1
|
Ahmad S, d'Avanzo N, Mancuso A, Barone A, Cristiano MC, Carresi C, Mollace V, Celia C, Fresta M, Paolino D. Skin Tolerability of Oleic Acid Based Nanovesicles Designed for the Improvement of Icariin and Naproxen Percutaneous Permeation. ACS APPLIED BIO MATERIALS 2024; 7:7852-7860. [PMID: 38608313 DOI: 10.1021/acsabm.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Deformable nanovesicles have a crucial role in topical drug delivery through the skin, due to their capability to pass intact the stratum corneum and epidermis (SCE) and significantly increase the efficacy and accumulation of payloads in the deeper layers of the skin. Namely, lipid-based ultradeformable nanovesicles are versatile and load bioactive molecules with different physicochemical properties. For this reason, this study aims to make oleic acid based nanovesicles (oleosomes) for the codelivery of icariin and sodium naproxen and increase their permeation through the skin. Oleosomes have suitable physicochemical properties and long-term stability for a potential dermal or transdermal application. The inclusion of oleic acid in the lipid bilayer increases 3-fold the deformable properties of oleosomes compared to conventional liposomes and significantly improves the percutaneous permeation of icariin and sodium naproxen through the human SCE membranes compared to hydroalcoholic solutions of both drugs. The tolerability studies on human volunteers demonstrate that oleosomes are safer and speed up the recovery of transepidermal water loss (TEWL) baselines compared to saline solution. These results highlight promising properties of icariin/sodium naproxen coloaded oleosomes for the treatment of skin disorders and suggest the potential future applications of these nanovesicles for further in vivo experiments.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Nicola d'Avanzo
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonella Barone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- UdA-TechLab, Research Center, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Bhat AA, Gupta G, Afzal M, Thapa R, Ali H, Alqahtani SM, almalki WH, Kazmi I, Alzarea SI, Saleem S, Subramaniyan V. Polyphenol-Loaded Nano-carriers for Breast Cancer Therapy: A Comprehensive Review. BIONANOSCIENCE 2024; 14:4219-4237. [DOI: 10.1007/s12668-023-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 11/22/2024]
|
3
|
Moussa AY, Abbas H, Zewail M, Gaafar PME, Ibrahim N. Green preparation and evaluation of the anti-psoriatic activity of vesicular elastic nanocarriers of kojic acid from Aspergillus oryzae N12: Repurposing of a dermo-cosmetic lead. Arch Pharm (Weinheim) 2024; 357:e2400410. [PMID: 39180243 DOI: 10.1002/ardp.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Psoriasis is a skin disorder characterized by impaired epidermal differentiation that is regularly treated by systemic drugs with undesirable side effects. Based on its anti-inflammatory, antiproliferative and anti-melanoma attributes, the fungal metabolite kojic acid represents an attractive candidate for anti-psoriatic research. The present work aims to investigate an efficient topical bio-friendly vesicular system loaded with kojic acid isolated from Aspergillus oryzae as an alternative way for the management of psoriasis to avoid systemic toxicity. Kojic acid-loaded spanlastics were prepared by ethanol injection technique, employing span 60 along with brij 35 and cremophor rh40 as edge activators, with the complete in vitro characterization of the developed nanoplatform. The selected formulation displayed a spherical morphology, an optimum particle size of 234.2 ± 1.65 nm, high entrapment efficiency (87.4% ± 0.84%) and significant sustained drug release compared with the drug solution. In vivo studies highlighted the superior relief of psoriasis symptoms and the ability to maintain healthy skin with the least changes in mRNA expression of inflammatory cytokines, achieved by the developed nanoplatform compared to kojic acid solution. Moreover, the in vivo histopathological studies confirmed the safety of the topically applied spanlastics. In addition, the molecular mechanism was approached through in vitro assessment of cathepsin S and PDE-4 inhibitory activities and in silico investigation of kojic acid docking in several anti-psoriatic drug targets. Our results suggest that a topically applied vesicular system loaded with kojic acid could lead to an expansion in the dermo-cosmetic use of kojic acid as a natural bio-friendly alternative for systemic anti-psoriatic drugs.