1
|
Cheng Z, Wang P, Liu L, Chen Q, Guo J. Comparative analysis and mechanistic insights into polysorbate 80 stability differences in biopharmaceutical buffer systems. Eur J Pharm Biopharm 2024:114521. [PMID: 39383974 DOI: 10.1016/j.ejpb.2024.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Polysorbate 80 (PS80) is a non-ionic surfactant extensively utilized in biopharmaceutical formulations for stabilizing proteins. However, PS80 degradation has become a widespread concern throughout the industry over the past decade. In this work, the impact of most frequently employed pH/buffer systems on the stability of PS80 was assessed. PS80 degraded fastest in histidine buffer, followed by acetate and succinate buffers, whereas it remained stable in citrate, phosphate and tris buffers. When there was PS80 degradation, the extent of degradation was found to be pH-dependent. The predominant degradation pathway was oxidation mainly triggered by metal ions. The varying stability of PS80 across different pH/buffer systems was attributed to the role of buffer agents, which can either promote or inhibit the oxidation process through their interactions with metal ions. Specifically, buffers except histidine exhibited metal ion chelation similar to ethylenediaminetetraacetic acid (EDTA), which can suppress the oxidation of PS80, although the effectiveness of chelation varies to different extents. Furthermore, the binding capacity appeared stronger at higher pH in acetate and succinate buffers. Conversely, histidine was reported to form pro-oxidant complexes with metal ions to accelerate PS80 degradation, especially at higher pH levels. Our work for the first time offers a comprehensive understanding of PS80 oxidation in biopharmaceutical buffer systems. This provides a strong foundation for buffer and excipient selection in parenteral formulations.
Collapse
Affiliation(s)
- Zhuan Cheng
- WuXi Biologics, Waigaoqiao Free Trade Zone, 299 Fute Zhong Road, Shanghai 200131, China
| | - Pengzhen Wang
- WuXi Biologics, Waigaoqiao Free Trade Zone, 299 Fute Zhong Road, Shanghai 200131, China
| | - Luting Liu
- WuXi Biologics, Waigaoqiao Free Trade Zone, 299 Fute Zhong Road, Shanghai 200131, China
| | - Quanmin Chen
- WuXi Biologics, Waigaoqiao Free Trade Zone, 299 Fute Zhong Road, Shanghai 200131, China
| | - Jeremy Guo
- WuXi Biologics, Waigaoqiao Free Trade Zone, 299 Fute Zhong Road, Shanghai 200131, China.
| |
Collapse
|
2
|
Desai KG, Sofa C, Wang N, Mandal B, Blockus B, Heacock N, Colandene JD. Feasibility of Laboratory Equipment-Based Simulation Methods to Assess the Impact of Vehicle Transportation on Product Quality of mAb Dosing Solutions. Mol Pharm 2024; 21:4726-4746. [PMID: 39141808 DOI: 10.1021/acs.molpharmaceut.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Therapeutic monoclonal antibody (mAb) products for intravenous (IV) administration generally require aseptic compounding with a commercially available diluent. When the administration site is located away from the preparation site, the prepared dosing solution may need to be transported in a vehicle. The impact of vehicle transportation on the product quality of mAbs needs to be evaluated to define safe handling and transportation conditions for dosing solutions. The design and execution of actual vehicle transportation studies require considerable resources and time. In this study, we systematically developed three different laboratory equipment-based methods that simulate vehicle transportation stresses: orbital shaker (OS), reciprocating shaker (RS), and vibration test system (VTS)-based simulation methods. We assessed their feasibility by comparing the impact on product quality caused by each simulated method with that caused by actual vehicle transportation. Without residual polysorbate 80 (PS80) in the mAb dosing solution, transportation via a cargo van led to a considerable increase in the subvisible particle counts and did not meet the compendial specifications for the light obscuration method. However, the presence of as low as 0.0004%w/v (4 ppm) PS80 in the dosing solution stabilized the mAb against vehicle transportation stresses and met the compendial specifications. Vehicle transportation of an IV bag with headspace resulted in negligible micro air bubbles and foaming in both PS80-free and PS80-containing mAb dosing solutions. These phenomena were found to be comparable to the VTS-based simulated method. However, the OS- and RS-based simulated methods formed significantly more micro air bubbles and foaming in an IV bag with headspace than either actual vehicle transportation or the VTS-based simulated method. Despite the higher interfacial stress (micro air bubbles and foaming) in the dosing solution created by the OS- and RS-based simulated methods, 0.0004%w/v (4 ppm) PS80 in the dosing solution was found to be sufficient to stabilize the mAb. The study shows that under appropriate simulated conditions, the OS-, RS-, and VTS-based simulated methods can be used as practical and meaningful models to assess the impact and risk of vehicle transportation on the quality of mAb dosing solutions.
