1
|
Tollemeto M, Ursulska S, Welzen PLW, Thamdrup LHE, Malakpour-Permlid A, Li Y, Soufi G, Patiño Padial T, Christensen JB, Hagner Nielsen L, van Hest J, Boisen A. Tailored Polymersomes for Enhanced Oral Drug Delivery: pH-Sensitive Systems for Intestinal Delivery of Immunosuppressants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403640. [PMID: 38963162 DOI: 10.1002/smll.202403640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Ensuring precise drug release at target sites is crucial for effective treatment. Here, pH-responsive nanoparticles for oral administration of mycophenolate mofetil, an alternative therapy for patients with inflammatory bowel disease unresponsive to conventional treatments is developed. However, its oral administration presents challenges due to its low solubility in the small intestine and high solubility and absorption in the stomach. Therefore, this aim is to design a drug delivery system capable of maintaining drug solubility compared to the free drug while delaying absorption from the stomach to the intestine. Successful synthesis and assembly of a block copolymer incorporating a pH-responsive functional group is achieved. Dynamic light scattering indicated a significant change in hydrodynamic size when the pH exceeded 6.5, confirming successful incorporation of the pH-responsive group. Encapsulation and controlled release of mycophenolate mofetil are efficiently demonstrated, with 90% release observed at intestinal pH. In vitro cell culture studies confirmed biocompatibility, showing no toxicity or adverse effects on Caco-2 cells. In vivo oral rat studies indicated reduced drug absorption in the stomach and enhanced absorption in the small intestine with the developed formulation. This research presents a promising drug delivery system with potential applications in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Matteo Tollemeto
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Sintija Ursulska
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Pascal L W Welzen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Lasse H E Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Atena Malakpour-Permlid
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Yudong Li
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Gohar Soufi
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tania Patiño Padial
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Jørn B Christensen
- Department of Chemistry, University of Copenhagen, Thovaldsensvej 40, Frederiksberg, DK-1871, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jan van Hest
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
2
|
Chen G, Zhu Y, Wang Q, Bai Y, Ma S, Wang J, Zhao M, Zou M, Cheng G. The development of a novel simultaneous in vitro dissolution - in situ perfusion system as a potential tool for studying the absorption of solid oral formulation in rat. Eur J Pharm Sci 2023; 191:106601. [PMID: 37783379 DOI: 10.1016/j.ejps.2023.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/03/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The aim of this work is to develop a novel simultaneous in vitro dissolution - in situ perfusion system (SDPS) as a potential tool to evaluate the in vivo performance of solid oral formulation in rat. The innovative nitrendipine (NTD) tablet of Bayotensin mite® made in Germany was used as reference listed drug (RLD), and five generic products from Chinese market were compared with RLD using the in vitro dissolution test method specified by the orange book and the SDPS method developed in this study. Four self-prepared NTD tablets with different proportions of microcrystalline cellulose/starch were employed to investigate the discriminatory ability of the SDPS for formulation. In addition, the predictivity of the SDPS in relation to data from in vivo pharmaceutics studies was evaluated. The 45-min dissolution test and multiple-pH dissolution profiles of generic product 1 and 2 have no difference compared with the RLD, but their dissolution profiles from the SDPS showed statistically significant differences. A biexponential formula successfully described the concentration profiles of self-prepared formulations in SDPS experiments. The kdis (0.08 ± 0.01 ∼ 0.2 ± 0.03 min-1) and ka (about 2.30 × 10-3 min-1) values calculated by the formulas of F1-F3 suggested that the used excipients had no effect on the intestinal absorption of NTD, and it might be the property of active pharmaceutical ingredient that led to the difference among the generics. Furthermore, the in vivo rat pharmacokinetics study results of F1-F3 showed a good correlation (R2 = 0.99) with the SDPS data. In summary, the SDPS is a promising tool to detect the unexpected quality changes of pharmaceutical products in weakly regulated markets, facilitate formulation screening, and potentially reduce animal testing for estimating the in vivo absorption behavior of solid oral formulations. The absorption performance of generic drugs in vivo should be further investigated.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yumeng Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Qiaoqiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yifeng Bai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Siyuan Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Jingfeng Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Minqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Gang Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
