of active ingredients is improved, and retention time is increased in the ocular surface. Therefore, preferable efficacy and bioavailability can be achieved. In this short review, the authors describe the theoretical background, technological possibilities, and the current approaches in the field of ophthalmology.
Collapse
|
36
|
Wang X, Zhang Y, Huang J, Xia M, Liu L, Tian C, Hu R, Gui S, Chu X. Self-assembled hexagonal liquid crystalline gels as novel ocular formulation with enhanced topical delivery of pilocarpine nitrate. Int J Pharm 2019; 562:31-41. [PMID: 30878587 DOI: 10.1016/j.ijpharm.2019.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 01/04/2023]
Abstract
The aim of this paper was to develop hexagonal liquid crystalline (HII) gels that can be used as a novel ocular delivery system for pilocarpine nitrate (PN). HII gels were prepared by a vortex method using phytantriol/triglyceride/water (71.15: 3.85: 26, w/w) ternary system. The gels were characterized by crossed polarized light microscopy, small-angle X-ray scattering, differential scanning calorimetry and rheology. And, in vitro drug release behavior and ex vivo corneal permeation were investigated. Finally, preocular residence time evaluation, eye irritation test, histological examination and miotic tests were studied in vivo and compared with carbopol gel. Based on various characterization techniques, the inner structure of the gels were HII mesophase and exhibited a pseudoplastic fluid behaviour. In vitro release results revealed that PN could be released continuously from HII gel over a period of 24 h. The ex vivo apparent permeability coefficient of HII gel was 3.15-fold (P < 0.01) higher than that of the Carbopol gel. Compared with Carbopol gel, HII gel displayed longer residence time on the eyeballs surface using fluorescent labeling technology. Furthermore, the HII gel caused no ocular irritation was estimated by corneal hydration levels, Draize test and histological inspection. Additionally, in vivo miotic study showed that HII gel had a remarkably long-lasting decrease in the pupil diameter of rabbits. In conclusion, HII gels would be a promising sustained-release formulation for ocular drug delivery.
Collapse
Affiliation(s)
- Xingqi Wang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Yong Zhang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Jie Huang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Mengqiu Xia
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Liu Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Chunling Tian
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Rongfeng Hu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China
| | - Xiaoqin Chu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui Province 230012, People's Republic of China.
| |
Collapse
|