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Sarhan FA, Soliman ME, Hamza MY, El-Gogary RI. Revolutionizing treatment for topical fungal infections: evaluating penetration-enhancer-containing vesicles as a fluconazole delivery system: Ex-vivo and in-vivo dermal testing. Pharm Dev Technol 2024; 29:814-823. [PMID: 39161985 DOI: 10.1080/10837450.2024.2394573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Fungal infections pose a significant challenge in numerous developing nations and worldwide, necessitating urgent solutions. Oral administration of antifungal medications often leads to severe adverse reactions. Hence, employing topical delivery systems is preferred to ensure efficient dermal delivery of antifungal agents while minimizing side effects. Furthermore, the incorporation of penetration enhancers into nanocarriers loaded with antifungal agents has demonstrated enhanced efficacy in combating mycotic infections. Consequently, ultra-deformable penetration enhancer-containing vesicles (PEVs) were developed to explore this promising approach. In this study, Labrasol® and Transcutol® were used as penetration enhancers in formulating ultra-deformable PEVs containing the antifungal agent Fluconazole (FCZ). The PEVs underwent comprehensive characterization, including measurements of particle size (PS), charge, and entrapment efficiency (EE%). The results revealed that the size of tested PEVs ranged from 100 to 762 nm. All particles exhibited a negative charge, with a minimum zeta potential (ZP) of -38.26 mV, and an intermediate entrapment efficiency (EE%) that reached approximately 40%w/w. Ex-vivo studies demonstrated the ability of PEVs to deliver FCZ to the dermis while minimizing transdermal delivery. The selected formula was tested in-vivo using candidiasis-induced rat model and showed a superiority in its antifungal effect against Candida Albicans compared to the drug control. Stability studies were executed for the selected formula, and revealed good stability shown by the insignificant change in the PS, ZP& EE% over a six-month period.
Collapse
Affiliation(s)
- Fatma A Sarhan
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Department of Pharmaceutics (Physical Properties), Egyptian Drug Authority (EDA) Formerly Known as National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Departement of Pharmaceutics, Egypt-Japan University of Science and Technology (EJUST), Alexandria, Egypt
| | - Manal Yassin Hamza
- Department of Pharmaceutics (Physical Properties), Egyptian Drug Authority (EDA) Formerly Known as National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
M Salah N, Elbedaiwy HM, Helmy MW, El-Salamouni NS. Topical amlodipine-loaded solid lipid nanoparticles for enhanced burn wound healing: A repurposed approach. Int J Pharm 2024; 662:124484. [PMID: 39033942 DOI: 10.1016/j.ijpharm.2024.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Burn wounds are a complicated process with ongoing psychological and physical issues for the affected individuals. Wound healing consists of multifactorial molecular mechanisms and interactions involving; inflammation, proliferation, angiogenesis, and matrix remodeling. Amlodipine (ADB), widely used in cardiovascular disorders, demonstrated antioxidant and anti-inflammatory effects in some non-cardiovascular studies. It was reported that amlodipine is capable of promoting the healing process by regulation of collagen production, extracellular matrix, re-epithelialization and wound healing through its vasodilation and angiogenic activity. The objective of the current study is to appraise the wound healing capacity of amlodipine-loaded SLN (ADB-SLN) integrated into a hydrogel. The in-vitro characterization revealed that the optimized formulation was nanometric (190.4 ± 1.6 nm) with sufficiently high entrapment efficiency (88 % ± 1.4) and sustained ADB release (85.45 ± 4.45 % after 12 h). Furthermore, in-vivo evaluation was conducted on second-degree burns induced in male Sprague-Dawley rats. ADB-SLN gel revealed a high wound contraction rate and a significant improvement in skin regeneration and inflammatory biomarkers levels, confirming its efficiency in enhancing wound healing compared to other tested and commercial formulations. To conclude, the present findings proved that ADB-SLN integrated hydrogel offers a promising novel therapy for burn wound healing with a maximum therapeutic value.
