1
|
Jiang L, Gao Y, Han L, Zhang W, Xu X, Chen J, Feng S, Fan P. Engineering Plant Metabolism for Synthesizing Amino Acid Derivatives of Animal Origin Using a Synthetic Modular Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356107 DOI: 10.1021/acs.jafc.4c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The biosynthesis of amino acid derivatives of animal origin in plants represents a promising frontier in synthetic biology, offering a sustainable and eco-friendly approach to enhancing the nutritional value of plant-based diets. This study leverages the versatile capabilities of Nicotiana benthamiana as a transient expression system to test a synthetic modular framework for the production of creatine, carnosine, and taurine-compounds typically absent in plants but essential for human health. By designing and stacking specialized synthetic modules, we successfully redirected the plant metabolic flux toward the synthesis of these amino acid derivatives of animal origin. Our results revealed the expression of a standalone creatine module resulted in the production of 2.3 μg/g fresh weight of creatine in N. benthamiana leaves. Integrating two modules significantly carnosine yield increased by 3.8-fold and minimized the impact on plant amino acid metabolism compared to individual module application. Unexpectedly, introducing the taurine module caused a feedback-like inhibition of plant cysteine biosynthesis, revealing complex metabolic adjustments that can occur when introducing foreign pathways. Our findings underline the potential for employing plants as biofactories for the sustainable production of essential nutrients of animal origin.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
| | - Xiaoyan Xu
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Jia Chen
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, 310058 Hangzhou, China
| |
Collapse
|
2
|
Jiang X, Zhang Z, Wu X, Li C, Sun X, Li Y, Chang A, Yang A, Yang C. Multiplex Expression Cassette Assembly: A flexible and versatile method for building complex genetic circuits in conventional vectors. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39175411 DOI: 10.1111/pbi.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The manipulation of multiple transcription units for simultaneous and coordinated expression is not only key to building complex genetic circuits to accomplish diverse functions in synthetic biology, but is also important in crop breeding for significantly improved productivity and overall performance. However, building constructs with multiple independent transcription units for fine-tuned and coordinated regulation is complicated and time-consuming. Here, we introduce the Multiplex Expression Cassette Assembly (MECA) method, which modifies canonical vectors compatible with Golden Gate Assembly, and then uses them to produce multi-cassette constructs. By embedding the junction syntax in primers that are used to amplify functional elements, MECA is able to make complex constructs using only one intermediate vector and one destination vector via two rounds of one-pot Golden Gate assembly reactions, without the need for dedicated vectors and a coherent library of standardized modules. As a proof-of-concept, we modified eukaryotic and prokaryotic expression vectors to generate constructs for transient expression of green fluorescent protein and β-glucuronidase in Nicotiana benthamiana, genome editing to block monoterpene metabolism in tomato glandular trichomes, production of betanin in tobacco and synthesis of β-carotene in Escherichia coli. Additionally, we engineered the stable production of thymol and carvacrol, bioactive compounds from Lamiaceae family plants, in glandular trichomes of tobacco. These results demonstrate that MECA is a flexible, efficient and versatile method for building complex genetic circuits, which will not only play a critical role in plant synthetic biology, but also facilitate improving agronomic traits and pyramiding traits for the development of next-generation elite crops.
Collapse
Affiliation(s)
- Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changmei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xuan Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Aixia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
3
|
Alam M, Lou G, Abbas W, Osti R, Ahmad A, Bista S, Ahiakpa JK, He Y. Improving Rice Grain Quality Through Ecotype Breeding for Enhancing Food and Nutritional Security in Asia-Pacific Region. RICE (NEW YORK, N.Y.) 2024; 17:47. [PMID: 39102064 DOI: 10.1186/s12284-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Rice grain is widely consumed as a staple food, providing essential nutrition for households, particularly marginalized families. It plays a crucial role in ensuring food security, promoting human nutrition, supporting good health, and contributing to global food and nutritional security. Addressing the diverse quality demands of emerging diverse and climate-risked population dietary needs requires the development of a single variety of rice grain that can meet the various dietary and nutritional requirements. However, there is a lack of concrete definition for rice grain quality, making it challenging to cater to the different demands. The lack of sufficient genetic study and development in improving rice grain quality has resulted in widespread malnutrition, hidden hunger, and micronutrient deficiencies affecting a significant portion of the global population. Therefore, it is crucial to identify genetically evolved varieties with marked qualities that can help address these issues. Various factors account for the declining quality of rice grain and requires further study to improve their quality for healthier diets. We characterized rice grain quality using Lancastrians descriptor and a multitude of intrinsic and extrinsic quality traits. Next, we examined various components of rice grain quality favored in the Asia-Pacific region. This includes preferences by different communities, rice industry stakeholders, and value chain actors. We also explored the biological aspects of rice grain quality in the region, as well as specific genetic