Collapse
Affiliation(s)
- Kashappa Goud Desai
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Cait Sofa
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Ning Wang
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Bivash Mandal
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Brendan Blockus
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Nathan Heacock
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - James D Colandene
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
3
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
4
|
Escobar ELN, Vaclaw MC, Lozenski JT, Dhar P. Using Passive Microrheology to Measure the Evolution of the Rheological Properties of NIST mAb Formulations during Adsorption to the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4789-4800. [PMID: 38379175 DOI: 10.1021/acs.langmuir.3c03658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The development of novel protein-based therapeutics, such as monoclonal antibodies (mAbs), is often limited due to challenges associated with maintaining the stability of these formulations during manufacturing, storage, and clinical administration. An undesirable consequence of the instability of protein therapeutics is the formation of protein particles. MAbs can adsorb to interfaces and have the potential to undergo partial unfolding as well as to form viscoelastic gels. Further, the viscoelastic properties may be correlated with their aggregation potential. In this work, a passive microrheology technique was used to correlate the evolution of surface adsorption with the evolution of surface rheology of the National Institute of Standards and Technology (NIST) mAb reference material (NIST mAb) and interface-induced subvisible protein particle formation. The evolution of the surface adsorption and interfacial shear rheological properties of the NIST mAb was recorded in four formulation conditions: two different buffers (histidine vs phosphate-buffered saline) and two different pHs (6.0 and 7.6). Our results together demonstrate the existence of multiple stages for both surface adsorption and surface rheology, characterized by an induction period that appears to be purely viscous, followed by a sharp increase in protein molecules at the interface when the film rheology is viscoelastic and ultimately a slowdown in the surface adsorption that corresponds to the formation of solid-like or glassy films at the interface. When the transitions between the different stages occurred, they were dependent on the buffer/pH of the formulations. The onset of these transitions can also be correlated to the number of protein particles formed at the interface. Finally, the addition of polysorbate 80, an FDA-approved surfactant used to mitigate protein particle formation, led to the interface being surfactant-dominated, and the resulting interface remained purely viscous.
Collapse
Affiliation(s)
- Estephanie Laura Nottar Escobar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - M Coleman Vaclaw
- Bioengineering Program, School of Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Joseph T Lozenski
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Markus T, Lumer J, Stasavage R, Ruffner DB, Philips LA, Cheong FC. Monitoring polysorbate 80 degradation in protein solutions using Total Holographic Characterization. Int J Pharm 2024; 652:123843. [PMID: 38266941 DOI: 10.1016/j.ijpharm.2024.123843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The degradation of polysorbate surfactants can limit the shelf life of biologic pharmaceutical products. Polysorbate is susceptible to degradation via either oxidation or hydrolysis pathways which releases free fatty acids (FFA) and other complex polymers. Degradants from Polysorbate 80 (PS80) can form particles and impact drug product quality. PS80 degradation products appear at low concentrations, and their refractive indexes are similar to that of the buffer, making them very challenging to detect. Furthermore, aggregates of FFA are similar in size and refractive index to protein aggregates adding complexity to characterizing these particles in protein solutions. Total Holographic Characterization (THC) is used in this work to characterize FFA particles of oleic acid and linoleic acid, the two most common degradation products of PS80. We demonstrate that the characteristic THC profile of the FFA oleic acid emulsion droplets can be used to monitor the degradation of PS80. THC can detect oleic acid at a concentration down to less than 100 ng/mL. Using the characteristic THC signal of oleic acid as a marker, the degradation of PS80 in protein solutions can be monitored quantitatively even in the presence of other contaminants of the same size, including silicone oil emulsion droplets and protein aggregates.
