1
|
Hada S, Shin IJ, Park HE, Kim KH, Kim KJ, Jeong SH, Kim NA. In-use stability of Rituximab and IVIG during intravenous infusion: Impact of peristaltic pump, IV bags, flow rate, and plastic syringes. Int J Pharm 2024; 663:124577. [PMID: 39137820 DOI: 10.1016/j.ijpharm.2024.124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
This study investigates the impact of intravenous (IV) infusion protocols on the stability of Intravenous Immunoglobulin G (IVIG) and Rituximab, with a particular focus on subvisible particle generation. Infusion set based on peristaltic movement (Medifusion DI-2000 pump) was compared to a gravity-based infusion system (Accu-Drip) at different flow rates. The impacts of different diluents (0.9 % saline and 5.0 % dextrose) and plastic syringes with or without silicone oil (SO) were also investigated. The results from the aforementioned particular case demonstrated that peristaltic pumps generated high levels of subvisible particles (prominently < 25 µm), exacerbated by increasing flow rates, specifically in formulations lacking surfactants. Other factors, such as diluent type and syringe composition, also increased the number of subvisible particles. Strategies that can help overcome these complications include surfactant addition as well as the use of SO-free syringes and a gravity infusion system, which aid in reducing particle formation and preserving antibody monomer during administration. Altogether, these findings highlight the importance of the careful selection of formulations and infusion protocols to minimize particle generation during IV infusion both for patients' safety and treatment efficacy.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - I Jeong Shin
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ha Eun Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ki Hyun Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Kwang Joon Kim
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Nam Ah Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
2
|
Adler M, Allmendinger A. Filling Unit Operation for Biological Drug Products: Challenges and Considerations. J Pharm Sci 2024; 113:332-344. [PMID: 37992868 DOI: 10.1016/j.xphs.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
One of the key unit operations during the aseptic fill-finish process of parenteral products, such as biologics, is the filling process of the formulated, sterile filtered drug substance into primary packaging containers. The applied filling technology as well as the process performance majorly impacts final drug product quality. The present review provides an overview of commonly used filling technologies during fill-finish operations of biologics including positive displacement pump systems such as radial peristaltic pump, rotary piston pump, rolling diaphragm pump, or innovative systems such as the linear peristaltic pump, as well as time-over-pressure filling technology. The article describes the operating principle of each pump system and reviews advantages and drawbacks. We highlight specific considerations for individual systems, such as the risk of protein particle formation and particle shedding from wear and tear of tubing, and discuss current literature about general challenges associated with the filling process, such as hydrogen peroxide uptake, adsorption phenomena to tubing material, and needle clogging. We suggest process development and process characterization studies to assess the impact of the filling process on product quality, and lastly provide an outlook about the use of disposable equipment during filling operations related to sustainability considerations.
Collapse
Affiliation(s)
- Michael Adler
- ten23 health AG, Mattenstr. 22, 4058 Basel, Switzerland
| | - Andrea Allmendinger
- ten23 health AG, Mattenstr. 22, 4058 Basel, Switzerland; Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Fanthom TB, Wilson C, Gruber D, Bracewell DG. Solid-Solid Interfacial Contact of Tubing Walls Drives Therapeutic Protein Aggregation During Peristaltic Pumping. J Pharm Sci 2023; 112:3022-3034. [PMID: 37595747 DOI: 10.1016/j.xphs.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Peristaltic pumping during bioprocessing can cause therapeutic protein loss and aggregation during use. Due to the complexity of this apparatus, root-cause mechanisms behind protein loss have been long sought. We have developed new methodologies isolating various peristaltic pump mechanisms to determine their effect on monomer loss. Closed-loops of peristaltic tubing were used to investigate the effects of peristaltic pump parameters on temperature and monomer loss, whilst two mechanism isolation methodologies are used to isolate occlusion and lateral expansion-relaxation of peristaltic tubing. Heat generated during peristaltic pumping can cause heat-induced monomer loss and the extent of heat gain is dependent on pump speed and tubing type. Peristaltic pump speed was inversely related to the rate of monomer loss whereby reducing speed 2.0-fold increased loss rates by 2.0- to 5.0-fold. Occlusion is a parameter that describes the amount of tubing compression during pumping. Varying this to start the contacting of inner tubing walls is a threshold that caused an immediate 20-30% additional monomer loss and turbidity increase. During occlusion, expansion-relaxation of solid-liquid interfaces and solid-solid interface contact of tubing walls can occur simultaneously. Using two mechanisms isolation methods, the latter mechanism was found to be most destructive and a function of solid-solid contact area, where increasing the contact area 2.0-fold increased monomer loss by 1.6-fold. We establish that a form of solid-solid contact mechanism whereby the contact solid interfaces disrupt adsorbed protein films is the root-cause behind monomer loss and protein aggregation during peristaltic pumping.