improvements that have been made in these traits. Additionally, we evaluated the factors that can influence rice grain quality and discussed the future directions for ensuring food and nutritional security and meeting consumer demands for grain quality. We explored the diverse consumer bases and their varied preferences in Asian-Pacific countries including India, China, Nepal, Bhutan, Vietnam, Sri Lanka, Pakistan, Thailand, Cambodia, Philippines, Bangladesh, Indonesia, Korea, Myanmar and Japan. The quality preferences encompassed a range of factors, including rice head recovery, grain shape, uniform size before cooking, gelatinization, chalkiness, texture, amylose content, aroma, red-coloration of grain, soft and shine when cooked, unbroken when cooked, gelatinization, less water required for cooking, gelatinization temperature (less cooking time), aged rice, firm and dry when cooked (gel consistency), extreme white, soft when chewed, easy-to-cook rice (parboiled rice), vitamins, and minerals. These preferences were evaluated across high, low, and medium categories. A comprehensive analysis is provided on the enhancement of grain quality traits, including brown rice recovery, recovery rate of milled rice, head rice recovery, as well as morphological traits such as grain length, grain width, grain length-width ratio, and grain chalkiness. We also explored the characteristics of amylose, gel consistency, gelatinization temperature, viscosity, as well as the nutritional qualities of rice grains such as starch, protein, lipids, vitamins, minerals, phytochemicals, and bio-fortification potential. The various factors that impact the quality of rice grains, including pre-harvest, post-harvest, and genotype considerations were explored. Additionally, we discussed the future direction and genetic strategies to effectively tackle these challenges. These qualitative characteristics represent the fundamental focus of regional and national breeding strategies employed by different countries to meet consumer preference. Given the significance of rice as a staple food in Asia-Pacific countries, it is primarily consumed domestically, with only a small portion being exported internationally. All the important attributes must be clearly defined within specific parameters. It is crucial for geneticists and breeders to develop a rice variety that can meet the diverse demands of consumers worldwide by incorporating multiple desirable traits. Thus, the goal of addressing global food and nutritional security, and human healthy can be achieved.
Collapse
Affiliation(s)
- Mufid Alam
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rajani Osti
- College of Humanities and Social Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Science and Natural Resource Research, Chinese Academy of Science (CAS), Beijing, China
| | - Sunita Bista
- Sichuan Agricultural University, Chengdu, Sichuan, China
| | - John K Ahiakpa
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Guiziou S. Biocomputing in plants, from proof of concept to application. Curr Opin Biotechnol 2024; 87:103146. [PMID: 38781700 DOI: 10.1016/j.copbio.2024.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In response to the challenges of climate change and the transition toward sustainability, synthetic biology offers innovative solutions. Most current plant synthetic biology applications rely on the constitutive expression of enzymes and regulators. To engineer plant phenotypes tuneable to environmental conditions and plant cellular states, the integration of multiple signals in synthetic circuits is required. While most circuits are developed in model organisms, numerous tools were recently developed to implement biocomputation in plant synthetic circuits. I presented in this review the tools and design methods for logic circuit implementation in plants. I highlighted recent and potential applications of those circuits to understand and engineer plant interaction with the environment, development, and metabolic pathways.
Collapse
Affiliation(s)
- Sarah Guiziou
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK.
| |
Collapse
|
5
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
6
|
Zhao S, Fu S, Cao Z, Liu H, Huang S, Li C, Zhang Z, Yang H, Wang S, Luo J, Long T. OsUGT88C3 Encodes a UDP-Glycosyltransferase Responsible for Biosynthesis of Malvidin 3- O-Galactoside in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:697. [PMID: 38475543 DOI: 10.3390/plants13050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The diversity of anthocyanins is largely due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. Although a number of glycosyltransferases have been identified to glycosylate anthocyanidin in plants, the enzyme that catalyzes malvidin galactosylation remains unclear. In this study, we identified three rice varieties with different leaf color patterns, different anthocyanin accumulation patterns, and different expression patterns of anthocyanin biosynthesis genes (ABGs) to explore uridine diphosphate (UDP)-glycosyltransferases (UGTs) responsible for biosynthesis of galactosylated malvidin. Based on correlation analysis of transcriptome data, nine candidate UGT genes coexpressed with 12 ABGs were identified (r values range from 0.27 to 1.00). Further analysis showed that the expression levels of one candidate gene, OsUGT88C3, were highly correlated with the contents of malvidin 3-O-galactoside, and recombinant OsUGT88C3 catalyzed production of malvidin 3-O-galactoside using UDP-galactose and malvidin as substrates. OsUGT88C3 was closely related to UGTs with flavone and flavonol glycosylation activities in phylogeny. Its plant secondary product glycosyltransferase (PSPG) motif ended with glutamine. Haplotype analysis suggested that the malvidin galactosylation function of OsUGT88C3 was conserved among most of the rice germplasms. OsUGT88C3 was highly expressed in the leaf, pistil, and embryo, and its protein was located in the endoplasmic reticulum and nucleus. Our findings indicate that OsUGT88C3 is responsible for the biosynthesis of malvidin 3-O-galactoside in rice and provide insight into the biosynthesis of anthocyanin in plants.
