1
|
Fürst A, Kali G, Dizdarević A, Stengel D, Bernkop-Schnürch A. Mucoadhesive polymers: Design of S-protected thiolated cyclodextrin-based hydrogels. Int J Pharm 2024; 656:124075. [PMID: 38599445 DOI: 10.1016/j.ijpharm.2024.124075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
AIM This study aims to design chemically crosslinked thiolated cyclodextrin-based hydrogels and to evaluate their mucoadhesive properties via mucosal residence time studies on porcine small intestinal mucosa and on porcine buccal mucosa. METHODS Free thiol groups of heptakis(6-deoxy-6-thio)-β-cyclodextrin (β-CD-SH) were S-protected with 2-mercaptoethanesulfonic acid (MESNA) followed by crosslinking with citric acid. Cytotoxicity was assessed by hemolysis as well as resazurin assay. Hydrogels were characterized by their rheological and mucoadhesive properties. Ritonavir was employed as model drug for in vitro release studies from these hydrogels. RESULTS The structure of S-protected β-CD-SH was confirmed by IR and 1H NMR spectroscopy. Degree of thiolation was 390 ± 7 µmol/g. Hydrogels based on native β-CD showed hemolysis of 12.5 ± 2.5 % and 13.6 ± 2.7 % within 1 and 3 h, whereas hemolysis of just 3.5 ± 2.8 % and 3.9 ± 3.0 % was observed for the S-protected thiolated CD hydrogels, respectively. Both native and S-protected thiolated hydrogels showed minor cytotoxicity on Caco-2 cells. Rheological investigations of S-protected thiolated β-CD-based hydrogel (16.2 % m/v) showed an up to 13-fold increase in viscosity in contrast to the corresponding native β-CD-based hydrogel. Mucosal residence time studies showed that thiolated β-CD-based hydrogel is removed to a 16.6- and 2.4-fold lower extent from porcine small intestinal mucosa and porcine buccal mucosa in comparision to the native β-CD-based hydrogel, respectively. Furthermore, a sustained release of ritonavir from S-protected thiolated β-CD-based hydrogels was observed. CONCLUSION Because of their comparatively high mucoadhesive and release-controlling properties, S-protected thiolated β-CD-based hydrogels might be promising systems for mucosal drug delivery.
Collapse
Affiliation(s)
- Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Aida Dizdarević
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Daniel Stengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Kali G, Fürst A, Efiana NA, Dizdarević A, Bernkop-Schnürch A. Intraoral Drug Delivery: Highly Thiolated κ-Carrageenan as Mucoadhesive Excipient. Pharmaceutics 2023; 15:1993. [PMID: 37514179 PMCID: PMC10384811 DOI: 10.3390/pharmaceutics15071993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
AIM This study aims to design a novel thiolated κ-carrageenan (κ-CA-SH) and evaluate its potential as an excipient for the design of mucoadhesive drug delivery systems. METHODS Native κ-carrageenan (κ-CA) was thiolated with phosphorous pentasulfide in sulfolane and characterized via 1H NMR, FTIR, as well as Ellman's test. Cytotoxicity was assessed via resazurin assay. In vitro release of the model drug, benzydamine hydrochloride, was determined. Tensile and mucosal residence time studies were performed on buccal and small intestinal mucosa. Mucoadhesive features were investigated via rheological studies with freshly isolated porcine mucus. RESULTS Thiolated κ-CA (κ-CA-SH) with 1213.88 ± 52 µmol/g thiol groups showed no cytotoxicity at a concentration of 1% (m/v) and low cytotoxicity up to 2% (m/v). Benzydamine hydrochloride showed slow release in solution for both polymers. Tensile studies on buccal and intestinal mucosa showed an up to 2.7-fold and 7.7-fold enhancement in the maximum detachment force (MDF) and total work of adhesion (TWA) of κ-CA-SH vs. κ-CA, respectively. The κ-CA-SH exhibited an up to 4.4-fold improved dynamic viscosity with mucus and significantly prolonged residence time on mucosa compared to native κ-CA. CONCLUSION Since highly thiolated κ-CA shows a slow release of positively charged active pharmaceutical ingredients and enhanced mucoadhesive properties, it might be a promising excipient for local drug delivery in the oral cavity.