3
|
Solis-Cruz B, Hernandez-Patlan D, Morales Hipólito EA, Tellez-Isaias G, Alcántara Pineda A, López-Arellano R. Discriminative Dissolution Method Using the Open-Loop Configuration of the USP IV Apparatus to Compare Dissolution Profiles of Metoprolol Tartrate Immediate-Release Tablets: Use of Kinetic Parameters. Pharmaceutics 2023; 15:2191. [PMID: 37765161 PMCID: PMC10537472 DOI: 10.3390/pharmaceutics15092191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The use of the USP IV apparatus (flow-through cell) has gained acceptance in recent years due to its versatility and ability to discriminate due to its hydrodynamic conditions. Therefore, the objective of the present study was to develop a discriminative dissolution method in the USP IV apparatus using the open-loop configuration, as well as to propose a method to compare non-cumulative dissolution profiles obtained in the open-loop configuration considering kinetic parameters and validate its predictive power through its comparison with independent and dependent methods using five commercial immediate-release tablet drugs (one reference drug and four generic drugs) of metoprolol tartrate as a model drug. The comparison of the non-accumulated dissolution profiles consisted of determining the geometric ratio of Cmax, AUC0∞, AUC0Cmax, and Tmax (kinetic parameters) of the generic/reference drugs, whereby generic drugs "C" and "D" presented the highest probability of similarity since their 90% confidence intervals were included, or they were very close to the acceptance interval (80.00-125.00%). These results were consistent with the f2, bootstrap f2, and dissolution efficiency approaches (independent models). In conclusion, the proposed comparison method can be an important tool to establish similarity in dissolution profiles and to facilitate the development/selection of new formulations and positively ensure bioequivalence in clinical studies.
Collapse
Affiliation(s)
- Bruno Solis-Cruz
- Laboratory 5: LEDEFAR, Multidisciplinary Research Unit, Superior Studies Faculty at Cuautitlan (FESC), National Autonomous University of Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (B.S.-C.); (E.A.M.H.)
- Nanotechnology Engineering Division, Polytechnic University of the Valley of Mexico, Tultitlan 54910, Mexico
| | - Daniel Hernandez-Patlan
- Laboratory 5: LEDEFAR, Multidisciplinary Research Unit, Superior Studies Faculty at Cuautitlan (FESC), National Autonomous University of Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (B.S.-C.); (E.A.M.H.)
- Nanotechnology Engineering Division, Polytechnic University of the Valley of Mexico, Tultitlan 54910, Mexico
| | - Elvia A. Morales Hipólito
- Laboratory 5: LEDEFAR, Multidisciplinary Research Unit, Superior Studies Faculty at Cuautitlan (FESC), National Autonomous University of Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (B.S.-C.); (E.A.M.H.)
| | - Guillermo Tellez-Isaias
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Raquel López-Arellano
- Laboratory 5: LEDEFAR, Multidisciplinary Research Unit, Superior Studies Faculty at Cuautitlan (FESC), National Autonomous University of Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (B.S.-C.); (E.A.M.H.)
| |
Collapse
|
4
|
Liu F, Yi H, Wang L, Cheng Z, Zhang G. A novel method to estimate the absorption rate constant for two-compartment model fitted drugs without intravenous pharmacokinetic data. Front Pharmacol 2023; 14:1087913. [PMID: 37214472 PMCID: PMC10194656 DOI: 10.3389/fphar.2023.1087913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The in vivo performances of most drugs after extravascular administration are fitted well with the two-compartment pharmacokinetic (PK) model, but the estimation of absorption rate constant (ka) for these drugs becomes difficult during unavailability of intravenous PK data. Herein, we developed a novel method, called the direct method, for estimating the ka values of drugs without using intravenous PK data, by proposing a new PK parameter, namely, maximum apparent rate constant of disposition (kmax). The accuracy of the direct method in ka estimation was determined using the setting parameters (k12, k21, and k10 values at high, medium, and low levels, respectively) and clinical data. The results showed that the absolute relative error of ka estimated using the direct method was significantly lower than that obtained using both the Loo-Riegelman method and the statistical moment method for the setting parameters. Human PK studies of telmisartan, candesartan cilexetil, and tenofovir disoproxil fumarate indicated that the ka values of these drugs were accurately estimated using the direct method based on good correlations between the ka values and other PK parameters that reflected the absorption properties of drugs in vivo (Tmax, Cmax, and Cmax/AUC0-t). This novel method can be applied in situations where intravenous PK data cannot be obtained and is expected to provide valuable support for PK evaluation and in vitro-in vivo correlation establishment.
Collapse
Affiliation(s)
- Fan Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hanxi Yi
- School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Lei Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Guoqing Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|