1
|
Kapourani A, Pantazos I, Valkanioti V, Chatzitheodoridou M, Kalogeri C, Barmpalexis P. Unveiling the impact of preparation methods, matrix/carrier type selection and drug loading on the supersaturation performance of amorphous solid dispersions. Int J Pharm 2025; 671:125242. [PMID: 39842744 DOI: 10.1016/j.ijpharm.2025.125242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Amorphous solid dispersions (ASDs) are widely recognized for their potential to enhance the solubility of poorly water-soluble drugs, with factors such as molecular mobility, intermolecular interactions, and storage conditions playing critical roles in their performance. However, the influence of preparation methods on their performance remains underexplored, especially regarding their supersaturation . To address this gap, the present study systematically investigates ASDs of ibuprofen (IBU, used as a model drug) prepared using two widely utilized techniques (solvent evaporation, SE, and melt-quench cooling, M-QC). Three different matrices/carriers (Soluplus®, SOL, povidone, PVP, and copovidone, PVPVA) were employed to evaluate the combined influence of preparation method, matrix/carrier type, and drug loading on ASD performance. Supersaturation behavior during dissolution, particularly its dependence on the Sink Index (SI), was a key focus. All ASDs showed successful amorphization, but molecular near-order structures differed based on the preparation method. ATR-FTIR spectroscopy revealed stronger molecular interactions in M-QC ASDs (compared to SE). Dissolution studies under supersaturation conditions (SI = 0.1 and SI = 0.2) highlighted significant performance differences. M-QC ASDs consistently exhibited higher in vitro AUC(0→t) values under non-sink conditions compared to crystalline IBU. Conversely, SE ASDs showed improved supersaturation primarily under low SI conditions, especially with SOL at low drug loadings. The findings underscore the need for a systematic approach in developing ASDs, considering preparation method, matrix/carrier type, drug loading and dissolution study conditions collectively. These factors significantly influence dissolution behavior and supersaturation, emphasizing that they should not be independently studied but evaluated comprehensively to optimize ASD performance.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ioannis Pantazos
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vasiliki Valkanioti
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Melina Chatzitheodoridou
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Christina Kalogeri
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.
| |
Collapse
|
2
|
Inoue M, Odate M, Fukami T. Optimization and characterization of a dose-controllable orodispersible dexamethasone film for personalized medicine. J Pharm Sci 2024; 113:3518-3524. [PMID: 39362303 DOI: 10.1016/j.xphs.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Decadron® tablets are commercially available in 0.5 and 4 mg formulations, often requiring the use of multiple tablets or fractional doses when the required dosage is unavailable. This practice can lead to inaccuracies and handling difficulties associated with tablet splitting and crushing tablets into powder. This study aimed to develop an orodispersible dexamethasone film that would allow precise dose control and overcome these challenges. The film formulation was optimized by dissolving varying amounts of hypromellose, glycerol, and dexamethasone in ethanolic solutions. These solutions were cast and dried at different thicknesses. Statistical optimization using the design of experiments was used to determine the ideal film composition. The optimized films met pharmaceutical standards, with a mass variation ≦ 2 %, thickness variation ≦ 2.5 %, and disintegration time ≦ 20 s. The uniform distribution of dexamethasone within the film enabled easy content control based on the film area. Dissolution testing indicated that the dissolution behavior of the film formulation behaved similarly to commercial tablets for up to 90 min. In conclusion, the developed orodispersible film offers precise dexamethasone dose control and addresses the limitations of tablet splitting, positioning it as a promising candidate for personalized medicine applications.
Collapse
Affiliation(s)
- Motoki Inoue
- Hoshi University, 2-4-41, Ebara, Shinagawa-Ku, Tokyo 142-8501, Japan.
| | - Moyumi Odate
- Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Toshiro Fukami
- Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
3
|
Orodispersible Films-Current State of the Art, Limitations, Advances and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020361. [PMID: 36839683 PMCID: PMC9965071 DOI: 10.3390/pharmaceutics15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Orodispersible Films (ODFs) are drug delivery systems manufactured with a wide range of methods on a big scale or for customized medicines and small-scale pharmacy. Both ODFs and their fabrication methods have certain limitations. Many pharmaceutical companies and academic research centers across the world cooperate in order to cope with these issues and also to find new formulations for a wide array of APIs what could make their work profitable for them and beneficial for patients as well. The number of pending patent applications and granted patents with their innovative approaches makes the progress in the manufacturing of ODFs unquestionable. The number of commercially available ODFs is still growing. However, some of them were discontinued and are no longer available on the markets. This review aims to summarize currently marketed ODFs and those withdrawn from sale and also provides an insight into recently published studies concerning orodispersible films, emphasizing of utilized APIs. The work also highlights the attempts of scientific communities to overcome ODF's manufacturing methods limitations.