Collapse
Affiliation(s)
| | - Juliana Lumer
- Spheryx Inc., 330 East 38th Street, 48J, NY, 10016, USA
| | | | | | | | | |
Collapse
|
6
|
Escobar ELN, Griffin VP, Dhar P. Correlating Surface Activity with Interface-Induced Aggregation in a High-Concentration mAb Solution. Mol Pharm 2024; 21:1490-1500. [PMID: 38385557 DOI: 10.1021/acs.molpharmaceut.3c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Interface-induced aggregation resulting in protein particle formation is an issue during the manufacturing and storage of protein-based therapeutics. High-concentration formulations of therapeutic proteins are even more prone to protein particle formation due to increased protein-protein interactions. However, the dependence of interface-induced protein particle formation on bulk protein concentration is not understood. Furthermore, the formation of protein particles is often mitigated by the addition of polysorbate-based surfactants. However, the details of surfactant-protein interactions that prevent protein particle formation at high concentrations remain unclear. In this work, a tensiometer technique was used to evaluate the surface pressure of an industrially relevant mAb at different bulk concentrations, and in the absence and presence of a polysorbate-based surfactant, polysorbate 20 (PS20). The adsorption kinetics was correlated with subvisible protein particle formation at the air-water interface and in the bulk protein solution using a microflow imaging technique. Our results showed that, in the absence of any surfactant, the number of subvisible particles in the bulk protein solutions increased linearly with mAb concentration, while the number of protein particles measured at the interface showed a logarithmic dependence on bulk protein concentration. In the presence of surfactants above the critical micelle concentration (CMC), our results for low-concentration mAb solutions (10 mg/mL) showed an interface that is surfactant-dominated, and particle characterization results showed that the addition of the surfactant led to reduced particle formation. In contrast, for the highest concentration (170 mg/mL), coadsorption of proteins and surfactants was observed at the air-water interface, even for surfactant formulations above CMC and the surfactant did not mitigate subvisible particle formation. Our results taken together provide evidence that the ratio between the surfactant and mAb molecules is an important consideration when formulating high-concentration mAb therapeutics to prevent unwanted aggregation.
Collapse
Affiliation(s)
- Estephanie L N Escobar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Valerie P Griffin
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Sutton AT, Rustandi RR. Determining the Oxidation Mechanism through Radical Intermediates in Polysorbates 80 and 20 by Electron Paramagnetic Resonance Spectroscopy. Pharmaceuticals (Basel) 2024; 17:233. [PMID: 38399448 PMCID: PMC10892813 DOI: 10.3390/ph17020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Polysorbates 20 and 80 (PS20 and PS80) are added to many commercial biologic and vaccine pharmaceuticals. It is commonly known that these polysorbates undergo a radical oxidation mechanism; however, the identity of these radical intermediates has not been clearly determined. Furthermore, PS20 and PS80 differ by the presence of a lauric acid instead of an oleic acid, respectively. The oxidation of PS80 is thought to be centered around the double bond of the oleic acid even though PS20 also undergoes oxidation, making the mechanism of oxidation unclear for PS20. Using commercial stocks of PS20 and PS80 alkyl (R•), alkoxyl (C-O•) and peroxyl (C-OO•) radicals were detected by electron paramagnetic resonance spectroscopy likely originating from radical-initiating species already present in the material. When dissolved in water, the peroxyl radicals (C-OO•) originally in the stocks were not detected but poly(ethylene oxide) radicals were. An oxidative pathway for polysorbates was suggested based on the radical species identified in the polysorbate stock material and solutions.
