1
|
Simon A, Velloso-Junior SO, Mesquita RD, Fontao APGA, Costa TEMM, Honorio TS, Guimaraes TF, Sousa EGR, Viçosa AL, Sampaio ALF, do Carmo FA, Healy AM, Cabral LM, Castro RR. Development of inhaled moxifloxacin-metformin formulation as an alternative for pulmonary tuberculosis treatment. Int J Pharm 2024; 666:124740. [PMID: 39341387 DOI: 10.1016/j.ijpharm.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Resistant M. tuberculosis strains threaten pulmonary tuberculosis (P-TB) control since they limit drug options. Drug repositioning and new development strategies are urgently required to overcome resistance. Studies have already shown the beneficial role of the oral antidiabetic metformin as an anti-tuberculosis adjuvant drug. This work aimed to develop an inhalatory dry powder co-formulation of metformin and moxifloxacin to figure out a future option for P-TB treatment. Pre-formulation evaluations indicated the physicochemical compatibility of constituents, demonstrating powder crystallinity and acceptable drug content. Eight moxifloxacin-metformin dry powder formulations were produced by spray drying, and solid-state characterizations showed partial amorphization, ascribed to moxifloxacin. Four formulations containing L-leucine exhibited micromeritic and in vitro deposition profiles indicating pulmonary delivery suitability, like spherical and corrugated particle surface, geometric diameters < 5 μm, high emitted doses (>85 %), and mass median aerodynamic diameters between 1-5 μm. The use of a second spray dryer model further optimized the aerodynamic properties and yield of the best formulation, demonstrating the influence of the equipment used on the product obtained. Moreover, the final formulation showed high in vitro cell tolerability and characteristics in permeability studies indicative of good drug retention in the lungs.
Collapse
Affiliation(s)
- A Simon
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - S O Velloso-Junior
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P G A Fontao
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T E M M Costa
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T S Honorio
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - T F Guimaraes
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - E G R Sousa
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L Viçosa
- Laboratorio de Farmacotécnica Experimental, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L F Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - F A do Carmo
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - L M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R R Castro
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Mohammadi F, Moradi A, Tavakoli F, Rahmati S, Giti R, Ramezani V. Development and characterization of a copolymeric micelle containing soluble and insoluble model drugs. PLoS One 2023; 18:e0286251. [PMID: 37228096 PMCID: PMC10212155 DOI: 10.1371/journal.pone.0286251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Micelles are nano-sized particles with a core-shell structure that are made by natural or synthetic polymers or copolymers. The aim of this study was to develop and characterize a copolymeric micelle using two polymers loaded with hydrophilic and lipophilic drugs. METHODS Poly(ethylene glycol) and poly(ε-caprolactone) (PEG-PCL) were used to form a copolymeric micelle which was further loaded with either moxifloxacin or clarithromycin as hydrophilic and lipophilic drug samples, respectively. Characterization tests were done including fourier transform-infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, encapsulation efficiency, particle size, zeta potential, polydispersity index, transmission electron microscopy, and in-vitro release test. RESULTS The construction of the copolymer was confirmed by the results of FT-IR and 1H NMR spectroscopy tests. The encapsulation efficiency test exhibited that loading was about 50% for twelve formulations. Particle size, zeta potential, polydispersity index, and transmission electron microscopy confirmed the formation of monodispersed, uniform, and nano-sized micelles with a few negative charges. The kinetic model of release was fitted to the Higuchi model. CONCLUSIONS Polymeric micelles consisting of PEG-PCL copolymer were loaded with adequate concentrations of hydrophilic (moxifloxacin) and lipophilic (clarithromycin) model drugs, with a mean particle size under 300 nm. Therefore, copolymeric micelles can be used as a suitable drug delivery system for mucous membranes and skin.