Collapse
Affiliation(s)
- Nada M Salah
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
6
|
Zewail M, Abbas H, El Sayed N, Abd-El-Azim H. Combined photodynamic therapy and hollow microneedle approach for effective non-invasive delivery of hypericin for the management of imiquimod-induced psoriasis. J Drug Target 2024; 32:941-952. [PMID: 38853622 DOI: 10.1080/1061186x.2024.2365930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Conventional topical psoriasis treatments suffer from limited delivery to affected areas and skin irritation due to high local drug concentration. PURPOSE This study aims to prepare hypericin (HYP) loaded nanostructured lipid carriers (NLCs) and their application in psoriasis treatment through intradermal administration using hollow microneedles assisted by photodynamic therapy. METHODS The colloidal characteristics of NLCs, entrapment efficiency and morphology were evaluated. An ex-vivo skin distribution study was conducted along with testing the in vivo antipsoriatic activity in mice with the imiquimod-induced psoriasis model. RESULTS The particle size and zeta potential of HYP-NLCs were 167.70 nm and -18.1, respectively. The ex-vivo skin distribution study demonstrated the superior distribution of HYP-NLCs to a depth of 1480 µm within the skin layers relative to only 750 µm for free HYP. In vivo studies revealed that the levels of NF-KB, IL 6, MMP1, GSH, and catalase in the group treated with HYP-NLCs in the presence of light were comparable to the negative control. CONCLUSIONS The histopathological inspection of dissected skin samples reflected the superiority of HYP-NLCs over HYP ointment. This could be ascribed to the effect of nanoencapsulation on improving HYP properties besides the ability of hollow microneedles to ensure effective HYP delivery to the affected psoriatic area.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
7
|
Lamie C, Elmowafy E, Attia D, Mortada ND. Glucospanlastics: innovative antioxidant and anticancer ascorbyl-2-glucoside vesicles for striking topical performance of repurposed itraconazole. RSC Adv 2024; 14:26524-26543. [PMID: 39175684 PMCID: PMC11339782 DOI: 10.1039/d4ra03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Presently, the development of functional derivatives exploiting biocompatible pharmaceutical materials has become a pressing demand. Among them, ascorbyl-2-glucoside (AA-2G), an ascorbic acid derivative, has significant potential owing to its stability, solubilization and antioxidant prospects. Herein, AA-2G was utilized for the fabrication of itraconazole (ITZ) spanlastics, which were denoted as "glucospanlastics". Subsequently, the newly designed glucospanlastics were characterized to determine their dimensions, charge, entrapment, solubilization efficiency, morphology, stability and antioxidant activity. Further, their cytotoxicity towards A431 cells and their ex vivo skin deposition were investigated. Subsequently, the competence of the formulated cream containing glucospanlastics to suppress Ehrlich carcinoma and modulate the antioxidant profile was evaluated in vivo. The results revealed that the proposed nano-sized glucospanlastics performed better than conventional spanlastics (without AA-2G) with respect to optimal solubilization efficiency and ITZ entrapment (>95%) together with antioxidant, cytotoxic and skin permeation potentials. More importantly, glucospanlastics containing 10 and 20 mg AA-2G demonstrated considerable tumor suppression and necrosis, improvement in glutathione (GSH) content by 1.68- and 2.26-fold, elevation of total antioxidant capacity (TAC) levels by 1.67- and 2.84-fold and 1.78- and 2.03-fold reduction in malondialdehyde (MDA) levels, respectively, compared to a conventional ITZ cream. These innovative antioxidant vesicles show future potential for the dermal delivery of cancer-directed therapies.