Collapse
Affiliation(s)
- Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nuri Ari Efiana
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Aida Dizdarević
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Fürst A, Kali G, Efiana NA, Akkuş-Dağdeviren ZB, Haddadzadegan S, Bernkop-Schnürch A. Thiolated cyclodextrins: A comparative study of their mucoadhesive properties. Int J Pharm 2023; 635:122719. [PMID: 36791998 DOI: 10.1016/j.ijpharm.2023.122719] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
AIM The aim of this study was the comparison of the mucoadhesive properties of nonionic, negatively, and positively charged thiolated cyclodextrins (CDs), including α-, β-, and γ-CDs of low and high degree of thiolation. METHODS Native α-, β-, and γ-CDs were thiolated with phosphorous pentasulfide in sulfolane (CD-SH) (i), via reductive amination with cysteamine after oxidative ring opening (CD-Cya) (ii), and via esterification with mercaptosuccinic acid (CD-MSA) (iii). These thiolated CDs were characterized via 1H NMR and Ellman's test. Cytotoxicity was determined via resazurin and hemolysis assay. Mucoadhesive properties were evaluated via rheological studies with freshly isolated porcine mucus, as well as residence time studies on porcine small intestinal mucosa. RESULTS The structure of thiolated CDs was confirmed via 1H NMR. The degree of thiolation was in the range of 594-1034 µmol/g for low and 1360-3379 µmol/g for high CD-SH, whereas thiolated CD-Cya and thiolated CD-MSA exhibited a degree of thiolation of 1142-3242 µmol/g and 243-1227 µmol/g, respectively. Just cationic CDs showed cytotoxicity. Nonionic highly thiolated α-CD-SH, α-CD-Cya, and α-CD-MSA exhibited with mucus 5.6-, 15.7- and 2.8-fold improved dynamic viscosity, while improvement was 7.7-, 6.1-, and 5.4-fold for the corresponding thiolated β-CDs and 12.3-, 15.4- and 17.8-fold for the corresponding thiolated γ-CDs compared with native CDs, respectively. A prolonged mucosal residence time following the rank order γ > β > α was observed for all thiolated CDs, whereby γ-CD-Cya, nonionic highly thiolated β-CD-SH and α-CD-Cya showed the highest mucoadhesive properties. CONCLUSION A high degree of thiolation and the introduction of cationic charges are mainly responsible for high mucoadhesive properties of CDs.
Collapse
Affiliation(s)
- Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nuri Ari Efiana
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Efiana NA, Kali G, Fürst A, Dizdarević A, Bernkop-Schnürch A. Betaine-modified hydroxyethyl cellulose (HEC): A biodegradable mucoadhesive polysaccharide exhibiting quaternary ammonium substructures. Eur J Pharm Sci 2023; 180:106313. [PMID: 36307016 DOI: 10.1016/j.ejps.2022.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The aim of this study was to improve the mucoadhesive properties of hydroxyethyl cellulose (HEC) via the covalent attachment of betaine. Synthesis was carried out through esterification of HEC utilizing N-chlorobetainyl chloride. Betaine-modified HEC was characterized via FTIR and NMR analyses, ester quantification and zeta potential measurements. Enzymatic degradation and cell viability were also investigated. Moreover, rheological and mucoadhesive properties were evaluated. FTIR and NMR analyses confirmed the covalent attachment of betaine to HEC. Betaine-modified HEC contained 228.45±11.63 µmol/g ester bonds and its zeta potential was 0.37±0.19 mV. Enzymatic degradation studies showed the ability of lipase to cleave off betaine from HEC. Cytotoxicity studies demonstrated that betaine-modified HEC is up to a concentration of 0.3% not toxic. In comparison to unmodified HEC, betaine-modified HEC showed with mucus a 2.3- and 4-fold higher viscosity within 3 h and 6 h, respectively. Furthermore, betaine-modified HEC exhibited 23.5-fold higher mucoadhesive properties on porcine intestinal mucosa compared to unmodified HEC. In conclusion, betaine-modified HEC might be a useful biodegradable mucoadhesive polymer.