Collapse
Affiliation(s)
- Sihan Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Shuying Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Zhenfeng Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Hao Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Sishu Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Hongbo Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Tuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| |
Collapse
|
7
|
Sale S, Subramaniam S, Mad’ Atari MF. Trends in the Tissue Culture Techniques and the Synthesis of Bioactive Compounds in Eurycoma longifolia Jack-Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 13:107. [PMID: 38202415 PMCID: PMC10780575 DOI: 10.3390/plants13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Over the last two decades, there has been a concerted effort by researchers to mass propagate Eurycoma longifolia and improve the yield of its very important and sought-after anti-cancer and aphrodisiac bioactive compounds. To achieve this, various techniques have been used to mass propagate and improve the yield of these bioactive compounds in tissue cultures. These techniques include the optimization of media conditions and application of various types and combinations of plant growth regulators (PGRs). In addition, some elicitation techniques have been used to improve the synthesis of these bioactive compounds. However, in comparison with other herbal species with similar economic importance, many techniques have not been applied to E. longifolia. Adopting the most recent methodologies would ensure efficiency and sustainability in the in vitro production of bioactive compounds in E. longifolia. Therefore, in this review, we present an up-to-date record on the success stories in the tissue culture techniques and synthesis of bioactive compounds. In addition, we attempted to identify some of the missing links on the road to the effective and sustainable biotechnological utilization of this super important biological resource.
Collapse
Affiliation(s)
- Sani Sale
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Department of Botany, Gombe State University, P.M.B 127, Gombe 760214, Nigeria
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas 11900, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya 60115, Indonesia
| | | |
Collapse
|
8
|
Tan J, Shen M, Chai N, Liu Q, Liu YG, Zhu Q. Genome editing for plant synthetic metabolic engineering and developmental regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154141. [PMID: 38016350 DOI: 10.1016/j.jplph.2023.154141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Plant metabolism and development are a reflection of the orderly expression of genetic information intertwined with the environment interactions. Genome editing is the cornerstone for scientists to modify endogenous genes or introduce exogenous functional genes and metabolic pathways, holding immense potential applications in molecular breeding and biosynthesis. Over the course of nearly a decade of development, genome editing has advanced significantly beyond the simple cutting of double-stranded DNA, now enabling precise base and fragment replacements, regulation of gene expression and translation, as well as epigenetic modifications. However, the utilization of genome editing in plant synthetic metabolic engineering and developmental regulation remains exploratory. Here, we provide an introduction and a comprehensive overview of the editing attributes associated with various CRISPR/Cas tools, along with diverse strategies for the meticulous control of plant metabolic pathways and developments. Furthermore, we discuss the limitations of current approaches and future prospects for genome editing-driven plant breeding.
Collapse
Affiliation(s)
- Jiantao Tan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Mengyuan Shen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Zeng D, Jing C, Tang L, He P, Zhang J. Pyramiding stacking of multigenes (PSM): a simple, flexible and efficient multigene stacking system based on Gibson assembly and gateway cloning. Front Bioeng Biotechnol 2023; 11:1263715. [PMID: 38026899 PMCID: PMC10668122 DOI: 10.3389/fbioe.2023.1263715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Genetic engineering of complex metabolic pathways and multiple traits often requires the introduction of multiple genes. The construction of plasmids carrying multiple DNA fragments plays a vital role in these processes. In this study, the Gibson assembly and Gateway cloning combined Pyramiding Stacking of Multigenes (PSM) system was developed to assemble multiple transgenes into a single T-DNA. Combining the advantages of Gibson assembly and Gateway cloning, the PSM system uses an inverted pyramid stacking route and allows fast, flexible and efficient stacking of multiple genes into a binary vector. The PSM system contains two modular designed entry vectors (each containing two different attL sites and two selectable markers) and one Gateway-compatible destination vector (containing four attR sites and two negative selection markers). The target genes are primarily assembled into the entry vectors via two parallel rounds of Gibson assembly reactions. Then, the cargos in the entry constructs are integrated into the destination vector via a single tube Gateway LR reaction. To demonstrate PSM's capabilities, four and nine gene expression cassettes were respectively assembled into the destination vector to generate two binary expression vectors. The transgenic analysis of these constructs in Arabidopsis demonstrated the reliability of the constructs generated by PSM. Due to its flexibility, simplicity and versatility, PSM has great potential for genetic engineering, synthetic biology and the improvement of multiple traits.