Collapse
|
4
|
Liu X, Huang S, Ma L, Ye H, Lin J, Cai X, Shang Q, Zheng C, Xu R, Zhang D. Recent advances in wearable medical diagnostic sensors and new therapeutic dosage forms for fever in children. J Pharm Biomed Anal 2022; 220:115006. [PMID: 36007307 DOI: 10.1016/j.jpba.2022.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Fever in children is one of the most common symptoms of pediatric diseases and the most common complaint in pediatric clinics, especially in the emergency department. Diseases such as pneumonia, sepsis, and meningitis are leading causes of death in children, and the early manifestations of these diseases are accompanied by fever symptoms. Accurate diagnosis and real-time monitoring of the status of febrile children, rapid and effective identification of the cause, and treatment can have a positive impact on relieving their symptoms and improving their quality of life. In recent years, wearable diagnostic sensors have attracted special attention for their high flexibility, real-time monitoring, and sensitivity. Temperature sensors and heart rate sensors have provided new advances in detecting children's body temperature and heart rate. Furthermore, some novel formulations have also received wide attention for addressing bottlenecks in medication administration for febrile children, such as difficulty in swallowing and inaccurate dosing. In this context, the present review provides recent advances of novel wearable medical sensor devices for diagnosing fever. Moreover, the application progress of innovative dosage forms of classical antipyretic drugs for children is presented. Finally, challenges and prospects of wearable sensor-based diagnostics and novel agent-based treatment of fever in children are discussed in brief.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lele Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
5
|
Shurshina AS, Galina AR, Kulish EI. Features of the Use of Polyelectrolytes to Prolong the Action of Medicinal Substances. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
O’Reilly CS, Elbadawi M, Desai N, Gaisford S, Basit AW, Orlu M. Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics 2021; 13:2187. [PMID: 34959468 PMCID: PMC8706962 DOI: 10.3390/pharmaceutics13122187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Orodispersible films (ODFs) are an attractive delivery system for a myriad of clinical applications and possess both large economical and clinical rewards. However, the manufacturing of ODFs does not adhere to contemporary paradigms of personalised, on-demand medicine, nor sustainable manufacturing. To address these shortcomings, both three-dimensional (3D) printing and machine learning (ML) were employed to provide on-demand manufacturing and quality control checks of ODFs. Direct ink writing (DIW) was able to fabricate complex ODF shapes, with thicknesses of less than 100 µm. ML algorithms were explored to classify the ODFs according to their active ingredient, by using their near-infrared (NIR) spectrums. A supervised model of linear discriminant analysis was found to provide 100% accuracy in classifying ODFs. A subsequent partial least square algorithm was applied to verify the dose, where a coefficient of determination of 0.96, 0.99 and 0.98 was obtained for ODFs of paracetamol, caffeine, and theophylline, respectively. Therefore, it was concluded that the combination of 3D printing, NIR and ML can result in a rapid production and verification of ODFs. Additionally, a machine vision tool was used to automate the in vitro testing. These collective digital technologies demonstrate the potential to automate the ODF workflow.
Collapse
Affiliation(s)
| | | | | | | | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK (M.E.); (N.D.); (S.G.)
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK (M.E.); (N.D.); (S.G.)
| |
Collapse
|
7
|
Klebeko J, Ossowicz-Rupniewska P, Nowak A, Janus E, Duchnik W, Adamiak-Giera U, Kucharski Ł, Prowans P, Petriczko J, Czapla N, Bargiel P, Markowska M, Klimowicz A. Permeability of Ibuprofen in the Form of Free Acid and Salts of L-Valine Alkyl Esters from a Hydrogel Formulation through Strat-M™ Membrane and Human Skin. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6678. [PMID: 34772205 PMCID: PMC8588543 DOI: 10.3390/ma14216678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
This paper aimed to evaluate the effect of vehicle and chemical modifications of the structure of active compounds on the skin permeation and accumulation of ibuprofen [IBU]. In vitro permeation experiments were performed using human abdominal skin and Strat-M™ membrane. The HPLC method was used for quantitative determinations. The formulations tested were hydrogels containing IBU and its derivatives and commercial gel with ibuprofen. The results obtained indicate that Celugel® had an enhancing effect on the skin penetration of IBU. The average cumulative mass of [IBU] after 24 h permeation test from Celugel® formulation through human skin was over 3 times higher than for the commercial product. Three ibuprofen derivatives containing [ValOiPr][IBU], [ValOPr][IBU], and [ValOBu][IBU] cation were evaluated as chemical penetration enhancers. The cumulative mass after 24 h of penetration was 790.526 ± 41.426, 682.201 ± 29.910, and 684.538 ± 5.599 μg IBU cm-2, respectively, compared to the formulation containing unmodified IBU-429.672 ± 60.151 μg IBU cm-2. This study demonstrates the perspective of the transdermal hydrogel vehicle in conjunction with the modification of the drug as a potential faster drug delivery system.
