1
|
Ergin AD, Üner B, Balcı Ş, Demirbağ Ç, Benetti C, Oltulu Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer's Disease Through the Arginine Based Proniosomes. J Pharm Sci 2023; 112:2921-2932. [PMID: 37506768 DOI: 10.1016/j.xphs.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Coenzyme Q10 (CoQ10) is a fat-soluble vitamin-with a benzoquinone-like structure. CoQ10 plays a role in membrane stability, energy conversion, and ATP production. It is also one of the important antioxidants in the body. The bioavailability of exogenous CoQ10 is extremely low due to its poor aqueous solubility and large molecular mass. In this study, mixed proniosomal drug delivery systems have been used to increase solubility and bioavailability of CoQ10. Arginine (semi-essential amino acid) was incorporated in the formulation composition to achieve higher efficacy by boosting nitric oxide presence, endothelial dysfunction, and cellular uptake. Proniosomes were investigated in terms of particle size, polydispersity index, zeta potential, encapsulation efficiency, and process yield, and optimization studies were carried on by utilizing STATISTICA 8.0 software considering dependent factors (carrier amount, drug amount, and surfactant ratio). Optimum proniosome formulation (particle size 187.5 ± 16.35 nm, zeta potential: -44.7 ± 12.8 mV, encapsulation efficiency 99.05±0.30%, and product yield: 90.55%) was evaluated for thermal analysis, in-vitro drug release using microcentrifuge method. In-vitro cytotoxicity studies of proniosomes were performed on intestinal Epithelial Cells (Cellartis®, ChiPSC18) and no cytotoxic effects was seen during the 72 h. Besides, anti Alzheimer effect was investigated on APPSL-GFP lentivirus-infected human neural cells (APPSL-GFP-l-HNC) and Alzheimer biomarkers (p-tau181 and p-tau217). While CoQ10's relative bioavailability was statistically increased by proniosome compared to CoQ10 suspension (p<0.01, Grubb test). PK parameters of proniosome formulation, obtained with non-compartmental modeling, were fitting to the data (R2=0.956±0.026). The study results proved that proniosomal formulation has a high potential drug delivery system for both increasing bioavailability and anti-Alzheimer effect of CoQ10.
Collapse
Affiliation(s)
- Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey; Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey; Department of Neuroscience, University of Turin, Turin, Italy.
| | - Burcu Üner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, St. Louis College of Pharmacy, USA
| | - Şencan Balcı
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey
| | - Çağlar Demirbağ
- Department of Analytical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Camillo Benetti
- Faculty of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Çağatay Oltulu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| |
Collapse
|
2
|
Madhusudhan S, Gupta NV, Rahamathulla M, Chidambaram SB, Osmani RAM, Ghazwani M, Ahmed MM, Farhana SA, Sarhan MY, Tousif AH. Subconjunctival Delivery of Sorafenib-Tosylate-Loaded Cubosomes for Facilitated Diabetic Retinopathy Treatment: Formulation Development, Evaluation, Pharmacokinetic and Pharmacodynamic (PKPD) Studies. Pharmaceutics 2023; 15:2419. [PMID: 37896180 PMCID: PMC10610393 DOI: 10.3390/pharmaceutics15102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication associated with vascular endothelial growth factor (VEGF) overexpression. Therapeutic delivery to the retina is a challenging phenomenon due to ocular biological barriers. Sorafenib tosylate (ST) is a lipophilic drug with low molecular weight, making it ineffective at bypassing the blood-retinal barrier (BRB) to reach the target site. Cubosomes are potential nanocarriers for encapsulating and releasing such drugs in a sustained manner. The present research aimed to compare the effects of sorafenib-tosylate-loaded cubosome nanocarriers (ST-CUBs) and a sorafenib tosylate suspension (ST-Suspension) via subconjunctival route in an experimental DR model. In this research, ST-CUBs were prepared using the melt dispersion emulsification technique. The distribution of prepared nanoparticles into the posterior eye segments was studied with confocal microscopy. The ST-CUBs were introduced into rats' left eye via subconjunctival injection (SCJ) and compared with ST-Suspension to estimate the single-dose pharmacokinetic profile. Streptozotocin (STZ)-induced diabetic albino rats were treated with ST-CUBs and ST-Suspension through the SCJ route once a week for 28 days to measure the inhibitory effect of ST on the diabetic retina using histopathology and immunohistochemistry (IHC) examinations. Confocal microscopy and pharmacokinetic studies showed an improved concentration of ST from ST-CUBs in the retina. In the DR model, ST-CUB treatment using the SCJ route exhibited decreased expression levels of VEGF, pro-inflammatory cytokines, and adhesion molecules compared to ST-Suspension. From the noted research findings, it was concluded that the CUBs potentially enhanced the ST bioavailability. The study outcomes established that the developed nanocarriers were ideal for delivering the ST-CUBs via the SCJ route to target the retina for facilitated DR management.
Collapse
Affiliation(s)
- Sharadha Madhusudhan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Naresh Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.R.); (M.G.)
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.B.C.); (A.H.T.)
- Centre for Experimental Pharmacology & Research, Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.R.); (M.G.)
- Cancer Research Unit, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj 11942, Saudi Arabia;
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mohammed Y. Sarhan
- Department of Special Surgery, The Hashemite University, Zarqa 13133, Jordan;
| | - Ahmed Hediyal Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.B.C.); (A.H.T.)