Collapse
Affiliation(s)
- Adam T. Sutton
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA;
| | | |
Collapse
|
8
|
Cucuzza S, Brosig S, Serno T, Bechtold-Peters K, Cerar J, Kammüller M, Gallou F. Modular and tunable alternative surfactants for biopharmaceuticals provide insights into Surfactant's Structure-Function relationship. Int J Pharm 2024; 650:123692. [PMID: 38081561 DOI: 10.1016/j.ijpharm.2023.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Surface-induced aggregation of protein therapeutics is opposed by employing surfactants, which are ubiquitously used in drug product development, with polysorbates being the gold standard. Since poloxamer 188 is currently the only generally accepted polysorbate alternative, but cannot be ubiquitously applied, there is a strong need to develop surfactant alternatives for protein biologics that would complement and possibly overcome known drawbacks of existing surfactants. Yet, a severe lack of structure-function relationship knowledge complicates the development of new surfactants. Herein, we perform a systematic analysis of the structure-function relationship of three classes of novel alternative surfactants. Firstly, the mode of action is thoroughly characterized through tensiometry, calorimetry and MD simulations. Secondly, the safety profiles are evaluated through cell-based in vitro assays. Ultimately, we could conclude that the alternative surfactants investigated possess a mode of action and safety profile comparable to polysorbates. Moreover, the biophysical patterns elucidated here can be exploited to precisely tune the features of future surfactant designs.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Novartis Pharma AG, TRD Biologics & CGT, GDD, 4002 Basel, Switzerland
| | - Sebastian Brosig
- Novartis Pharma AG, TRD Biologics & CGT, GDD, 4002 Basel, Switzerland
| | - Tim Serno
- Novartis Pharma AG, TRD Biologics & CGT, GDD, 4002 Basel, Switzerland
| | | | - Jure Cerar
- Novartis Pharma AG, TRD Biologics & CGT, GDD, 1234 Menges, Slovenia
| | | | | |
Collapse
|
9
|
Gregoritza K, Theodorou C, Heitz M, Graf T, Germershaus O, Gregoritza M. Enzymatic degradation pattern of polysorbate 20 impacts interfacial properties of monoclonal antibody formulations. Eur J Pharm Biopharm 2024; 194:74-84. [PMID: 38042510 DOI: 10.1016/j.ejpb.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Polysorbate 20 (PS20) is widely used to maintain protein stability in biopharmaceutical formulations. However, PS20 is susceptible to hydrolytic degradation catalyzed by trace amounts of residual host cell proteins present in monoclonal antibody (mAb) formulations. The resulting loss of intact surfactant and the presence of PS20 degradation products, such as free fatty acids (FFAs), may impair protein stability. In this study, two hydrolytically-active immobilized lipases, which primarily targeted either monoester or higher-order ester species in PS20, were used to generate partially-degraded PS20. The impact of PS20 degradation pattern on critical micelle concentration (CMC), surface tension, interfacial rheology parameters and agitation protection was assessed. CMC was slightly increased upon monoester degradation, but significantly increased upon higher-order ester degradation. The PS20 degradation pattern also significantly impacted the dynamic surface tension of a mAb formulation, whereas changes in the equilibrium surface tension were mainly caused by the adsorption of FFAs onto the air-water interface. In an agitation protection study, monoester degradation resulted in the formation of soluble mAb aggregates and proteinaceous particles, suggesting that preferential degradation of PS20 monoester species can significantly impair mAb stability. Additional mAbs should be tested in the future to assess the impact of the protein format.