Collapse
Affiliation(s)
- Caroline Lamie
- Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt Cairo 11837 Egypt +20-2-26300010/20 +20-2-01111414144
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University London Kingston Upon Thames Surrey KT1 2EE UK
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Monazzamet Elwehda Elafrikeya Street, Abbaseyya Cairo 11566 Egypt
| | - Dalia Attia
- Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt Cairo 11837 Egypt +20-2-26300010/20 +20-2-01111414144
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Monazzamet Elwehda Elafrikeya Street, Abbaseyya Cairo 11566 Egypt
| |
Collapse
|
8
|
Sontakke A, Dighe S, Sharma R, Yadav V, Jain S. Harnessing the potential of fatty Acid-Surfactant-Based micellar gel for enhanced topical delivery of Apremilast in psoriasis treatment. Int J Pharm 2024; 655:124026. [PMID: 38518872 DOI: 10.1016/j.ijpharm.2024.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Apremilast (APR) is a potent anti-psoriatic agent that inhibits the phosphodiesterase 4 enzyme. Due to the poor oral bioavailability and associated systemic side effects the clinical applicability of APR has been constrained. Nanotechnology-based carrier system presents a novel option to increase the efficacy of the topical treatment of APR. The current investigation deals with the development of fatty acid-surfactant conjugate-based hybrid mixed micellar gel (HMMG) for the topical delivery of APR. The developed micelles exhibited an average size of 83.59 ± 4.46 nm, PDI of 0.239 ± 0.047, % entrapment efficiency of ∼ 94.78 ± 3.98 %, with % practical drug loading of ∼11.37 ± 3.14 %. TEM analysis revealed the spherical shape of micelles. The hybrid micelles were further loaded in a carbopol®934P gel base for ease of application. Ex vivo permeation study revealed enhanced permeation and ∼ 38-fold higher retention in deeper layers of skin from a hybrid micellar gel. In vivo, assessment demonstrated augmented efficacy of APR-HMMG as compared to 0.1 % betamethasone valerate. Also, APR-HMMG showed no sign of irritation, suggesting superior safety as a topical application. Thus, the proposed formulation strategy represents a viable avenue for enhancing the therapeutic efficacy of various anti-psoriatic moieties.
Collapse
Affiliation(s)
- Arun Sontakke
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sayali Dighe
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
9
|
Kamal RM, Sabry MM, El-Halawany AM, Rabie MA, El Sayed NS, Hifnawy MS, Younis IY. GC-MS analysis and the effect of topical application of essential oils of Pinus canariensis C.Sm., Cupressus lusitanica Mill. and Cupressus arizonica Greene aerial parts in Imiquimod-Induced Psoriasis in Mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116947. [PMID: 37482262 DOI: 10.1016/j.jep.2023.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, Coniferous plants, in particular Pinus and Cupressus species, have been used in the treatment of burns, skin infections, and immune-mediated inflammatory diseases such as psoriasis. AIM OF THE STUDY A comparative study between essential oils (EOs) extracted from aerial parts of three coniferous plants: Pinus canariensis C.Sm. (PC), Cupressus lusitanica Mill. (CL) and Cupressus arizonica Greene (CA), cultivated in Egypt, was designed to investigate their composition and their anti-psoriasis mechanism. MATERIALS AND METHODS The phytochemical profiles were confirmed using Gas Chromatography-Mass Spectrometry (GC-MS) method. In-vivo Imiquimod (IMQ)-induced psoriasis model was performed and EOs were applied topically and compared to mometasone cream as a standard subsequently histopathological analysis and inflammatory biomarkers were measured. RESULTS In GC-MS analysis, Monoterpene hydrocarbons, sesquiterpene hydrocarbons and oxygenated monoterpenes were the major detected classes in the three plants, except in Pinus canariensis essential oil, oxygenated monoterpenes were absent. A significant attenuation of imiquimod-induced psoriasis symptoms after topical application of P. canariensis C.Sm., and C. lusitanica Mill. essential oils were observed by reducing the psoriasis area severity index (PASI) score, alleviating histopathological alteration, restoring the spleen index, and decreasing serum levels of interleukins 23 and 17A. Indeed, the results of Pinus canariensis essential oil is comparable to mometasone and showed no significant difference from standard treatment. On the other hand, the topical application of C. arizonica essential oil failed to alleviate imiquimod-induced psoriasis symptoms as observed in the PSAI score, the histopathological investigation, and the spleen index. CONCLUSION The essential oils of P. canariensis C.Sm., and C. lusitanica Mill aerial parts could be promising candidates for psoriasis treatment and for further studies on inflammation-related skin diseases.