Collapse
Affiliation(s)
- Nuri Ari Efiana
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta 55164, Indonesia
| | - Gergely Kali
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria
| | - Andrea Fürst
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria
| | - Aida Dizdarević
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 4th floor, Innsbruck A-6020, Austria.
| |
Collapse
|
5
|
Entirely S-protected thiolated hydroxyethylcellulose: Design of a dual cross-linking approach for hydrogels. Eur J Pharm Biopharm 2022; 181:292-299. [PMID: 36427674 DOI: 10.1016/j.ejpb.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
AIM The aim of this study was the synthesis and evaluation of entirely S-protected thiolated hydroxyethylcellulose (HEC) with low and high viscosity, as well as thiolated poly-L-lysine (poly-L-Lys) used as dual-acting ionic as well as thiol-disulfide exchange mediated cross-linking hydrogel. METHODS Bis(mercaptosuccinic acid) was covalently attached to low and high viscous HECs via Fisher esterification, obtaining S-protected polymers. Poly-L-Lys-cysteine was synthesized via amidation of poly-L-Lys-HBr with cysteine (Cys). Thiolated polymers were examined in terms of cytotoxicity and rheological behavior of hydrogels containing these thiomers was evaluated with a cone-plate rheometer. RESULTS Thiomers showed less cytotoxicity compared to the corresponding unmodified polymers. Rheological studies showed that cross-linking occurred between the two polymers via thiol-disulfide exchange reactions facilitated by the complementary charges. Employing poly-L-Lys-Cys in a concentration of either 0.5 or 5% (m/v) resulted in a 34.5-fold or 17.3-fold as well as a 53.6-fold or 29.6-fold improvement in dynamic viscosity within 5 min at 37 °C on S-protected thiolated low and high viscous HEC, compared to the corresponding unmodified HECs, respectively. CONCLUSION By the combination of anionic S-protected thiolated polymers with a cationic thiolated polymer, dual-acting hydrogels exhibiting a time dependent increase in viscosity can be designed.
Collapse
|
6
|
Kulawik-Pióro A, Drabczyk AK, Kruk J, Wróblewska M, Winnicka K, Tchórzewska J. Thiolated Silicone Oils as New Components of Protective Creams in the Prevention of Skin Diseases. MATERIALS 2021; 14:ma14164723. [PMID: 34443245 PMCID: PMC8399804 DOI: 10.3390/ma14164723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
This work investigates the possibility of using thiolated silicone oils as new components in protective creams and their impact on the efficacy of these products. Thiolated silicone oils were synthesized by amide bond formation between primary amino groups of poly17dimethylsiloxane-co-(3-aminopropyl)-methylsiloxane] and carboxylic groups of thiol ligand (3-mercaptopropionic acid) with carbodiimide as a coupling agent. To evaluate and compare the properties of these kinds of thiomers, three different emulsion o/w types were obtained. Emulsion E1 contained methyl silicone oil, E2 poly[dimethylsiloxane-co-(3-aminopropyl)-methylsiloxane], and E3 thiolated silicone oil (silicone-MPA), respectively. Physicochemical properties, including pH, conductivity, droplet size distribution, viscosity, and stability, were assessed. The efficacy of barrier creams in the prevention of occupational skin diseases depends on their mechanical and rheological properties. Thus, the method which imitates the spreadability conditions on the skin and how structure reconstruction takes places was performed. We also investigated textural profile, bioadhesion, protection against water and detergents, and water vapor permeability. Emulsion E3 was characterized by beneficial occlusion, spreadability, and adhesion properties. These features with prolonged residence time on the skin can make designed barrier creams more preferable for consumers.
