1
|
Chen Q, Wang C, Wang T, Lei B, Wang J, Guo J. Impact of Surface Tension, Viscosity, Pump Settings, and Nozzle Size on Filling Process Capability and Accuracy in High-Concentration Biopharmaceuticals. J Pharm Sci 2024:S0022-3549(24)00450-7. [PMID: 39424196 DOI: 10.1016/j.xphs.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Filling is the final critical unit operation in the manufacturing process of liquid biological drug products. This paper thoroughly investigates the influence and mechanisms of peristaltic pump settings, nozzle size, product surface tension and viscosity on the biopharmaceutical filling processes based on the established filling process model of surrogates. Our study highlights the significant role of pump settings in influencing filling process capability indexes, in addition to their primary function of regulating flow rate. Surface tension minimally impacts flow behavior but significantly regulates the final drop's behavior, with lower surface tension increasing dripping tendencies. Viscosity proves crucial; higher viscosity intensifies friction and head loss of filling flow in tube/nozzle, causing pressure and flow rate losses, more pronounced dripping, and worse filling accuracy. Furthermore, nozzle size moderates the impact of pump settings, surface tension, and viscosity on filling performance. Larger nozzles help mitigate these effects, contributing to enhanced stability in filling performance under challenging conditions. For high-concentration biopharmaceuticals with elevated viscosity during filling, utilizing larger nozzles and reducing pump speed could achieve enhanced Cpk values and improved filling accuracy. Understanding the complex interactions among these factors is vital for optimizing the biopharmaceutical industry, promoting cost-effective practices, and enhancing production efficiency.
Collapse
Affiliation(s)
- Qizhou Chen
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Chenxi Wang
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Tingting Wang
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| | - Bin Lei
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Jing Wang
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Jeremy Guo
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
2
|
Du Y, Song J, Lu L, Yeung E, Givand J, Procopio A, Su Y, Hu G. Design of a Reciprocal Injection Device for Stability Studies of Parenteral Biological Drug Products. J Pharm Sci 2024; 113:1330-1338. [PMID: 38113997 DOI: 10.1016/j.xphs.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Formulation screening, essential for assessing the impact of physical, chemical, and mechanical stresses on protein stability, plays a critical role in biologics drug product development. This research introduces a Reciprocal Injection Device (RID) designed to accelerate formulation screening by probing protein stability under intensified stress conditions within prefilled syringes. This versatile device is designed to accommodate a broad spectrum of injection parameters and diverse syringe dimensions. A commercial drug product was employed as a model monoclonal antibody formulation. Our findings effectively highlight the efficacy of the RID in assessing concentration-dependent protein stability. This device exhibits significant potential to amplify the influences of interfacial interactions, such as those with buffer salts, excipients, air, metals, and silicone oils, commonly found in combination drug products, and to evaluate the protein stability under varied stresses.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Jing Song
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Lynn Lu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Edward Yeung
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Jeffrey Givand
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Adam Procopio
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States.
| | - Guangli Hu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States.
| |
Collapse
|
3
|
Lopez-Del Rio A, Pacios-Michelena A, Picart-Armada S, Garidel P, Nikels F, Kube S. Sub-Visible Particle Classification and Label Consistency Analysis for Flow-Imaging Microscopy Via Machine Learning Methods. J Pharm Sci 2024; 113:880-890. [PMID: 37924976 DOI: 10.1016/j.xphs.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Sub-visible particles can be a quality concern in pharmaceutical products, especially parenteral preparations. To quantify and characterize these particles, liquid samples may be passed through a flow-imaging microscopy instrument that also generates images of each detected particle. Machine learning techniques have increasingly been applied to this kind of data to detect changes in experimental conditions or classify specific types of particles, primarily focusing on silicone oil. That technique generally requires manual labeling of particle images by subject matter experts, a time-consuming and complex task. In this study, we created artificial datasets of silicone oil, protein particles, and glass particles that mimicked complex datasets of particles found in biopharmaceutical products. We used unsupervised learning techniques to effectively describe particle composition by sample. We then trained independent one-class classifiers to detect specific particle populations: silicone oil and glass particles. We also studied the consistency of the particle labels used to evaluate these models. Our results show that one-class classifiers are a reasonable choice for handling heterogeneous flow-imaging microscopy data and that unsupervised learning can aid in the labeling process. However, we found agreement among experts to be rather low, especially for smaller particles (< 8 µm for our Micro-Flow Imaging data). Given the fact that particle label confidence is not usually reported in the literature, we recommend more careful assessment of this topic in the future.
Collapse
Affiliation(s)
- Angela Lopez-Del Rio
- Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany.
| | - Anabel Pacios-Michelena
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
| | - Sergio Picart-Armada
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
| | - Felix Nikels
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
| | - Sebastian Kube
- Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany.
| |
Collapse
|
4
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
5
|
Gentile K, Huang C, Liu X, Whitty-Léveillé L, Hamzaoui H, Cristofolli E, Rayfield W, Afanador NL, Mittal S, Krishnamachari Y, Xi H, Zhao X. Variables Impacting Silicone Oil Migration and Biologics in Prefilled Syringes. J Pharm Sci 2023; 112:2203-2211. [PMID: 37244516 DOI: 10.1016/j.xphs.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Prefilled syringes (PFS) as a primary container for parenteral drug products offer significant advantages, such as fast delivery time, ease of self-administration and fewer dosing errors. Despite the benefits that PFS can provide to patients, the silicone oil pre-coated on the glass barrels has shown migration into the drug product, which can impact particle formation and syringe functionality. Health authorities have urged product developers to better understand the susceptibility of drug products to particle formation in PFS due to silicone oil. In the market, there are multiple syringe sources provided by various PFS suppliers. Due to current supply chain shortages and procurement preferences for commercial products, the PFS source may change in the middle of development. Additionally, health authorities require establishing source duality. Therefore, it is crucial to understand how different syringe sources and formulation compositions impact the drug product quality. Here, several design of experiments (DOE) are executed that focus on the risk of silicone oil migration induced by syringe sources, surfactants, protein types, stress, etc. We utilized Resonant Mass Measurement (RMM) and Micro Flow Imaging (MFI) to characterize silicone oil and proteinaceous particle distribution in both micron and submicron size ranges, as well as ICP-MS to quantify silicon content. The protein aggregation and PFS functionality were also monitored in the stability study. The results show that silicone oil migration is impacted more by syringe source, siliconization process and surfactant (type & concentration). The break loose force and extrusion force across all syringe sources increase significantly as protein concentration and storage temperature increase. Protein stability is found to be impacted by its molecular properties and is less impacted by the presence of silicone oil, which is the same inference drawn in other literatures. A detailed evaluation described in this paper enables a thorough and optimal selection of primary container closure and de-risks the impact of silicone oil on drug product stability.
Collapse
Affiliation(s)
- Kayla Gentile
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Chengbin Huang
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Xiaoyang Liu
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Laurence Whitty-Léveillé
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Hassen Hamzaoui
- Device Development, Pharmaceutical Sciences & Clinical Supply Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ,07065, USA
| | - Eduardo Cristofolli
- Device Development, Pharmaceutical Sciences & Clinical Supply Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ,07065, USA
| | - William Rayfield
- Bioprocess Downstream Platform Development, Bioprocess Research & Development, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Nelson Lee Afanador
- Biostatistics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Sarita Mittal
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Yogita Krishnamachari
- Sterile and Specialty Products, Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Hanmi Xi
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA
| | - Xi Zhao
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA; Sterile and Specialty Products, Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ, 07033, USA.
| |
Collapse
|