Collapse
Affiliation(s)
- Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (E.J.)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (E.J.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Ewa Janus
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (E.J.)
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Urszula Adamiak-Giera
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Piotr Prowans
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, Siedlecka 2, 72-010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Jan Petriczko
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, Siedlecka 2, 72-010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Norbert Czapla
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, Siedlecka 2, 72-010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Piotr Bargiel
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, Siedlecka 2, 72-010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Marta Markowska
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, Siedlecka 2, 72-010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| |
Collapse
|
8
|
Gupta MS, Kumar TP, Gowda DV, Rosenholm JM. Orodispersible films: Conception to quality by design. Adv Drug Deliv Rev 2021; 178:113983. [PMID: 34547323 DOI: 10.1016/j.addr.2021.113983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
Orodispersible films (ODFs) are ultra-thin, stamp-sized, elegant, portable and patient-centric pharmaceutical dosage forms that do not need water to be ingested. They are particularly useful for paediatric and geriatric patient populations with special needs such as dysphagia, Parkinson's disease, and oral cancer. Accordingly, they hold tremendous potential in gaining patient compliance, convenience and pharmacotherapy. In the present review, conception and evolution of ODFs as a product and its technology are discussed. The review continues by providing overview about the potential of ODFs as carriers for delivering drugs, herbal extracts, probiotics and vaccines. Besides, strategies employed in drug cargo loading, taste masking of bitter drugs and enhancing drug stability are discussed. Finally, the review concludes by providing a brief overview about quality by design (QbD) principles in development of ODFs.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India.
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India
| | - Devegowda Vishkante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
9
|
Orodispersible Membranes from a Modified Coaxial Electrospinning for Fast Dissolution of Diclofenac Sodium. MEMBRANES 2021; 11:membranes11110802. [PMID: 34832031 PMCID: PMC8622798 DOI: 10.3390/membranes11110802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023]
Abstract
The dissolution of poorly water-soluble drugs has been a longstanding and important issue in pharmaceutics during the past several decades. Nanotechnologies and their products have been broadly investigated for providing novel strategies for resolving this problem. In the present study, a new orodispersible membrane (OM) comprising electrospun nanofibers is developed for the fast dissolution of diclofenac sodium (DS). A modified coaxial electrospinning was implemented for the preparation of membranes, during which an unspinnable solution of sucralose was explored as the sheath working fluid for smoothing the working processes and also adjusting the taste of membranes. SEM and TEM images demonstrated that the OMs were composed of linear nanofibers with core-sheath inner structures. XRD and ATR-FTIR results suggested that DS presented in the OMs in an amorphous state due to the fine compatibility between DS and PVP. In vitro dissolution measurements and simulated artificial tongue experiments verified that the OMs were able to release the loaded DS in a pulsatile manner. The present protocols pave the way for the fast dissolution and fast action of a series of poorly water-soluble active ingredients that are suitable for oral administration.
Collapse
|
10
|
Relevance of production method on the physical stability and in vitro biopharmaceutical performances of olanzapine orodispersible film. Int J Pharm 2021; 603:120697. [PMID: 33984453 DOI: 10.1016/j.ijpharm.2021.120697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
This study assessed the relevance of the preparation process, namely solvent casting and hot-melt ram printing, on the biopharmaceutical performances of olanzapine orodispersible films (ODF) made of maltodextrins. Beside the clinical rationale, olanzapine was selected since it is subjected to polymorphism which impacts on its bioavailability. All ODF disintegrated in less than 3 min and showed content uniformity within the acceptable values. Dissolution testing in 3 mL of artificial saliva at pH = 6.8 evidenced that cast and printed ODF released after 5 min about 2% and 100%, respectively; at higher volume, a yellow precipitate was formed after disintegration of the cast ODF. At pH = 1.2, the t85% for cast ODF was reached after about 20 min and only the 90% olanzapine was dissolved increasing the pH to 6.8. These differences were explained by DSC, TGA and X-ray diffraction data which demonstrated that the casting method, which included the preparation of an aqueous slurry, favours the conversion from Form I to a hydrated one. Since extruded ODF resulted physically stable after 30 months, this suggests the potentiality of this technique to load in ODF drugs undergoing solid-state modification after exposure to aqueous media.
Collapse
|