Collapse
Affiliation(s)
- Thomas B Fanthom
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher Wilson
- Ipsen Biopharm, 9 Ash Road North, Wrexham Industrial Estate, Wales, LL13 9UF, UK
| | - David Gruber
- Ipsen Biopharm, 9 Ash Road North, Wrexham Industrial Estate, Wales, LL13 9UF, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Fares HM, Carnovale M, Tabouguia MON, Jordan S, Katz JS. Novel Surfactant Compatibility with Downstream Protein Bioprocesses. J Pharm Sci 2023; 112:1811-1820. [PMID: 37094665 DOI: 10.1016/j.xphs.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Downstream processing of antibodies consists of a series of steps aimed at purifying the product and ensuring it is delivered to formulators structurally and functionally intact. The process can be complex and time-consuming, involving multiple filtrations, chromatography, and buffer exchange steps that can interfere with product integrity. This study explores the possibility and benefits of adding N-myristoyl phenylalanine polyether amine diamide (FM1000) as a process aid. FM1000 is a nonionic surfactant that is highly effective at stabilizing proteins against aggregation and particle formation and has been extensively explored as a novel excipient for antibody formulations. In this work, FM1000 is shown to stabilize proteins against pumping-induced aggregation which can occur while transporting them between process units and within certain processes. It is also shown to prevent antibody fouling of multiple polymeric surfaces. Furthermore, FM1000 can be removed after some steps and during buffer exchange in ultrafiltration/diafiltration, if needed. Additionally, FM1000 was compared to polysorbates in studies focusing on surfactant retention on filters and columns. While the different molecular entities of polysorbates elute at different rates, FM1000 flows through purification units as a single molecule and at a faster rate. Overall, this work defines new areas of application for FM1000 within downstream processing and presents it as a versatile process aid, where its addition and removal are tunable depending on the needs of each product.
Collapse
Affiliation(s)
- Hadi M Fares
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Miriam Carnovale
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Megane O N Tabouguia
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Susan Jordan
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Joshua S Katz
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803.
| |
Collapse
|
5
|
Hada S, Ji S, Na Lee Y, Hyun Kim K, Maharjan R, Ah Kim N, Rantanen J, Hoon Jeong S. Comparative study between a gravity-based and peristaltic pump for intravenous infusion with respect to generation of proteinaceous microparticles. Int J Pharm 2023:123091. [PMID: 37268032 DOI: 10.1016/j.ijpharm.2023.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Subvisible particles generated during the preparation or administration of biopharmaceuticals might increase the risk of immunogenicity, inflammation, or organ dysfunction. To investigate the impact of an infusion system on the level of subvisible particles, we compared two types of infusion set based on peristaltic movement (Medifusion DI-2000 pump) and a gravity-based infusion system (Accu-Drip) using intravenous immunoglobulin (IVIG) as a model drug. The peristaltic pump was found to be more susceptible to particle generation compared to the gravity infusion set owing to the stress generated due to constant peristaltic motion. Moreover, the 5-µm in-line filter integrated into the tubing of the gravity-based infusion set further contributed to the reduction of particles mostly in the range ≥ 10 µm. Furthermore, the filter was also able to maintain the particle level even after the pre-exposure of samples to silicone oil lubricated syringes, drop shock, or agitation. Overall, this study suggests the need for the selection of an appropriate infusion set equipped with an in-line filter based on the sensitivity of the product.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Sunkyong Ji
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ye Na Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ravi Maharjan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Nam Ah Kim
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
6
|
Deiringer N, Leitner I, Friess W. Effect of the Tubing Material Used in Peristaltic Pumping in Tangential Flow Filtration Processes of Biopharmaceutics on Particle Formation and Flux. J Pharm Sci 2023; 112:665-672. [PMID: 36220395 DOI: 10.1016/j.xphs.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 02/18/2023]
Abstract
Tangential flow filtration (TFF) is a central step in manufacturing of biopharmaceutics. Membrane clogging leads to decreased permeate flux, longer process time and potentially complete failure of the process. The effect of peristaltic pumping with tubings made of three different materials on protein particle formation during TFF was monitored via micro flow imaging, turbidity and photo documentation. At low protein concentrations, pumping with a membrane pump resulted in a stable flux with low protein particle concentration. Using a peristaltic pump led to markedly higher protein particle formation dependent on tubing type. With increasing protein particle formation propensity of the tubing, the permeate flux rate became lower and the process took longer. The protein particles formed in the pump were captured in the cassette and accumulated on the membrane leading to blocking. Using tubing with a hydrophilic copolymer modification counteracted membrane clogging and flux decrease by reducing protein particle formation. In ultrafiltration mode the permeate flux decrease was governed by the viscosity increase rather than by the protein aggregation; but using modified tubing is still beneficial due to a lower particle burden of the product. In summary, using tubing material for peristaltic pumping in TFF processes which leads a less protein particle formation, especially tubing material with hydrophilic modification, is highly beneficial for membrane flux and particle burden of the product.