Collapse
Affiliation(s)
- Kathrin Gregoritza
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Christos Theodorou
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marc Heitz
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tobias Graf
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Oliver Germershaus
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Manuel Gregoritza
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
10
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
11
|
Desai KG, Colandene JD, Crotts G, Sofa C, Wang N, Blockus B, Mandal B, Wittig K, Shukla A. Transportation of mAb Dosing Solution in Intravenous Bag: Impact of Manual, Vehicle, and Pneumatic Tube System Transportation Methods on Product Quality. Mol Pharm 2023; 20:6474-6491. [PMID: 37962592 DOI: 10.1021/acs.molpharmaceut.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Monoclonal antibody (mAb) products for intravenous (IV) administration generally require aseptic compounding with a commercial diluent within a pharmacy. The prepared dosing solution in the IV bag may be transported to the dosing location via manual, vehicular, pneumatic tube system (PTS), or a combination of these methods. In this study, the type and level of physical stresses associated with these three methods and their product quality impact for relatively sensitive and stable mAbs were assessed. Vibration was found to be the main stress associated with manual and vehicle transportation methods, although this was at a relatively low level (<1 GRMS/Root-Mean-Square Acceleration). Shock and drop events, at relatively low levels, were also observed with these methods. PTS transportation showed substantially more intense shock, vibration, and drop stresses and the measured levels were up to 91 G/force of acceleration or deceleration, 3.7 GRMS and 39 G, respectively. Using a foam padding insert for PTS transportation reduced the shock level considerably (91 G to 59 G). Transportation of mAb dosing solutions in IV bags via different methods including PTS transportation variables caused a small increase in the subvisible particle counts and there was no change in submicrometer particle distribution. No visible particles and no significant change to soluble aggregate levels were observed after transportation. Strategies such as removal of IV bag headspace prior to transport and in-line filtration poststress reduced the subvisible particles counts. All tested transportation conditions showed negligible impact on other product quality attributes tested. Removal of IV bag headspace prior to PTS transport prevented formation of micro air bubbles and foaming compared to the unaltered IV bag. This study shows examples where manual, vehicle, and PTS transport methods did not significantly impact product quality, and provides evidence that mAb products that are appropriately stabilized in the dosing solution (e.g., with a surfactant) can be transported via a PTS.
Collapse
Affiliation(s)
- Kashappa Goud Desai
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - James D Colandene
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - George Crotts
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Cait Sofa
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Ning Wang
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Brendan Blockus
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Bivash Mandal
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Katie Wittig
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Asha Shukla
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
12
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
13
|
Zürcher D, Caduff S, Aurand L, Capasso Palmiero U, Wuchner K, Arosio P. Comparison of the Protective Effect of Polysorbates, Poloxamer and Brij on Antibody Stability Against Different Interfaces. J Pharm Sci 2023; 112:2853-2862. [PMID: 37295604 DOI: 10.1016/j.xphs.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Therapeutic proteins and antibodies are exposed to a variety of interfaces during their lifecycle, which can compromise their stability. Formulations, including surfactants, must be carefully optimized to improve interfacial stability against all types of surfaces. Here we apply a nanoparticle-based approach to evaluate the instability of four antibody drugs against different solid-liquid interfaces characterized by different degrees of hydrophobicity. We considered a model hydrophobic material as well as cycloolefin-copolymer (COC) and cellulose, which represent some of the common solid-liquid interfaces encountered during drug production, storage, and delivery. We assess the protective effect of polysorbate 20, polysorbate 80, Poloxamer 188 and Brij 35 in our assay and in a traditional agitation study. While all nonionic surfactants stabilize antibodies against the air-water interface, none of them can protect against hydrophilic charged cellulose. Polysorbates and Brij increase antibody stability in the presence of COC and the model hydrophobic interface, although to a lesser extent compared to the air-water interface, while Poloxamer 188 has a negligible stabilizing effect against these interfaces. These results highlight the challenge of fully protecting antibodies against all types of solid-liquid interfaces with traditional surfactants. In this context, our high-throughput nanoparticle-based approach can complement traditional shaking assays and assist in formulation design to ensure protein stability not only at air-water interfaces, but also at relevant solid-liquid interfaces encountered during the product lifecycle.
Collapse
Affiliation(s)
- Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Severin Caduff
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Laetitia Aurand
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | | | - Klaus Wuchner
- Janssen R&D, BTDS Analytical Development, Schaffhausen, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Tsukidate T, Stiving AQ, Mengisen S, McKechnie WS, Carrillo R, Li X. Heat Inactivation of Host Cell-Derived Enzymes as a Control Strategy for Polysorbate Degradation. J Pharm Sci 2023; 113:S0022-3549(23)00464-1. [PMID: 39492476 DOI: 10.1016/j.xphs.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Polysorbate degradation in biotherapeutics formulations is an industry-wide problem and mainly caused by residual host cell-derived enzymes. We present a proof-of-concept study of a control strategy which takes advantage of lower thermal stability of such enzymes relative to therapeutic proteins. We profiled heat sensitivity of host cell-derived enzyme activity with chemical proteomics and observed that PLA2G7 became inactive after brief heating. Further biophysical studies indicated that these enzymes were less thermally stable than a monoclonal antibody. Importantly, brief heat treatment had minimal impact on the stability of the antibody. Consequently, heat inactivation of polysorbate-spiked protein-A pool decelerated polysorbate degradation. This study suggests that heat inactivation of host cell-derived enzymes could be a control stragy for polysorbate degradation.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Carrillo
- Biologics Development & Biopharmaceutics Research Pharmacy, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States.