- Centre for Experimental Pharmacology & Research, Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
3
|
Varvarà P, Calà C, Maida CM, Giuffrè M, Mauro N, Cavallaro G. Arginine-Rich Peptidomimetic Ampicillin/Gentamicin Conjugate To Tackle Nosocomial Biofilms: A Promising Strategy To Repurpose First-Line Antibiotics. ACS Infect Dis 2023; 9:916-927. [PMID: 36926826 DOI: 10.1021/acsinfecdis.2c00579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Combined therapy with penicillins and aminoglycosides has been proved beneficial to address many persistent bacterial infections with possible synergistic effects. However, the different pharmacokinetic profiles of these two antibiotic classes may not guarantee a concerted spatio-temporal delivery at the site of action, decreasing the efficacy of this combination and promoting resistance. Herein, we propose a multifunctional antibiotic-polymer conjugate, designed to colocalize ampicillin and gentamicin to tackle persistent biofilm infections. The two antibacterial molecules were grafted along with the amino acid l-arginine to a biocompatible polymer backbone with peptidomimetic hydrophilic structure, obtaining the antimicrobial poly(argilylaspartamide-co-aspartic) acid-ampicillin, gentamicin (PAA-AG) conjugate. The PAA-AG conjugate displayed excellent biocompatibility on human cell lines if compared with free drugs, potentially enlarging their therapeutic window and safety, and suitable mucoadhesive characteristics which may help local treatments of mucosal infections. Studies on planktonic cultures of clinical and reference strains of S. aureus, P. aeruginosa, and E. coli revealed that PAA-AG holds a broad-spectrum antibacterial efficacy, revealing high potency in inhibiting the growth of the tested strains. More interestingly, PAA-AG exhibited excellent antibiofilm activity on both Gram+ and Gram- communities, showing inhibition of their formation at subMIC concentrations as well as inducing the regression of mature biofilms. Given the high biocompatibility and broad antibiofilm efficacy, combined with the opportunity for synchronous co-delivery, the PAA-AG conjugate could be a valuable tool to increase the success of ampicillin/gentamicin-based antibiotic multitherapy.
Collapse
Affiliation(s)
- Paola Varvarà
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Cinzia Calà
- Department of "Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza - G. D'Alessandro", University of Palermo, Via Del Vespro 133, 90127 Palermo, Italy
| | - Carmelo M Maida
- Department of "Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza - G. D'Alessandro", University of Palermo, Via Del Vespro 133, 90127 Palermo, Italy
| | - Mario Giuffrè
- Department of "Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza - G. D'Alessandro", University of Palermo, Via Del Vespro 133, 90127 Palermo, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.,ATeN Center - Advanced Technologies Network Center, University of Palermo, Viale delle Scienze - Edificio 18/A, 90128 Palermo, Italy
| |
Collapse
|
4
|
The Use of Polymer Blends in the Treatment of Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071431. [PMID: 35890326 PMCID: PMC9322751 DOI: 10.3390/pharmaceutics14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The eye is an organ with limited drug access due to its anatomical and physiological barriers, and the usual forms of ocular administration are limited in terms of drug penetration, residence time, and bioavailability, as well as low patient compliance. Hence, therapeutic innovations in new drug delivery systems (DDS) have been widely explored since they show numerous advantages over conventional methods, besides delivering the content to the eye without interfering with its normal functioning. Polymers are usually used in DDS and many of them are applicable to ophthalmic use, especially biodegradable ones. Even so, it can be a hard task to find a singular polymer with all the desirable properties to deliver the best performance, and combining two or more polymers in a blend has proven to be more convenient, efficient, and cost-effective. This review was carried out to assess the use of polymer blends as DDS. The search conducted in the databases of Pubmed and Scopus for specific terms revealed that although the physical combination of polymers is largely applied, the term polymer blend still has low compliance.
Collapse
|
5
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
6
|
Su Z, Han C, Liu E, Zhang F, Liu B, Meng X. Formation, characterization and application of arginine-modified chitosan/γ-poly glutamic acid nanoparticles as carrier for curcumin. Int J Biol Macromol 2020; 168:215-222. [PMID: 33309665 DOI: 10.1016/j.ijbiomac.2020.12.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 01/16/2023]
Abstract
A novel nanoparticle (NP) delivery carrier for curcumin based on electrostatic 6-deoxy-6-arginine modified chitosan (DAC) assembled by γ-poly-glutamic acid (γ-PGA) was prepared. The NP structure was evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Interactions between DAC and γ-PGA were characterized using Fourier transform infrared spectroscopy (FT-IR). The sustained release kinetics of curcumin-loaded NPs was investigated in simulated gastrointestinal fluids. After exposed to heating, pH, and NaCl aqueous solution, the stabilities of both normal and curcumin-loaded NPs were determined. The results showed that NPs achieved a high encapsulation efficiency (79.5%) and loading capacity (11.31%) for curcumin. The curcumin-loaded NPs displayed a sustained release profile under simulated gastrointestinal conditions. Under certain pH (3-9), salt (0-100 mM), and temperature (30 - 60 °C) conditions, the vehicles of curcumin showed better stability. This demonstrates that NPs can be used as stable carriers for curcumin.
Collapse
Affiliation(s)
- Zhiwei Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chenlu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
8
|
Pai RV, Vavia PR. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. Int J Pharm 2020; 577:119095. [DOI: 10.1016/j.ijpharm.2020.119095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022]
|