Collapse
Affiliation(s)
- Dongdong Zeng
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Cuiyuan Jing
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Tang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Peng He
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Gao J, Li Z, Zhu B, Wang L, Xu J, Wang B, Fu X, Han H, Zhang W, Deng Y, Wang Y, Zuo Z, Peng R, Tian Y, Yao Q. Creation of Environmentally Friendly Super "Dinitrotoluene Scavenger" Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303785. [PMID: 37715295 PMCID: PMC10602510 DOI: 10.1002/advs.202303785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Pervasive environmental contamination due to the uncontrolled dispersal of 2,4-dinitrotoluene (2,4-DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy-intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4-DNT degradation module is designed, assembled, and validated in rice plants. Consequently, the modified rice plants acquire the ability to counteract the phytotoxicity of 2,4-DNT. The most significant finding of this study is that these modified rice plants can completely degrade 2,4-DNT into innocuous substances and subsequently introduce them into the tricarboxylic acid cycle. Further, research reveals that the modified rice plants enable the rapid phytoremediation of 2,4-DNT-contaminated soil. This innovative, eco-friendly phytoremediation approach for dinitrotoluene-contaminated soil and water demonstrates significant potential across diverse regions, substantially contributing to carbon neutrality and sustainable development objectives by repurposing carbon and energy from organic contaminants.
Collapse
|
11
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
12
|
Jiang L, Gao Y, Han L, Zhang W, Fan P. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1220062. [PMID: 37575923 PMCID: PMC10420081 DOI: 10.3389/fpls.2023.1220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Plant synthetic biology has emerged as a powerful and promising approach to enhance the production of value-added metabolites in plants. Flavonoids, a class of plant secondary metabolites, offer numerous health benefits and have attracted attention for their potential use in plant-based products. However, achieving high yields of specific flavonoids remains challenging due to the complex and diverse metabolic pathways involved in their biosynthesis. In recent years, synthetic biology approaches leveraging transcription factors and enzyme diversity have demonstrated promise in enhancing flavonoid yields and expanding their production repertoire. This review delves into the latest research progress in flavonoid metabolic engineering, encompassing the identification and manipulation of transcription factors and enzymes involved in flavonoid biosynthesis, as well as the deployment of synthetic biology tools for designing metabolic pathways. This review underscores the importance of employing carefully-selected transcription factors to boost plant flavonoid production and harnessing enzyme promiscuity to broaden flavonoid diversity or streamline the biosynthetic steps required for effective metabolic engineering. By harnessing the power of synthetic biology and a deeper understanding of flavonoid biosynthesis, future researchers can potentially transform the landscape of plant-based product development across the food and beverage, pharmaceutical, and cosmetic industries, ultimately benefiting consumers worldwide.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
13
|
Selma S, Ntelkis N, Nguyen TH, Goossens A. Engineering the plant metabolic system by exploiting metabolic regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1149-1163. [PMID: 36799285 DOI: 10.1111/tpj.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
Plants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions. To improve metabolic engineering (ME) capabilities, different tools and strategies for rerouting the metabolic pathways have been developed, including genome editing and transcriptional regulation approaches. In addition, cutting-edge technologies have provided new methods for understanding uncharacterized biosynthetic pathways, protein degradation mechanisms, protein-protein interactions, or allosteric feedback, enabling the design of novel ME approaches.
Collapse
Affiliation(s)
- Sara Selma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
14
|
Yuan G, Lu H, De K, Hassan MM, Liu Y, Islam MT, Muchero W, Tuskan GA, Yang X. Split selectable marker systems utilizing inteins facilitate gene stacking in plants. Commun Biol 2023; 6:567. [PMID: 37237044 PMCID: PMC10219933 DOI: 10.1038/s42003-023-04950-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The ability to stack multiple genes in plants is of great importance in the development of crops with desirable traits but can be challenging due to limited selectable marker options. Here we establish split selectable marker systems using protein splicing elements called "inteins" for Agrobacterium-mediated co-transformation in plants. First, we show that such a split selectable marker system can be used effectively in plants to reconstitute a visible marker, RUBY, from two non-functional fragments through tobacco leaf infiltration. Next, to determine the general applicability of our split selectable marker systems, we demonstrate the utility of these systems in the model plants Arabidopsis and poplar by successfully stacking two reporters eYGFPuv and RUBY, using split Kanamycin or Hygromycin resistance markers. In conclusion, this method enables robust plant co-transformation, providing a valuable tool for the simultaneous insertion of multiple genes into both herbaceous and woody plants efficiently.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Academic Education, Central Community College-Hastings, Hastings, NE, 68902, USA
| | - Kuntal De
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Md Torikul Islam
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
15
|
Heterologous mogrosides biosynthesis in cucumber and tomato by genetic manipulation. Commun Biol 2023; 6:191. [PMID: 36805532 PMCID: PMC9938114 DOI: 10.1038/s42003-023-04553-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Mogrosides are widely used as high-value natural zero-calorie sweeteners that exhibit an array of biological activities and allow for vegetable flavour breeding by modern molecular biotechnology. In this study, we developed an In-fusion based gene stacking strategy for transgene stacking and a multi-gene vector harbouring 6 mogrosides biosynthesis genes and transformed it into Cucumis sativus and Lycopersicon esculentum. Here we show that transgenic cucumber can produce mogroside V and siamenoside I at 587 ng/g FW and 113 ng/g FW, respectively, and cultivated transgenic tomato with mogroside III. This study provides a strategy for vegetable flavour improvement, paving the way for heterologous biosynthesis of mogrosides.