| | - Xuanwen Li
- Analytical Research & Development Mass Spectrometry.
| |
Collapse
|
15
|
Doyle M, Barnes A, Larson NR, Liu H, Yi L. Development of UPLC-UV-ELSD Method for Fatty Acid Profiling in Polysorbate 80 and Confirmation of the Presence of Conjugated Fatty Acids by Mass Spectrometry, UV Absorbance and Proton Nuclear Magnetic Resonance Spectroscopy. J Pharm Sci 2023; 112:2393-2403. [PMID: 37295606 DOI: 10.1016/j.xphs.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Polysorbate 80 (PS80), a chemical substance composed of sorbitol, ethylene glycol, and fatty acids, is commonly used in pharmaceutical drug products to stabilize formulations. However, recent studies have demonstrated that PS80 may hydrolyze over time and the released free fatty acids (FFAs) may lead to particle formation. Naming conventions of fatty acids in current pharmacopeia and in products' certificates of analysis (CoA) of PS80 do not typically distinguish between isomeric species of fatty acids in PS80. Thus, methods to fully characterize the fatty acid species present in PS80 raw materials are needed to enhance quality control strategies of pharmaceuticals using PS80. Here, extended effort is taken to characterize fatty acids in hydrolyzed PS80 raw materials and elucidate the identities of isomeric fatty acid species. In this work, a method was developed and optimized for separation and detection of fatty acids in alkaline hydrolyzed PS80 raw materials using ultra performance liquid chromatography (UPLC) with ultra-violet (UV) detection and evaporative light scattering detection (ELSD). Fatty acids not specified in the current pharmacopeias were detected in PS80 raw material by the developed LC-UV-ELSD method including conjugated forms of linoleic and linolenic fatty acid species. Their identities were orthogonally confirmed by retention time agreement with analytical standards, accurate mass by high resolution mass spectrometry, UV absorbance, and proton nuclear magnetic resonance spectroscopy. The detected conjugated fatty acids are theoretically more hydrophobic and less soluble than their unconjugated counterparts and may increase the propensity of PS80 to form particles upon hydrolysis. This work highlights the need for better quality control of PS80 raw material, as it may eventually play a critical role in product quality of therapeutic proteins.
Collapse
Affiliation(s)
- Michael Doyle
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Adam Barnes
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Nicholas R Larson
- Analytical Development, Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, United States of America
| | - Haiyan Liu
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Linda Yi
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America.
| |
Collapse
|
16
|
Brosig S, Cucuzza S, Serno T, Bechtold-Peters K, Buecheler J, Zivec M, Germershaus O, Gallou F. Not the Usual Suspects: Alternative Surfactants for Biopharmaceuticals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450418 DOI: 10.1021/acsami.3c05610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Therapeutically relevant proteins naturally adsorb to interfaces, causing aggregation which in turn potentially leads to numerous adverse consequences such as loss of activity or unwanted immunogenic reactions. Surfactants are ubiquitously used in biotherapeutics drug development to oppose interfacial stress, yet, the choice of the surfactant is extremely limited: to date, only polysorbates (PS20/80) and poloxamer 188 are used in commercial products. However, both surfactant families suffer from severe degradation and impurities of the raw material, which frequently increases the risk of particle generation, chemical protein degradation, and potential adverse immune reactions. Herein, we assessed a total of 40 suitable alternative surfactant candidates and subsequently performed a selection through a three-gate screening process employing four protein modalities encompassing six different formulations. The screening is based on short-term agitation-induced aggregation studies coupled to particle analysis and surface tension characterization, followed by long-term quiescence stability studies connected to protein purity measurements and particle analysis. The study concludes by assessing the surfactant's chemical and enzymatic degradation propensity. The candidates emerging from the screening are de novo α-tocopherol-derivatives named VEDG-2.2 and VEDS, produced ad hoc for this study. They display protein stabilization potential comparable or better than polysorbates together with an increased resistance to chemical and enzymatic degradation, thus representing valuable alternative surfactants for biotherapeutics.