Collapse
Affiliation(s)
- Rania M Kamal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohamed S Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Inas Y Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
10
|
Wang Y, Tian Z, Huang S, Dang N. Tripterygium wilfordii Hook. F. and Its Extracts for Psoriasis: Efficacy and Mechanism. Drug Des Devel Ther 2023; 17:3767-3781. [PMID: 38144417 PMCID: PMC10749103 DOI: 10.2147/dddt.s439534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Psoriasis is an inflammatory autoimmune skin condition that is clinically marked by chronic erythema and scaling. The traditional Chinese herb Tripterygium wilfordii Hook. F. (TwHF) is commonly used in the treatment of immune-related skin illnesses, such as psoriasis. In clinical studies, PASI (Psoriasis Area and Severity Index) were dramatically decreased by TwHF and its extracts. Their benefits for psoriasis also include relief from psoriasis symptoms such as itching, dryness, overall lesion scores and quality of life. And the pathological mechanisms include anti-inflammation, immunomodulation and potentially signaling pathway modulations, which are achieved by modulating type-3 inflammatory cytokines including IL-22, IL-23, and IL-17 as well as immune cells like Th17 lymphocytes, γδT cells, and interfering with IFN-SOCS1, NF-κB and IL- 36α signaling pathways. TwHF and its extracts may cause various adverse drug reactions, such as gastrointestinal responses, aberrant hepatocytes, reproductive issues, and liver function impairment, but at adequate doses, they are regarded as an alternative therapy for the treatment of psoriasis. In this review, the effectiveness and mechanisms of TwHF and its extracts in psoriasis treatment are elucidated.
Collapse
Affiliation(s)
- Yingchao Wang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zhaochun Tian
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Dadwal N, Amisha, Singh D, Singh A. Quality-by-Design Approach for Investigating the Efficacy of Tacrolimus and Hyaluronic Acid-Loaded Ethosomal Gel in Dermal Management of Psoriasis: In Vitro, Ex Vivo, and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:220. [PMID: 37914839 DOI: 10.1208/s12249-023-02678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Psoriasis is an auto-immune condition with high keratinocyte hyperproliferation due to lower p53 and p22 levels. Tacrolimus, an immune suppressor, is considered one of the most effective drugs in suppressing psoriasis. Systematic administration of tacrolimus often leads to challenging side effects, namely increased infection risk, renal toxicity, neurological symptoms such as tremors and headaches, gastrointestinal disturbances, hypertension, skin-related problems, etc. To address this, a nanocarrier-based formulation of tacrolimus along with inclusion of hyaluronic acid was developed. The optimization and formulation of ethosomes via the ethanol injection technique were done based on the Box-Behnken experimental design. The results revealed hyaluronic acid-based tacrolimus ethosomes (HA-TAC-ETH) had nanometric vesicle size (315.7 ± 2.2 nm), polydispersity index (PDI) (0.472 ± 0.07), and high entrapment efficiency (88.3 ± 2.52%). The findings of drug release and skin permeation showed sustained drug release with increased dermal flux and enhancement ratio. The effectiveness of HA-TAC-ETH was confirmed in an imiquimod (5%)-prompted psoriasis model. The skin irritation score and Psoriasis Area and Severity Index (PASI) score indicated that HA-TAC-ETH gel has validated a decline in the entire factors (erythema, edema, and thickness) in the imiquimod-induced psoriasis model in contrast with TAC-ETH gel and TAC ointment. The fabricated HA-TAC-ETH opt gel proved to be safe and effective in in vivo studies and could be employed to treat psoriasis further.