Collapse
Affiliation(s)
- Natalie Deiringer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Imke Leitner
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
7
|
Deiringer N, Friess W. Afraid of the wall of death? Considerations on monoclonal antibody characteristics that trigger aggregation during peristaltic pumping. Int J Pharm 2023; 633:122635. [PMID: 36690131 DOI: 10.1016/j.ijpharm.2023.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Protein aggregation is of major concern in manufacturing of biopharmaceutics. Protein aggregation upon peristaltic pumping for filtration, transfer or filling is triggered by protein adsorption to the tubing surface and subsequent film rupture during roller movement. While the impact of tubing type and formulation has been studied in more detail, the contribution of the protein characteristics is not fully resolved. We studied the aggregation propensity of six monoclonal antibodies during peristaltic pumping and characterized their colloidal and conformational stability, hydrophobicity, and surface activity. A high affinity to the surface resulting in faster adsorption and film renewal was key for the formation of protein particles ≥ 1 µm. Film formation and renewal were influenced by the antibody hydrophobicity, potential for electrostatic self-interaction and conformational stability. The initial interfacial pressure increase within the first minute can serve as a good predictor for antibody adsorption and particle formation propensity. Our results highlight the complexity of protein adsorption and emphasize the importance of formulation development to reduce protein particle formation by avoidance of adsorption to interfaces.
Collapse
Affiliation(s)
- Natalie Deiringer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Kopp MRG, Grigolato F, Zürcher D, Das TK, Chou D, Wuchner K, Arosio P. Surface-Induced Protein Aggregation and Particle Formation in Biologics: Current Understanding of Mechanisms, Detection and Mitigation Strategies. J Pharm Sci 2023; 112:377-385. [PMID: 36223809 DOI: 10.1016/j.xphs.2022.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 01/12/2023]
Abstract
Protein stability against aggregation is a major quality concern for the production of safe and effective biopharmaceuticals. Amongst the different drivers of protein aggregation, increasing evidence indicates that interactions between proteins and interfaces represent a major risk factor for the formation of protein aggregates in aqueous solutions. Potentially harmful surfaces relevant to biologics manufacturing and storage include air-water and silicone oil-water interfaces as well as materials from different processing units, storage containers, and delivery devices. The impact of some of these surfaces, for instance originating from impurities, can be difficult to predict and control. Moreover, aggregate formation may additionally be complicated by the simultaneous presence of interfacial, hydrodynamic and mechanical stresses, whose contributions may be difficult to deconvolute. As a consequence, it remains difficult to identify the key chemical and physical determinants and define appropriate analytical methods to monitor and predict protein instability at these interfaces. In this review, we first discuss the main mechanisms of surface-induced protein aggregation. We then review the types of contact materials identified as potentially harmful or detected as potential triggers of proteinaceous particle formation in formulations and discuss proposed mitigation strategies. Finally, we present current methods to probe surface-induced instabilities, which represent a starting point towards assays that can be implemented in early-stage screening and formulation development of biologics.