Collapse
Affiliation(s)
- Farhad Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Fatemeh Tavakoli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Samaneh Rahmati
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Rashin Giti
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| |
Collapse
|
3
|
Charoo NA, Abdallah DB, Ahmed DT, Abrahamsson B, Cristofoletti R, Langguth P, Mehta M, Parr A, Polli JE, Shah VP, Kambayashi A, Dressman J. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Levocetirizine Dihydrochloride. J Pharm Sci 2023; 112:893-903. [PMID: 36581104 DOI: 10.1016/j.xphs.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Levocetirizine, a histamine H1-receptor antagonist, is prescribed to treat uncomplicated skin rashes associated with chronic idiopathic urticaria as well as the symptoms of both seasonal and continual allergic rhinitis. In this monograph, the practicality of using Biopharmaceutics Classification System (BCS) based methodologies as a substitute for pharmacokinetic studies in human volunteers to appraise the bioequivalence of immediate-release (IR) oral, solid dosage forms containing levocetirizine dihydrochloride was investigated, using data from the literature and in-house testing. Levocetirizine's solubility and permeability properties, as well as its dissolution from commercial products, its therapeutic uses, therapeutic index, pharmacokinetics and pharmacodynamic traits, were reviewed in accordance with the BCS, along with any reports in the literature about failure to meet bioequivalence (BE) requirements, bioavailability issues, drug-excipient interactions as well as other relevant information. The data presented in this monograph unequivocally point to classification of levocetirizine in BCS Class 1. For products that are somewhat supra-equivalent or somewhat sub-equivalent, clinical risks are expected to be insignificant in light of levocetirizine's wide therapeutic index and unlikelihood of severe adverse effects. After careful consideration of all the information available, it was concluded that the BCS-based biowaiver can be implemented for products which contain levocetirizine dihydrochloride, provided (a) the test product comprises excipients that are typically found in IR oral, solid drug products that have been approved by a country belonging to or associated with ICH and are used in quantities that are typical for such products, (b) data supporting the BCS-based biowaiver are gathered using ICH-recommended methods, and (c) all in vitro dissolution requirements specified in the ICH guidance are met by both the test and comparator products (in this case, the comparator is the innovator product).
Collapse
Affiliation(s)
- Naseem A Charoo
- Adcan Pharma LLC, Industrial City of Abu Dhabi, United Arab Emirates
| | - Daud B Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Al Ribat University, Khartoum, Sudan
| | - Daoud T Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations AstraZeneca, Gothenburg, Sweden
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, University of Florida, Orlando, FL, USA
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University, Mainz, Germany
| | - Mehul Mehta
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Alan Parr
- Bioceutics LCC, Raleigh-Durham, NC, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Vinod P Shah
- International Pharmaceutical Federation (FIP), The Hague, the Netherlands
| | - Atsushi Kambayashi
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc, Analytical Research Laboratories, Yaizu, Japan
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
A hybrid framework of artificial intelligence-based neural network model (ANN) and central composite design (CCD) in quality by design formulation development of orodispersible moxifloxacin tablets: Physicochemical evaluation, compaction analysis, and its in-silico PBPK modeling. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Metry M, Polli JE. Evaluation of Excipient Risk in BCS Class I and III Biowaivers. AAPS J 2022; 24:20. [PMID: 34988701 PMCID: PMC8817461 DOI: 10.1208/s12248-021-00670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
The objective of this review article is to summarize literature data pertinent to potential excipient effects on intestinal drug permeability and transit. Despite the use of excipients in drug products for decades, considerable research efforts have been directed towards evaluating their potential effects on drug bioavailability. Potential excipient concerns stem from drug formulation changes (e.g., scale-up and post-approval changes, development of a new generic product). Regulatory agencies have established in vivo bioequivalence standards and, as a result, may waive the in vivo requirement, known as a biowaiver, for some oral products. Biowaiver acceptance criteria are based on the in vitro characterization of the drug substance and drug product using the Biopharmaceutics Classification System (BCS). Various regulatory guidance documents have been issued regarding BCS-based biowaivers, such that the current FDA guidance is more restrictive than prior guidance, specifically about excipient risk. In particular, sugar alcohols have been identified as potential absorption-modifying excipients. These biowaivers and excipient risks are discussed here. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Melissa Metry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Charoo NA, Abdallah DB, Bakheit AA, Haque KU, Hassan HA, Abrahamsson B, Cristofoletti R, Langguth P, Mehta M, Parr A, Polli JE, Shah VP, Tajiri T, Dressman J. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Sitagliptin Phosphate Monohydrate. J Pharm Sci 2021; 111:2-13. [PMID: 34597625 DOI: 10.1016/j.xphs.2021.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023]