Collapse
Affiliation(s)
- Sebastian Brosig
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Stefano Cucuzza
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Tim Serno
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | | | - Jakob Buecheler
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Basel CH-4002, Switzerland
| | - Matej Zivec
- Novartis Pharma AG, GDD, TRD Biologics & CGT, Menges 1234, Slovenia
| | - Oliver Germershaus
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Fabrice Gallou
- Novartis Pharma AG, GDD, CHAD, Basel CH-4057, Switzerland
| |
Collapse
|
17
|
Fares HM, Carnovale M, Tabouguia MON, Jordan S, Katz JS. Novel Surfactant Compatibility with Downstream Protein Bioprocesses. J Pharm Sci 2023; 112:1811-1820. [PMID: 37094665 DOI: 10.1016/j.xphs.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Downstream processing of antibodies consists of a series of steps aimed at purifying the product and ensuring it is delivered to formulators structurally and functionally intact. The process can be complex and time-consuming, involving multiple filtrations, chromatography, and buffer exchange steps that can interfere with product integrity. This study explores the possibility and benefits of adding N-myristoyl phenylalanine polyether amine diamide (FM1000) as a process aid. FM1000 is a nonionic surfactant that is highly effective at stabilizing proteins against aggregation and particle formation and has been extensively explored as a novel excipient for antibody formulations. In this work, FM1000 is shown to stabilize proteins against pumping-induced aggregation which can occur while transporting them between process units and within certain processes. It is also shown to prevent antibody fouling of multiple polymeric surfaces. Furthermore, FM1000 can be removed after some steps and during buffer exchange in ultrafiltration/diafiltration, if needed. Additionally, FM1000 was compared to polysorbates in studies focusing on surfactant retention on filters and columns. While the different molecular entities of polysorbates elute at different rates, FM1000 flows through purification units as a single molecule and at a faster rate. Overall, this work defines new areas of application for FM1000 within downstream processing and presents it as a versatile process aid, where its addition and removal are tunable depending on the needs of each product.
Collapse
Affiliation(s)
- Hadi M Fares
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Miriam Carnovale
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Megane O N Tabouguia
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Susan Jordan
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803
| | - Joshua S Katz
- Colloids and Biopharma R&D, Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803.
| |
Collapse
|
18
|
Bai L, Zhang Y, Zhang C, Lu Y, Li Z, Huang G, Meng B. Investigation of excipients impact on polysorbate 80 degradation in biopharmaceutical formulation buffers. J Pharm Biomed Anal 2023; 233:115496. [PMID: 37285658 DOI: 10.1016/j.jpba.2023.115496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
A study on the polysorbate 80 stability in various formulation buffers commonly used in biopharmaceuticals was performed, to investigate the excipients influence on polysorbate 80 degradation. Polysorbate 80 is a common excipient in biopharmaceutical products. However, its degradation will potentially impact the drug product quality, and may trigger protein aggregation and particles formation. Due to the heterogeneity of the polysorbates and the mutual effects with other formulation compositions, the study of polysorbate degradation is challenging. Herein, a real-time stability study was designed and performed. The polysorbate 80 degradation trend was monitored by fluorescence micelle-based assay (FMA), reversed-phase-ultra-performance liquid chromatography-evaporative light scattering detector (RP-UPLC-ELSD) assay, and LC-MS assay. These assays provide orthogonal results to reveal both the micelle-forming capability and the compositional changes of polysorbate 80 in different buffer systems. The degradation occurred after a period of storage under 25 °C in different trend, which indicates the excipients could impact the degradation kinetics. Upon comparison, the degradation is prone to happen in histidine buffer than in acetate, phosphate or citrate buffers. LC-MS confirms oxidation as an independent degradation pathway with detection of the oxidative aldehyde. Thus, it is necessary to pay more attention to the excipients selection and their potential impact on polysorbate 80 stability to achieve longer shelf life for the biopharmaceuticals. Besides, the protective roles of several additives were figured out, which could be applied as potential industrial solutions to the polysorbate 80 degradation issues.