Collapse
|
16
|
Using systems metabolic engineering strategies for high-oil maize breeding. Curr Opin Biotechnol 2023; 79:102847. [PMID: 36446144 DOI: 10.1016/j.copbio.2022.102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Maize oil, which is a blend of fatty acid esters generated from triacylglycerol (TAG), is an important component of maize-derived food, feed, and biofuel. The kernel oil content in commercial high-oil maize hybrids averages ∼8%, which is far lower than that in developed high-oil maize lines (as high as 20%). Advances in high-oil maize genomics and genetics and the development of systems metabolic engineering technologies provide new opportunities for high-oil maize breeding. In this review, we discuss the possibility of using kernels and vegetative tissues as factories to produce TAG, eicosapentaenoic acid, and docosahexaenoic acid. We further propose specific implementation strategies based on the metabolic engineering of other species to develop transgenic and gene-editing products, as well as traditional breeding strategies, for application in high-oil maize breeding programs.
Collapse
|
17
|
Morelli L, Rodriguez-Concepcion M. Open avenues for carotenoid biofortification of plant tissues. PLANT COMMUNICATIONS 2023; 4:100466. [PMID: 36303429 PMCID: PMC9860184 DOI: 10.1016/j.xplc.2022.100466] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Plant carotenoids are plastidial isoprenoids that function as photoprotectants, pigments, and precursors of apocarotenoids such as the hormones abscisic acid and strigolactones. Humans do not produce carotenoids but need to obtain them from their diet as precursors of retinoids, including vitamin A. Carotenoids also provide numerous other health benefits. Multiple attempts to improve the carotenoid profile of different crops have been carried out by manipulating carotenoid biosynthesis, degradation, and/or storage. Here, we will focus on open questions and emerging subjects related to the use of biotechnology for carotenoid biofortification. After impressive achievements, new efforts should be directed to extend the use of genome-editing technologies to overcome regulatory constraints and improve consumer acceptance of the carotenoid-enriched products. Another challenge is to prevent off-target effects like those resulting from altered hormone levels and metabolic homeostasis. Research on biofortification of green tissues should also look for new ways to deal with the negative impact that altered carotenoid contents may have on photosynthesis. Once a carotenoid-enriched product has been obtained, additional effort should be devoted to confirming that carotenoid intake from the engineered food is also improved. This work involves ensuring post-harvest stability and assessing bioaccessibility of the biofortified product to confirm that release of carotenoids from the food matrix has not been negatively affected. Successfully addressing these challenges will ensure new milestones in carotenoid biotechnology and biofortification.
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
18
|
Babele PK, Srivastava A, Selim KA, Kumar A. Millet-inspired systems metabolic engineering of NUE in crops. Trends Biotechnol 2022; 41:701-713. [PMID: 36566140 DOI: 10.1016/j.tibtech.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
The use of nitrogen (N) fertilizers in agriculture has a great ability to increase crop productivity. However, their excessive use has detrimental effects on the environment. Therefore, it is necessary to develop crop varieties with improved nitrogen use efficiency (NUE) that require less N but have substantial yields. Orphan crops such as millets are cultivated in limited regions and are well adapted to lower input conditions. Therefore, they serve as a rich source of beneficial traits that can be transferred into major crops to improve their NUE. This review highlights the tremendous potential of systems biology to unravel the enzymes and pathways involved in the N metabolism of millets, which can open new possibilities to generate transgenic crops with improved NUE.
Collapse
Affiliation(s)
- Piyoosh K Babele
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute for Microbiology and Infection Medicine, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| |
Collapse
|
19
|
Zhao Y, Han J, Tan J, Yang Y, Li S, Gou Y, Luo Y, Li T, Xiao W, Xue Y, Hao Y, Xie X, Liu Y, Zhu Q. Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and Cre/loxP recombination. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1983-1995. [PMID: 35767383 PMCID: PMC9491458 DOI: 10.1111/pbi.13882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Functional genomics, synthetic biology and metabolic engineering require efficient tools to deliver long DNA fragments or multiple gene constructs. Although numerous DNA assembly methods exist, most are complicated, time-consuming and expensive. Here, we developed a simple and flexible strategy, unique nucleotide sequence-guided nicking endonuclease (UNiE)-mediated DNA assembly (UNiEDA), for efficient cloning of long DNAs and multigene stacking. In this system, a set of unique 15-nt 3' single-strand overhangs were designed and produced by nicking endonucleases (nickases) in vectors and insert sequences. We introduced UNiEDA into our modified Cre/loxP recombination-mediated TransGene Stacking II (TGSII) system to generate an improved multigene stacking system we call TGSII-UNiE. Using TGSII-UNiE, we achieved efficient cloning of long DNA fragments of different sizes and assembly of multiple gene cassettes. Finally, we engineered and validated the biosynthesis of betanin in wild tobacco (Nicotiana benthamiana) leaves and transgenic rice (Oryza sativa) using multigene stacking constructs based on TGSII-UNiE. In conclusion, UNiEDA is an efficient, convenient and low-cost method for DNA cloning and multigene stacking, and the TGSII-UNiE system has important application prospects for plant functional genomics, genetic engineering and synthetic biology research.
