1
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cationic RGD peptidomimetic nanoconjugates as effective tumor targeting gene delivery vectors with antimicrobial potential. Bioorg Chem 2022; 129:106197. [DOI: 10.1016/j.bioorg.2022.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
|
3
|
Jena H, Ahmadi Z, Kumar P, Dhawan G. Bioreducible polyethylenimine core-shell nanostructures as efficient and non-toxic gene and drug delivery vectors. Bioorg Med Chem 2022; 69:116886. [PMID: 35749840 DOI: 10.1016/j.bmc.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Low molecular weight branched polyethylenimine (LMW bPEIs 1.8 kDa) have received considerable attention for the fabrication of nucleic acid carriers due to their biocompatible and non-toxic nature. However, due to the inadequate nucleic acid complexation ability and transportation across the cell membrane, these show poor transfection efficacy, limiting their clinical applications. Therefore, to overcome these challenges, in this study, we have grafted bPEI 1.8 kDa with a disulfide bond containing hydrophobic moiety, 3-(2-pyridyldithio) propionic acid (PDPA), via amide linkages through EDC/NHS-mediated coupling to obtain N-[3-(2-pyridyldithio)] propionoyl polyethylenimine (PDPP) conjugates. The best formulation for nucleic acid transfection was evaluated after preparing a series of PDPP conjugates by varying the amount of PDPA. In an aqueous environment, these PDPP conjugates self-assembled to form spherical shaped core-shell PDPP nanostructures with size ranging from ∼188-307 nm and zeta-potential from ∼ +3 to +19 mV. The positively charged surface of the core-shell nanocomposites helps in the binding of plasmid DNA (pDNA), its transportation inside the cell, and protection against enzymes. Evaluation of PDPP/pDNA complexes on mammalian cells revealed that all these complexes showed significantly improved transfection efficacy without hampering cytocompatibility. Amongst all, the pDNA complex of PDPP-2 exhibited the best transfection efficiency (i.e. >6-fold) in comparison to pDNA complex of the native bPEI. The nanocomposites exhibited the redox responsive behavior advantageous for therapeutic delivery to the tumor cells. The core of the nanostructures facilitate the encapsulation of a hydrophobic model drug, ornidazole. In vitro drug release analysis showed a faster release rate in response to a reductant mimicking the cellular environment. Altogether, these nanostructures have great potential to co-deliver both drug and gene simultaneously in response to tumor cell reductive microenvironment in vitro and could be used as the next-generation delivery system.
Collapse
Affiliation(s)
- H Jena
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110019, India; CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Z Ahmadi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | - G Dhawan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110019, India; Delhi School of Skill Enhancement & Entrepreneuship Development, Institute of Eminence, University of Delhi, Delhi-110007, India.
| |
Collapse
|
4
|
Li Y, Chen G, He Y, Yi C, Zhang X, Zeng B, Huang Z, Deng F, Yu D. Selenomethionine-Modified Polyethylenimine-Based Nanoparticles Loaded with miR-132-3p Inhibitor-Biofunctionalized Titanium Implants for Improved Osteointegration. ACS Biomater Sci Eng 2021; 7:4933-4945. [PMID: 34583510 DOI: 10.1021/acsbiomaterials.1c00880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Titanium and its alloys have been widely used as bone implants, but for reduced treatment span, improvements are urgently needed to achieve faster and better osteointegration. In this study, we found that miR-132-3p inhibited bone-marrow-derived stem cell (BMSC) osteogenic differentiation via targeting BMP2, and that inhibiting miR-132-3p could significantly improve the osteogenic capability of BMSCs. Moreover, we fabricated a biocompatible selenomethionine (SEMET)-modified polyethylene glycol (PEG)/polyethylenimine (PEI) nanoparticle (SeNP) cross-linked with 0.2% gelatin solutions and delivered miR-132-3p inhibitor to biofunctionalize alkali heat-treated titanium implants, resulting in the development of a novel coating for reverse transfection. The biological performances of PEG/PEI/miR-132-3p inhibitor and SeNP/miR-132-3p inhibitor-biofunctionalized titanium were compared. The biological effects, including cell viability, cytotoxicity, adhesion, cellular uptake, and osteogenic capacity of SeNP/miR-132-3p inhibitor-biofunctionalized titanium implants, were then assessed. Results showed that SeNPs presented appropriate morphology, diameter, and positive zeta potential for efficient gene delivery. The transfection efficiency of the SeNP/miR-132-3p inhibitor was comparable to that of the PEG/PEI/miR-132-3p inhibitor, but the former induced less reactive oxygen species (ROS) production and lower apoptosis rates. Confocal laser scanning microscopy (CLSM) demonstrated that SeNP/miR-132-3p inhibitor nanoparticles released from the titanium surfaces and were taken up by adherent BMSCs. In addition, the release profile showed that transfection could obtain a long-lasting silencing effect for more than 2 weeks. The cell viability, cytotoxicity, and cell spreading of SeNP/miRNA-132-3p inhibitor-biofunctionalized titanium were comparable with those of untreated titanium and the SeNP/miRNA-132-3p inhibitor negative control (NC)-biofunctionalized titanium but resulted in higher ALP activity and osteogenic gene expression levels. In vivo animal studies further certified that SeNP/miRNA-132-3p inhibitor nanoparticles from titanium surfaces promoted osteointegration, which was revealed by microcomputed tomography (micro-CT) and histological observations. Taken together, these findings suggested that selenomethionine-modified PEI-based nanoparticles could achieve better biocompatibility. Moreover, titanium implants biofunctionalized by SeNP/miRNA-132-3p inhibitor nanoparticles might have significant clinical potential for more effective osteointegration.
Collapse
Affiliation(s)
- Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Binghui Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| |
Collapse
|