1
|
Patel R, Patel M, Solanki R, Khunt D. Trace level quantification of N-nitrosorasagiline in rasagiline tablets by LC-TQ-MS/MS. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:771-779. [PMID: 38548223 DOI: 10.1016/j.pharma.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Parkinson's disease is a chronic, progressive neurological disease that currently affects about more than 10 million population worldwide. Rasagiline is a selective, irreversible monoamine oxidase type B inhibitor used as monotherapy in early Parkinson's disease. Rasagiline tablets have been recalled from market due to the presence of unacceptable levels of nitrosamine impurity. European Medical Agency has set up very stringent limit 100ng/day of N-nitrosorasagiline (NSRG) in drug product based on its mutagenicity. The analytical methods need to be sufficiently sensitive in order to adequately detect and quantify trace levels of NSRG. A highly sensitive LC-MS/MS method for determination of NSRG in rasagiline tablet formulation was developed by effectively separating on zorbax eclipse XDB C18 column using 0.1% formic acid in mixture of water and acetonitrile (35:65 v/v) in an isocratic mode at 0.5mL/min flow rate. The measurement of NSRG was performed using triple quadrupole mass detection accompanied by electrospray ionization in the multiple reaction monitoring mode. The validation of the method was comprehensive, demonstrating strong linearity across the concentration spectrum of 2 to 200ng/mL for NSRG. The obtained correlation coefficient exceeded 0.998, signifying a robust relationship. Recoveries spanning from 80.0% to 120.0% for NSRG were deemed satisfactory. The developed method was able to detect and quantitate NSRG at a concentration level of 1 to 2ng/mL respectively (1 to 2ppm with respect to 1mg/mL of rasagiline tablet sample concentration). The developed and validated method can be employed for routine quality control testing of rasagiline tablets.
Collapse
Affiliation(s)
- Ravi Patel
- Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar 382028, India.
| | - Mansi Patel
- Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar 382028, India
| | - Ravisinh Solanki
- Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar 382028, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar 382028, India
| |
Collapse
|
2
|
Limpikirati PK, Mongkoltipparat S, Denchaipradit T, Siwasophonpong N, Pornnopparat W, Ramanandana P, Pianpaktr P, Tongchusak S, Tian MT, Pisitkun T. Basic regulatory science behind drug substance and drug product specifications of monoclonal antibodies and other protein therapeutics. J Pharm Anal 2024; 14:100916. [PMID: 39035218 PMCID: PMC11259812 DOI: 10.1016/j.jpha.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 07/23/2024] Open
Abstract
In this review, we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding in regulatory science and compliance. Pharmaceutical specifications comprise a list of important quality attributes for testing, references to use for test procedures, and appropriate acceptance criteria for the tests, and they are set up to ensure that when a drug product is administered to a patient, its intended therapeutic benefits and safety can be rendered appropriately. Conformance of drug substance or drug product to the specifications is achieved by testing an article according to the listed tests and analytical methods and obtaining test results that meet the acceptance criteria. Quality attributes are chosen to be tested based on their quality risk, and consideration should be given to the merit of the analytical methods which are associated with the acceptance criteria of the specifications. Acceptance criteria are set forth primarily based on efficacy and safety profiles, with an increasing attention noted for patient-centric specifications. Discussed in this work are related guidelines that support the biopharmaceutical specification setting, how to set the acceptance criteria, and examples of the quality attributes and the analytical methods from 60 articles and 23 pharmacopeial monographs. Outlooks are also explored on process analytical technologies and other orthogonal tools which are on-trend in biopharmaceutical characterization and quality control.