Collapse
Affiliation(s)
- Agnieszka Kulawik-Pióro
- Department of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
- Correspondence: ; Tel.: +48-1-2628-2740
| | - Anna K. Drabczyk
- Department of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Joanna Kruk
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture in Kraków, Balicka 122, 30-149 Kraków, Poland;
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical Univeristy of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (M.W.); (K.W.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical Univeristy of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (M.W.); (K.W.)
| | - Justyna Tchórzewska
- Lubricant Supply Chain, Shell Business Operations Poland, Czerwone Maki 87, 30-392 Kraków, Poland;
| |
Collapse
|
7
|
Beaupre DM, Weiss RG. Thiol- and Disulfide-Based Stimulus-Responsive Soft Materials and Self-Assembling Systems. Molecules 2021; 26:3332. [PMID: 34206043 PMCID: PMC8199128 DOI: 10.3390/molecules26113332] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Properties and applications of synthetic thiol- and disulfide-based materials, principally polymers, are reviewed. Emphasis is placed on soft and self-assembling materials in which interconversion of the thiol and disulfide groups initiates stimulus-responses and/or self-healing for biomedical and non-biomedical applications.
Collapse
Affiliation(s)
| | - Richard G. Weiss
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA;
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
8
|
Shahzadi I, Fürst A, Akkus-Dagdeviren ZB, Arshad S, Kurpiers M, Matuszczak B, Bernkop-Schnürch A. Less Reactive Thiol Ligands: Key towards Highly Mucoadhesive Drug Delivery Systems. Polymers (Basel) 2020; 12:polym12061259. [PMID: 32486313 PMCID: PMC7362194 DOI: 10.3390/polym12061259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
As less reactive s-protected thiomers can likely interpenetrate the mucus gel layer to a higher extent before getting immobilized via disulfide bond formation with mucins, it was the aim of this study to develop a novel type of s-protected thiomer based on the less reactive substructure cysteine-N-acetyl cysteine (Cys-NAC) in order to obtain improved mucoadhesive properties. For this purpose, two types of s-protected thiomers, polyacrylic acid-cysteine-mercaptonicotinic acid (PAA-Cys-MNA) and polyacrylic acid-cysteine-N-acetyl cysteine (PAA-Cys-NAC), were synthesized and characterized by Fourier-transform infrared spectroscopy (FT-IR) and the quantification of attached disulfide ligands. The viscosity of both products was measured in the presence of NAC and mucus. Both thiomers were also evaluated regarding swelling behavior, tensile studies and retention time on the porcine intestinal mucosa. The FT-IR spectra confirmed the successful attachment of Cys-MNA and Cys-NAC ligands to PAA. The number of attached sulfhydryl groups was in the range of 660–683 µmol/g. The viscosity of both s-protected thiomers increased due to the addition of increasing amounts of NAC. The viscosity of the mucus increased in the presence of 1% PAA-Cys-MNA and PAA-Cys-NAC 5.6- and 10.9-fold, respectively, in comparison to only 1% PAA. Both s-protected thiomers showed higher water uptake than unmodified PAA. The maximum detachment force (MDF) and the total work of adhesion (TWA) increased in the case of PAA-Cys-MNA up to 1.4- and 1.6-fold and up to 2.4- and 2.8-fold in the case of PAA-Cys-NAC. The retention of PAA, PAA-Cys-MNA, and PAA-Cys-NAC on porcine intestinal mucosa was 25%, 49%, and 76% within 3 h, respectively. The results of this study provide evidence that less reactive s-protected thiomers exhibit higher mucoadhesive properties than highly reactive s-protected thiomers.
Collapse
Affiliation(s)
- Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
| | - Zeynep Burcu Akkus-Dagdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
| | - Shumaila Arshad
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
- Faculty of Pharmacy, The University of Lahore, 54000 Lahore, Pakistan
| | - Markus Kurpiers
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, A-6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria;
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (Z.B.A.-D.); (S.A.); (M.K.)
- Correspondence: ; Tel.: +43-512-507-58601; Fax: +43-512-507-8699
| |
Collapse
|
9
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|