Collapse
Affiliation(s)
- Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yaqian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shuangchun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yajun Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yuyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Wenyu Xiao
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yu Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
20
|
Chen R, Yang C, Gao H, Shi C, Zhang Z, Lu G, Shen X, Tang Y, Li F, Lu Y, Ouyang B. Induced mutation in ELONGATED HYPOCOTYL5 abolishes anthocyanin accumulation in the hypocotyl of pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3455-3468. [PMID: 35963933 DOI: 10.1007/s00122-022-04192-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The causal gene, CaHY5 of a chemical induced green-hypocotyl mutant was identified by molecular mapping. CaHY5 regulates anthocyanin accumulation by directly binding to the promoter of genes in anthocyanin pathway. Morphological markers at seedling stage are useful indicators for F1 hybrid seeds screening. Pepper is a worldwide vegetable with diverse uses, and F1 hybrids are popular in the pepper industry. Hypocotyl color is a useful marker to identify F1 hybrid seeds. However, most pepper accessions have purple hypocotyl caused by anthocyanin accumulation, while green hypocotyl pepper accessions are rare. In this study, we identified a green hypocotyl mutant (e1898) from a pepper ethylmethanesulfonate (EMS) mutant library. By combining bulked segregant RNA-seq (BSR), genome resequencing and recombinant analysis, it was found that CaHY5 is the causal gene of this mutant. Virus-induced gene silencing (VIGS) of CaHY5 resulted in the decrease of anthocyanin accumulation in pepper hypocotyls. RNA-seq data showed that many genes related to anthocyanin biosynthesis and transport decreased significantly in the mutant. Yeast one-hybrid (Y1H) assays showed that CaHY5 can bind to the promoter of CaF3H, CaF3'5'H, CaDFR, CaANS and CaGST, which are important genes in anthocyanin biosynthesis or transport. Our results indicate that CaHY5 directly regulates anthocyanin biosynthesis and transport, thus governing anthocyanin accumulation in pepper hypocotyl. The mutant and gene identified in this work shall be valuable in the purity control of hybrid pepper seeds.
Collapse
Affiliation(s)
- Rong Chen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Can Yang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hu Gao
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunmei Shi
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiying Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangyu Lu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyan Shen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Tang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Zhan C, Shen S, Yang C, Liu Z, Fernie AR, Graham IA, Luo J. Plant metabolic gene clusters in the multi-omics era. TRENDS IN PLANT SCIENCE 2022; 27:981-1001. [PMID: 35365433 DOI: 10.1016/j.tplants.2022.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Secondary metabolism in plants gives rise to a vast array of small-molecule natural products. The discovery of operon-like gene clusters in plants has provided a new perspective on the evolution of specialized metabolism and the opportunity to rapidly advance the metabolic engineering of natural product production. Here, we review historical aspects of the study of plant metabolic gene clusters as well as general strategies for identifying plant metabolic gene clusters in the multi-omics era. We also emphasize the exploration of their natural variation and evolution, as well as new strategies for the prospecting of plant metabolic gene clusters and a deeper understanding of how their structure influences their function.
Collapse
Affiliation(s)
- Chuansong Zhan
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shuangqian Shen
- College of Tropical Crops, Hainan University, Haikou 570228, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alisdair R Fernie
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Ian A Graham
- Center for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
22
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
23
|
Liao J, Liu T, Xie L, Mo C, Huang X, Cui S, Jia X, Lan F, Luo Z, Ma X. Plant Metabolic Engineering by Multigene Stacking: Synthesis of Diverse Mogrosides. Int J Mol Sci 2022; 23:ijms231810422. [PMID: 36142335 PMCID: PMC9499096 DOI: 10.3390/ijms231810422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mogrosides are a group of health-promoting natural products that extracted from Siraitia grosvenorii fruit (Luo-han-guo or monk fruit), which exhibited a promising practical application in natural sweeteners and pharmaceutical development. However, the production of mogrosides is inadequate to meet the need worldwide, and uneconomical synthetic chemistry methods are not generally recommended for structural complexity. To address this issue, an in-fusion based gene stacking strategy (IGS) for multigene stacking has been developed to assemble 6 mogrosides synthase genes in pCAMBIA1300. Metabolic engineering of Nicotiana benthamiana and Arabidopsis thaliana to produce mogrosides from 2,3-oxidosqualene was carried out. Moreover, a validated HPLC-MS/MS method was used for the quantitative analysis of mogrosides in transgenic plants. Herein, engineered Arabidopsis thaliana produced siamenoside I ranging from 29.65 to 1036.96 ng/g FW, and the content of mogroside III at 202.75 ng/g FW, respectively. The production of mogroside III was from 148.30 to 252.73 ng/g FW, and mogroside II-E with concentration between 339.27 and 5663.55 ng/g FW in the engineered tobacco, respectively. This study provides information potentially applicable to develop a powerful and green toolkit for the production of mogrosides.