Collapse
Affiliation(s)
- Nikhil Dadwal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | - Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
- University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
12
|
Yu N, Wang J, Liu Y, Guo Y. Investigating the gut microbiota's influence on psoriasis and psoriatic arthritis risk: a Mendelian randomization analysis. PRECISION CLINICAL MEDICINE 2023; 6:pbad023. [PMID: 38025973 PMCID: PMC10680138 DOI: 10.1093/pcmedi/pbad023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023] Open
Abstract
Background Numerous investigations have revealed the interplay between gut microbiota (GM) and psoriasis (Ps) and psoriatic arthritis (PsA). However, the causal relationship between them remains unknown. Methods We curated a collection of genetic variants (P < 1 × 10-5) associated with GM (n = 18 340) derived from the MiBioGen study. To explore the intricate relationship between GM and Ps as well as PsA, we harnessed the comprehensive resources of the FinnGen database, encompassing a vast cohort of individuals, including 4510 Ps cases and 212 242 controls and 1637 PsA cases and 212 242 controls. Mendelian randomization (MR) was used, including an inverse variance weighting method, followed by a sensitivity analysis to verify the robustness of the results. Results For Ps, some bacterial taxa, including Lactococcus, Ruminiclostridium 5, and Eubacterium fissicatena, were identified as risk factors; but Odoribacter demonstrated a protective effect against Ps. In the case of PsA, Lactococcus, Verrucomicrobiales, Akkermansia, Coprococcus 1, and Verrucomicrobiaceae were identified as risk factors; Odoribacter and Rikenellaceae exhibited a protective effect against the development of PsA. Conclusion Our study establishes a causal link between the GM and Ps and PsA. These findings provide insights into the underlying mechanisms and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Nianzhou Yu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiayi Wang
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Yuancheng Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yeye Guo
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
13
|
Zhao K, Pu S, Sun L, Zhou D. Gentiopicroside-Loaded Chitosan Nanoparticles Inhibit TNF-α-Induced Proliferation and Inflammatory Response in HaCaT Keratinocytes and Ameliorate Imiquimod-Induced Dermatitis Lesions in Mice. Int J Nanomedicine 2023; 18:3781-3800. [PMID: 37457802 PMCID: PMC10348341 DOI: 10.2147/ijn.s406649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose In this study, we aimed to report the biological characteristics of the first successful synthesis of gentiopicroside-loaded chitosan nanoparticles and to evaluate the therapeutic effects and preliminary mechanisms of gentiopicrin-loaded chitosan on psoriasis-like cell and mouse models. Methods Gentiopicroside-loaded chitosan nanoparticles (CHI-GEN) were prepared, and their biological characteristics were evaluated. HaCaT keratinocytes were stimulated with TNF-α to establish a psoriatic keratinocyte model. MTT assay and flow cytometry were used to measure cell viability and apoptosis, respectively. mRNA levels of K17, VEGF A, and IL-6 and IL-23A were detected using qRT-PCR. These tests were used to preliminarily assess the effects of CHI-GEN on keratinocyte proliferation and inflammation. Imiquimod was used to construct a psoriasis-like mice model. The severity of psoriasis was scored based on the psoriasis area severity index (PASI), H&E staining was used to observe the histological changes and the level of inflammation and cell proliferation of skin lesions was evaluated by measuring the mRNA levels of K17, IL-23A, and IL-17A using qRT-PCR. Results The average particle size of CHI-GEN nanoparticles was approximately 100 nm, and the zeta potential was 2.69 ± 0.87 mV. The cumulative release was 67.2% in solutions of pH 5.5 at 24 h. GEN reduced TNF-α-induced excessive proliferation of HaCaT keratinocytes and downregulated mRNA levels of K17, VEGF A, and inflammatory cytokines IL-6 and IL-23A, which was more obvious in the CHI-GEN treatment group. Additionally, CHI-GEN significantly improved the severity of skin lesions in psoriasis-like mice and downregulated the mRNA expressions of IL-6, IL-23A, and IL-17A in mice skin lesions. Conclusion In conclusion, we successfully prepared gentiopicrin-chitosan nanoparticles. Our results show that these nanoparticles have anti-psoriasis activity, inhibits keratinocyte proliferation and improves symptoms in psoriasis model mice and can be used to develop an effective strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| | - Siqi Pu
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Liyun Sun
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| | - Dongmei Zhou
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| |
Collapse
|
14
|
Słuczanowska-Głabowska S, Salmanowicz M, Staniszewska M, Pawlik A. The Role of Sirtuins in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:10782. [PMID: 37445960 DOI: 10.3390/ijms241310782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Psoriasis is the most common chronic inflammatory skin disease with a genetic basis. It is characterised by keratinocyte hyperproliferation, parakeratosis and inflammatory cell infiltration. Psoriasis negatively affects a patient's physical and emotional quality of life. Sirtuins (SIRTs; silent information regulators) are an evolutionarily conserved group of enzymes involved in the post-translational modification of proteins, including deacetylation, polyADP-ribosylation, demalonylation and lipoamidation. SIRTs are involved in a number of cellular pathways related to ageing, inflammation, oxidative stress, epigenetics, tumorigenesis, the cell cycle, DNA repair and cell proliferation, positioning them as an essential component in the pathogenesis of many diseases, including psoriasis. Activation of SIRT1 counteracts oxidative-stress-induced damage by inhibiting the mitogen-activated protein kinases (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways and may mitigate pathological events in psoriasis. There is a significant reduction in the expression of SIRT1, SIRT2, SIRT3, SIRT4 and SIRT5 and an increase in the expression of SIRT6 and SIRT7 in psoriasis. The aim of the review is to draw the attention of physicians and scientists to the importance of SIRTs in dermatology and to provide a basis and impetus for future discussions, research and pharmacological discoveries to modulate SIRT activity. In light of the analysis of the mode of action of SIRTs in psoriasis, SIRT1-SIRT5 agonists and SIRT6 and SIRT7 inhibitors may represent new therapeutic options for the treatment of psoriasis.