Collapse
Affiliation(s)
- Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Deiringer N, Aleshkevich S, Müller C, Friess W. Modification of Tubings for Peristaltic Pumping of Biopharmaceutics. J Pharm Sci 2022; 111:3251-3260. [PMID: 36058256 DOI: 10.1016/j.xphs.2022.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Protein particle formation during peristaltic pumping of biopharmaceuticals is due to protein film formation on the inner tubing surface followed by rupture of the film by the roller movement. Protein adsorption can be prevented by addition of surfactants as well as by increasing the hydrophilicity of the inner surface. Attempts based on covalent surface coating were mechanically not stable against the stress of roller movement. We successfully incorporated surface segregating smart polymers based on a polydimethylsiloxane (PDMS) backbone and polyethylene glycol (PEG) side blocks in the tubing wall matrix. For this we applied an easy, reproducible and cost-effective process based on soaking of tubing in toluene containing the PDMS-PEG copolymer. With this tubing modification we could drastically reduce protein particle formation during peristaltic pumping of a monoclonal antibody and human growth hormone (HGH) formulation in silicone and thermoplastic elastomer-based tubing. The modification did not impact the tubing integrity during pumping while hydrophilicity was increased and protein adsorption was prevented. Free PDMS-PEG copolymer might have an additional stabilizing effect, but less than 50 ppm of the PDMS-PEG copolymer leached from the modified tubing during 1 h of pumping in the experimental setup. In summary, we present a new method for the modification of tubings which reduces protein adsorption and particle formation during any operation involving peristaltic pumping, e.g. transfer, filling, or tangential flow filtration.
Collapse
Affiliation(s)
- Natalie Deiringer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sofya Aleshkevich
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
10
|
Thite NG, Ghazvini S, Wallace N, Feldman N, Calderon CP, Randolph TW. Machine Learning Analysis Provides Insight into Mechanisms of Protein Particle Formation Inside Containers During Mechanical Agitation. J Pharm Sci 2022; 111:2730-2744. [PMID: 35835184 PMCID: PMC9481670 DOI: 10.1016/j.xphs.2022.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
Container choice can influence particle generation within protein formulations. Incompatibility between proteins and containers can manifest as increased particle concentrations, shifts in particle size distributions and changes in particle morphology distributions. In this study, flow imaging microscopy (FIM) combined with machine learning-based goodness-of-fit hypothesis testing algorithms were used in accelerated stability studies to investigate the impact of containers on particle formation. Containers in four major container categories subdivided into eleven container types were filled with monoclonal antibody formulations and agitated with and without headspace, producing subvisible particles. Digital images of the particles were recorded using flow imaging microscopy and analyzed with machine learning algorithms. Particle morphology distributions depended on container category and type, revealing differences that would not have been obvious by analysis of particle concentrations or container surface characteristics alone. Additionally, the algorithm was used to compare morphologies of particles generated in containers against those generated using isolated stresses at air-liquid and container-air-liquid interfaces. These comparisons showed that the morphology distributions of particles formed during agitation most closely resemble distributions that result from exposure of proteins to moving triple interface lines at points where container-air-liquid interfaces intersect. The approach described here can be used to identify dominant causes of particle generation due to protein-container interactions.
Collapse
Affiliation(s)
- Nidhi G Thite
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Saba Ghazvini
- AstraZeneca Gaithersburg, Maryland 20878, United States
| | | | - Naomi Feldman
- AstraZeneca Gaithersburg, Maryland 20878, United States
| | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States; Ursa Analytics, Denver, CO 80212, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
11
|
Deiringer N, Frieß W. Reaching the breaking point: Effect of tubing characteristics on protein particle formation during peristaltic pumping. Int J Pharm 2022; 627:122216. [PMID: 36179929 DOI: 10.1016/j.ijpharm.2022.122216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Peristaltic pumping has been identified as a cause for protein particle formation during manufacturing of biopharmaceuticals. To give advice on tubing selection, we evaluated the physicochemical parameters and the propensity for tubing and protein particle formation using a monoclonal antibody (mAb) for five different tubings. After pumping, particle levels originating from tubing and protein differed substantially between the tubing types. An overall low shedding of tubing particles by wear was linked to low surface roughness and high abrasion resistance. The formation of mAb particles upon pumping was dependent on the tubing hardness and surface chemistry. Defined stretching of tubing filled with mAb solution revealed that aggregation increased with higher strain beyond the breaking point of the protein film adsorbed to the tubing wall. This is in line with the decrease in protein particle concentration with increasing tubing hardness. Furthermore, material composition influenced particle formation propensity. Faster adsorption to materials with higher hydrophobicity is suspected to lead to a higher protein film renewal rate resulting in higher protein particle counts. Overall, silicone tubing with high hardness led to least protein particles during peristaltic pumping. Results from this study emphasize the need of proper tubing selection to minimize protein particle generation upon pumping.
Collapse
Affiliation(s)
- Natalie Deiringer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|