Collapse
Affiliation(s)
- Jingjing Liao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tingyao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiyang Huang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Fusheng Lan
- Guilin GFS Monk Fruit Corp, Guilin 541006, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.L.); (X.M.); Tel.: +86-(010)-57833155 (X.M.)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.L.); (X.M.); Tel.: +86-(010)-57833155 (X.M.)
| |
Collapse
|
24
|
Guan P, Li X, Zhuang L, Wu B, Huang J, Zhao J, Qiao L, Zheng J, Hao C, Zheng X. Genetic dissection of lutein content in common wheat via association and linkage mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3127-3141. [PMID: 35951035 DOI: 10.1007/s00122-022-04175-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Genetic architecture controlling grain lutein content of common wheat was investigated through an integration of genome-wide association study (GWAS) and linkage analysis. Putative candidate genes involved in carotenoid metabolism and regulation were identified, which provide a basis for gene cloning and development of nutrient-enriched wheat varieties through molecular breeding. Lutein, known as 'the eye vitamin', is an important component of wheat nutritional and end-use quality. However, the genetic manipulation of grain lutein content (LUC) in common wheat has not previously been well studied. Here, quantitative trait loci (QTL) associated with the LUC measured by high performance liquid chromatography (HPLC) were first identified by integrating a genome-wide association study (GWAS) and linkage mapping. A Chinese wheat mini-core collection (MCC) of 262 accessions and a doubled haploid (DH) population derived from Jinchun 7 and L1219 were genotyped using the 90K SNP array. A total of 124 significant marker-trait associations (MTAs) on all 21 wheat chromosomes except for 1A, 4D, and 5B that formed 58 QTL were detected. Among them, six stable QTL were identified on chromosomes 2AL, 2DS, 3BL, 3DL, 7AL, and 7BS. Meanwhile, three of the ten QTL identified in the DH population, QLuc.5A.1 and QLuc.5A.2 on chromosome 5AL and QLuc.6A.2 on 6AS, were stable and independently explained 5.58-10.86% of the phenotypic variation. The QLuc.6A.2 region colocalized with two MTAs identified by GWAS. Moreover, 71 carotenoid metabolism-related candidate genes were identified, and the allelic effects were analyzed in the MCC panel based on the 90K array. Results revealed that the genes CYP97A3 (Chr. 6B) and CCD1 (Chr. 5A) were significantly associated with LUC. Additionally, the gene PSY3 (QLuc.5A.1) and several candidate genes involved in the methylerythritol 4-phosphate (MEP) pathways colocalized with stable QTL regions. The present study provides potential targets for future functional gene exploration and molecular breeding in common wheat.
Collapse
Affiliation(s)
- Panfeng Guan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Wheat Research, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture, Taiyuan, 030031, China
| | - Xiaohua Li
- Institute of Wheat Research, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture, Taiyuan, 030031, China
| | - Lei Zhuang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture, Taiyuan, 030031, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture, Taiyuan, 030031, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture, Taiyuan, 030031, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture, Taiyuan, 030031, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture, Taiyuan, 030031, China.
| |
Collapse
|
25
|
Kim HM, Park SH, Park SY, Ma SH, Do JH, Kim AY, Jeon MJ, Shim JS, Joung YH. Identification of essential element determining fruit-specific transcriptional activity in the tomato HISTIDINE DECARBOXYLASE A gene promoter. PLANT CELL REPORTS 2022; 41:1721-1731. [PMID: 35739429 DOI: 10.1007/s00299-022-02886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In SlHDC-A promoter, SlHDC-A core-ES is an essential region for fruit-specific expression and interacts with GATA, HSF and AP1. Triplication of essential region was proposed as a minimal fruit-specific promoter. In plant biotechnology, fruit-specific promoter is an important tool for the improvement and utilization of tomato fruit. To expand our understanding on fruit-specific expression, it is necessary to determine the promoter region involved in fruit-specific transcriptional activity and transcriptional regulations of the promoter. In previous study, we isolated a fruit-specific SlHDC-A core promoter specifically expressed during tomato ripening stages. In this study, we identified SlHDC-A promoter region (SlHDC-A core-ES) that is essential for fruit-specific expression of the SlHDC-A. To understand the molecular mechanisms of fruit-specific expression of the SlHDC-A promoter, we first identified the putative transcription factor binding elements in the SlHDC-A core promoter region and corresponding putative transcription factors which are highly expressed during fruit maturation. Yeast one hybrid analysis confirmed that GATA, HSF, and AP1 interact with the SlHDC-A core-ES promoter region. Further transactivation analysis revealed that expression of the three transcription factors significantly activated expression of a reporter gene driven by SlHDC-A core-ES promoter. These results suggest that GATA, HSF, and AP1 are involved in the fruit-specific expression of SlHDC-A promoter. Furthermore, the synthetic promoter composed of three tandem repeats of SlHDC-A core-ES showed relatively higher activity than the constitutive 35S promoter in the transgenic tomato fruits at the orange stage. Taken together, we propose a new synthetic promoter that is specifically expressed during fruit ripening stage.