Collapse
Affiliation(s)
- Ling Bai
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yanlan Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Cai Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yuchen Lu
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Zhiguo Li
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Gang Huang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Bo Meng
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China.
| |
Collapse
|
19
|
Gupta SK, Graf T, Edelmann FT, Seelmann H, Reintinger M, Hilringhaus L, Bergmann F, Wiedmann M, Falkenstein R, Wegele H, Yuk IH, Leiss M. A fast and sensitive high-throughput assay to assess polysorbate-degrading hydrolytic activity in biopharmaceuticals. Eur J Pharm Biopharm 2023; 187:120-129. [PMID: 37116764 DOI: 10.1016/j.ejpb.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Hydrolysis of polysorbate in biopharmaceutical products has been ascribed to the enzymatic activity from trace levels of residual host cell proteins. In recent years, significant efforts to identify the causative enzymes typically used elaborate, material-intensive and time-consuming approaches. Therefore, the lack of fast and sensitive assays to monitor their activity remains a major bottleneck for supporting process optimization and troubleshooting activities where time and sample throughput are crucial constraints. To address this bottleneck, we developed a novel Electrochemiluminescence-based Polysorbase Activity (EPA) assay to measure hydrolytic activities in biotherapeutics throughout the drug substance manufacturing process. By combining the favorable features of an in-house designed surrogate substrate with a well-established detection platform, the method yields fast (∼36 h turnaround time) and highly sensitive readouts compatible with high-throughput testing. The assay capability for detecting substrate conversion in a precise and reliable manner was demonstrated by extensive qualification studies and by employing a number of recombinant hydrolases associated with polysorbate hydrolysis. In addition, high assay sensitivity and wide applicability were confirmed for in-process pool samples of three different antibody products by performing a head-to-head comparison between this method and an established liquid chromatography - mass spectrometry based assay for the quantification of free fatty acids. Overall, our results suggest that this new approach is well-suited to resolve differences in hydrolytic activity through all stages of purification.
Collapse
Affiliation(s)
- Sanjay K Gupta
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tobias Graf
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Franziska T Edelmann
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Helen Seelmann
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Markus Reintinger
- Reagent Research and Design, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Lars Hilringhaus
- Reagent Research and Design, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Frank Bergmann
- Reagent Research and Design, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Michael Wiedmann
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Roberto Falkenstein
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Harald Wegele
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Inn H Yuk
- Pharma Technical Development, Genentech, 1 DNA Way, South San Francisco, California, USA
| | - Michael Leiss
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany.
| |
Collapse
|
20
|
Characterization of Recombinantly-Expressed Hydrolytic Enzymes from Chinese Hamster Ovary Cells: Identification of Host Cell Proteins that Degrade Polysorbate. J Pharm Sci 2023; 112:1351-1363. [PMID: 36646283 DOI: 10.1016/j.xphs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Enzymatic hydrolysis of polysorbate in drug products is a major challenge for the biopharmaceutical industry. Polysorbate hydrolysis caused by host cell proteins (HCPs) co-purified during bioprocessing can reduce the protective effects of the surfactant for the active pharmaceutical ingredient and cause the accumulation of low-solubility degradation products over the long-term storage. The identities of such HCPs are elusive due to their extremely low concentrations after the efficient purification processes of most biopharmaceuticals. In this work, 20 enzymes-selected for their known or putative hydrolytic activity and potential to degrade polysorbate-were recombinantly expressed, purified, and characterized via orthogonal methods. First, these recombinant HCPs were assessed for hydrolytic activity against a fluorogenic esterase substrate in a recently-developed, high-throughput assay. Second, these HCPs were screened for hydrolytic activity against polysorbate in a representative mAb formulation. Third, HCPs that displayed hydrolytic activities in the first two assays were subjected to more detailed characterization of their enzyme kinetics against polysorbates. Finally, these HCPs were evaluated for substrate specificity towards different sub-species of polysorbates. This work provides critical new insights for targeted LC-MS/MS approaches for identification of relevant polysorbate-degrading enzymes and supports improvements to remove such HCPs, including knockouts or targeted removal during purification.
Collapse
|
21
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|