Collapse
Affiliation(s)
- Patanachai K. Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sorrayut Mongkoltipparat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Thinnaphat Denchaipradit
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Nathathai Siwasophonpong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Wudthipong Pornnopparat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Parawan Ramanandana
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Bang Phli, Samut Prakan, 10540, Thailand
| | - Phumrapee Pianpaktr
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Songsak Tongchusak
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Maoxin Tim Tian
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Division of Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Ao X, Zhang X, Sun W, Linden KG, Payne EM, Mao T, Li Z. What is the role of nitrate/nitrite in trace organic contaminants degradation and transformation during UV-based advanced oxidation processes? WATER RESEARCH 2024; 253:121259. [PMID: 38377923 DOI: 10.1016/j.watres.2024.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The effectiveness of UV-based advanced oxidation processes (UV-AOPs) in degrading trace organic contaminants (TrOCs) can be significantly influenced by the ubiquitous presence of nitrate (NO3-) and nitrite (NO2-) in water and wastewater. Indeed, NO3-/NO2- can play multiple roles of NO3-/NO2- in UV-AOPs, leading to complexities and conflicting results observed in existing research. They can inhibit the degradation of TrOCs by scavenging reactive species and/or competitively absorbing UV light. Conversely, they can also enhance the elimination of TrOCs by generating additional •OH and reactive nitrogen species (RNS). Furthermore, the presence of NO3-/NO2- during UV-AOP treatment can affect the transformation pathways of TrOCs, potentially resulting in the nitration/nitrosation of TrOCs. The resulting nitro(so)-products are generally more toxic than the parent TrOCs and may become precursors of nitrogenous disinfection byproducts (N-DBPs) upon chlorination. Particularly, since the impact of NO3-/NO2- in UV-AOPs is largely due to the generation of RNS from NO3-/NO2- including NO•, NO2•, and peroxynitrite (ONOO-/ONOOH), this review covers the generation, properties, and detection methods of these RNS. From kinetic, mechanistic, and toxicologic perspectives, future research needs are proposed to advance the understanding of how NO3-/NO2- can be exploited to improve the performance of UV-AOPs treating TrOCs. This critical review provides a comprehensive framework outlining the multifaceted impact of NO3-/NO2- in UV-AOPs, contributing insights for basic research and practical applications of UV-AOPs containing NO3-/NO2-.
Collapse
Affiliation(s)
- Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States.
| | - Emma M Payne
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; MW Technologies, Inc., Ontario L8N1E, Canada
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Bhirud D, Agrawal G, Shah H, Patel A, Palkar MB, Bhattacharya S, Prajapati BG. Nitrosamine Impurities in Pharmaceuticals: An Empirical Review of their Detection, Mechanisms, and Regulatory Approaches. Curr Top Med Chem 2024; 24:503-522. [PMID: 38321910 DOI: 10.2174/0115680266278636240125113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Since their discovery in valsartan-containing drugs, nitrosamine impurities have emerged as a significant safety problem in pharmaceutical products, prompting extensive recalls and suspensions. Valsartan, candesartan, irbesartan, olmesartan, and other sartans have been discovered to have additional nitrosamine impurities, such as N-nitroso-N-methyl-4-aminobutyric acid (NMBA), N-nitroso-Di-isopropyl amine (NDIPA), N-nitroso-Ethyl-Isopropyl amine (NEIPA), and N-nitroso-Diethyl amine (NDEA). Concerns about drug safety have grown in response to reports of nitrosamine contamination in pharmaceuticals, such as pioglitazone, rifampin, rifapentine, and varenicline. This review investigates the occurrence and impact of nitrosamine impurities in sartans and pharmaceutical goods, as well as their underlying causes. The discussion emphasizes the significance of comprehensive risk assessment and mitigation approaches at various phases of medication development and manufacturing. The link between amines and nitrosamine impurities is also investigated, with an emphasis on pH levels and the behaviour of primary, secondary, tertiary, and quaternary amines. Regulations defining standards for nitrosamine assessment and management, such as ICH Q3A-Q3E and ICH M7, are critical in resolving impurity issues. Furthermore, the Global Substance Registration System (GSRS) is underlined as being critical for information sharing and product safety in the pharmaceutical industry. The review specifically focuses on the relationship between ranitidine and N-nitroso dimethyl amine (NDMA) in the context of the implications of nitrosamine contamination on patient safety and medicine supply. The importance of regulatory authorities in discovering and correcting nitrosamine impurities is highlighted in order to improve patient safety, product quality, and life expectancy. Furthermore, the significance of ongoing study and attention to nitrosamine-related repercussions for increasing pharmaceutical safety and overall public health is emphasized.
Collapse
Affiliation(s)
- Darshan Bhirud
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Gyan Agrawal
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Harshil Shah
- Department of Bioequivalence, Cosette Pharmaceuticals INC, 200 Crossing Blvd Fl 4, Bridgewater, New Jersey, 08807, United States
| | - Artiben Patel
- Department of Regulatory Affairs, Cosette Pharmaceuticals Inc., 200 Crossing Blvd Fl 4, Bridgewater, New Jersey, 08807, United States
| | - Mahesh B Palkar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India
| |
Collapse
|