Abstract
Sitagliptin is an antihyperglycemic drug used in adults for the treatment of diabetes Type 2. Literature data and in-house experiments were applied in this monograph to assess whether methods based on the Biopharmaceutics Classification System (BCS) could be used to assess the bioequivalence of solid immediate-release (IR) oral dosage forms containing sitagliptin phosphate monohydrate, as an alternative to a pharmacokinetic study in human volunteers. The solubility and permeability characteristics of sitagliptin were reviewed according to the BCS, along with dissolution, therapeutic index, therapeutic applications, pharmacokinetics, pharmacodynamic characteristics, reports of bioequivalence (BE) / bioavailability problems, data on interactions between the drug and excipients and other data germane to the subject. All data reviewed in this monograph unambiguously support classification of sitagliptin as a BCS Class 1 drug. In light of its broad therapeutic index and lack of severe adverse effects, the clinical risks associated with moderately supraoptimal doses were deemed inconsequential, as were the risks associated with moderately suboptimal doses. Taking all evidence into consideration, it was concluded that the BCS-based biowaiver can be implemented for solid IR oral drug products containing sitagliptin phosphate monohydrate, provided (a) the test product is formulated solely with excipients commonly present in solid IR oral drug products approved in ICH or associated countries and used in amounts commonly applied in this type of product, (b) data in support of the BCS-based biowaiver are obtained using the methods recommended by the WHO, FDA, EMA or ICH and (c) the test product and the comparator product (which is the innovator product in this case) meet all in vitro dissolution specifications provided in the WHO, FDA, EMA or ICH guidance.
Collapse
Affiliation(s)
- Naseem A Charoo
- Succor Pharma Solutions, Dubai Science Park, Dubai, United Arab Emirates
| | - Daud B Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, The National Ribat University, Khartoum, Sudan
| | - Ahmed Abdalla Bakheit
- Department of Pharmaceutics, Faculty of Pharmacy, The National Ribat University, Khartoum, Sudan
| | - Kashif Ul Haque
- Succor Pharma Solutions, Dubai Science Park, Dubai, United Arab Emirates
| | - Hassan Ali Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Sudan
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations AstraZeneca, Gothenburg, Sweden
| | - Rodrigo Cristofoletti
- Brazilian Health Surveillance Agency (ANVISA), Division of Bioequivalence, Brasilia, Brazil
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University, Mainz, Germany
| | - Mehul Mehta
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Alan Parr
- Bioceutics LCC, Raleigh-Durham, North Carolina, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Vinod P Shah
- International Pharmaceutical Federation (FIP), The Hague, the Netherlands
| | - Tomokazu Tajiri
- Astellas Pharma Inc, Analytical Research Laboratories, Yaizu, Japan
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
An Assessment of Occasional Bio-Inequivalence for BCS1 and BCS3 Drugs: What are the Underlying Reasons? J Pharm Sci 2021; 111:124-134. [PMID: 34363838 DOI: 10.1016/j.xphs.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Despite having adequate solubility properties, bioequivalence (BE) studies performed on immediate release formulations containing BCS1/3 drugs occasionally fail. By systematically evaluating a set of 17 soluble drugs where unexpected BE failures have been reported and comparing to a set of 29 drugs where no such reports have been documented, a broad assessment of the risk factors leading to BE failure was performed. BE failures for BCS1/3 drugs were predominantly related to changes in Cmax rather than AUC. Cmax changes were typically modest, with minimal clinical significance for most drugs. Overall, drugs with a sharp plasma peak were identified as a key factor in BE failure risk. A new pharmacokinetic term (t½Cmax) is proposed to identify drugs at higher risk due to their peak plasma profile shape. In addition, the analysis revealed that weak acids, and drugs with particularly high gastric solubility are potentially more vulnerable to BE failure, particularly when these features are combined with a sharp Cmax peak. BCS3 drugs, which are often characterised as being more vulnerable to BE failure due to their potential for permeation and transit to be altered, particularly by excipient change, were not in general at greater risk of BE failures. These findings will help to inform how biowaivers may be optimally applied in the future.
Collapse
|