Collapse
Affiliation(s)
| | - Maria Salmanowicz
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Marzena Staniszewska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| |
Collapse
|
15
|
Kadagothy H, Nene S, Amulya E, Vambhurkar G, Rajalakshmi AN, Khatri DK, Singh SB, Srivastava S. Perspective insights of small molecules, phytoconstituents and biologics in the management of psoriasis: A focus on targeting major inflammatory cytokine pathways. Eur J Pharmacol 2023; 947:175668. [PMID: 36958476 DOI: 10.1016/j.ejphar.2023.175668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Psoriasis is an enduring, pruritic and papulosquamous skin ailment that poses a significant burden on public health. It is mainly characterized by hyperkeratosis, acanthosis, parakeratosis, scaly and erythematous plaques. Biomarkers like interleukin-17, interleukin-12 and -23 and tumor necrosis factor-α serve as key drivers of psoriatic pathogenesis. Triggered release of pro-inflammatory cytokines from various up-regulated pathways leads to psoriatic inflammation. Several target moieties like biologics, small molecules and herbal moieties play a fundamental role in the repression of pathogenesis of psoriasis. Biologics and small molecules engaged in the management of psoriasis have been emphasized in detail. An insight into nano-carrier interventions on herbal moieties and clinical aspects of psoriasis are also highlighted. This review emphasizes various pathological targets involved in psoriasis.
Collapse
Affiliation(s)
- Husna Kadagothy
- Department of Pharmaceutics, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, India
| | - Shweta Nene
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - A N Rajalakshmi
- Department of Pharmaceutics, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
16
|
Moudgil KD, Venkatesha SH. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci 2022; 24:95. [PMID: 36613560 PMCID: PMC9820125 DOI: 10.3390/ijms24010095] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammation is an integral part of autoimmune diseases, which are caused by dysregulation of the immune system. This dysregulation involves an imbalance between pro-inflammatory versus anti-inflammatory mediators. These mediators include various cytokines and chemokines; defined subsets of T helper/T regulatory cells, M1/M2 macrophages, activating/tolerogenic dendritic cells, and antibody-producing/regulatory B cells. Despite the availability of many anti-inflammatory/immunomodulatory drugs, the severe adverse reactions associated with their long-term use and often their high costs are impediments in effectively controlling the disease process. Accordingly, suitable alternatives are being sought for these conventional drugs. Natural products offer promising adjuncts/alternatives in this regard. The availability of specific compounds isolated from dietary/medicinal plant extracts have permitted rigorous studies on their disease-modulating activities and the mechanisms involved therein. Here, we describe the basic characteristics, mechanisms of action, and preventive/therapeutic applications of 5 well-characterized natural product compounds (Resveratrol, Curcumin, Boswellic acids, Epigallocatechin-3-gallate, and Triptolide). These compounds have been tested extensively in animal models of autoimmunity as well as in limited clinical trials in patients having the corresponding diseases. We have focused our description on predominantly T cell-mediated diseases, such as rheumatoid arthritis, multiple sclerosis, Type 1 diabetes, ulcerative colitis, and psoriasis.
Collapse
Affiliation(s)
- Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Vita Therapeutics, Baltimore, MD 21201, USA
| |
Collapse
|