Collapse
Affiliation(s)
- Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se Hee Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ah Young Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mi Jin Jeon
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
26
|
Yang Y, Yuan Z, Ning C, Zhao B, Wang R, Zheng X, Liu Y, Chen J, He L. The Pea R2R3-MYB Gene Family and Its Role in Anthocyanin Biosynthesis in Flowers. Front Genet 2022; 13:936051. [PMID: 35873471 PMCID: PMC9299958 DOI: 10.3389/fgene.2022.936051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Pea (Pisum sativum L.) is one of the most important legume crops in the world, and it has attracted great attention for its high nutritive values. Recently, the crop breeding program has been focused on the crop metabolic engineering (i.e., color, flavor, nutrition) to improve the quality of crop. As a major group of transcription factors forming the ternary MYB–bHLH–WD repeat protein (MBW) complex to regulate the anthocyanin biosynthesis pathway, members of R2R3-MYB gene family have always been the focus of research targets to improve the valuable metabolic product of crops. Until now, few report about the R2R3-MYB gene family of pea has been released. In this study, we identified 119 R2R3-MYB genes in the assembled pea genome (Version 1a), of which 111 were distributed across 14 chromosomes. Combining with the 126 R2R3-MYB protein sequences of Arabidopsis, we categorized 245 R2R3-MYB proteins into 36 subgroups according to sequence similarity and phylogenetic relationships. There was no member from subgroup 12, 15 and 29 existing in pea genome, whereas three novel subgroups were found in pea and named as N1-N3. Further analyses of conserved domains and Motifs, gene structures, and chromosomal locations showed that the typical R2 and R3 domains were present across all R2R3-MYB proteins, and Motif 1, 2, and 3 were identified in most members. Most of them had no more than two introns. Additionally, 119 pea R2R3-MYB genes did not experience large-scale duplication events. Finally, we concluded that several candidate genes may be responsible for the spatiotemporal accumulation of anthocyanins in pea petals. PsMYB116 was predominantly expressed in the dorsal petals to presumably activate the anthocyanin biosynthesis pathway, while PsMYB37 and PsMYB32 may positively regulates the anthocyanin accumulation in the lateral petals. This study not only provides a good reference to further characterize the diverse functions of R2R3-MYB genes but also helps researchers to understand the color formation of pea flowers.
Collapse
Affiliation(s)
- Yating Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Zhuo Yuan
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Conghui Ning
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,College of Life Science, Southwest Forestry University, Kunming, China
| | - Baoling Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
27
|
Transgenic Forsythia plants expressing sesame cytochrome P450 produce beneficial lignans. Sci Rep 2022; 12:10152. [PMID: 35710718 PMCID: PMC9203787 DOI: 10.1038/s41598-022-14401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Lignans are widely distributed plant secondary metabolites that have received attention for their benefits to human health. Sesamin is a furofran lignan that is conventionally extracted from Sesamum seeds and shows anti-oxidant and anti-inflammatory activities in the human liver. Sesamin is biosynthesized by the Sesamum-specific enzyme CYP81Q1, and the natural sources of sesamin are annual plants that are at risk from climate change. In contrast, Forsythia species are widely distributed perennial woody plants that highly accumulate the precursor lignan pinoresinol. To sustainably supply sesamin, we developed a transformation method for Forsythia leaf explants and generated transgenic Forsythia plants that heterologously expressed the CYP81Q1 gene. High-performance liquid chromatography (HPLC) and LC-mass spectrometry analyses detected sesamin and its intermediate piperitol in the leaves of two independent transgenic lines of F. intermedia and F. koreana. We also detected the accumulation of sesamin and piperitol in their vegetatively propagated descendants, demonstrating the stable and efficient production of these lignans. These results indicate that CYP81Q1-transgenic Forsythia plants are promising prototypes to produce diverse lignans and provide an important strategy for the cost-effective and scalable production of lignans.
Collapse
|
28
|
Han J, Ma K, Li H, Su J, Zhou L, Tang J, Zhang S, Hou Y, Chen L, Liu Y, Zhu Q. All-in-one: a robust fluorescent fusion protein vector toolbox for protein localization and BiFC analyses in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1098-1109. [PMID: 35179286 PMCID: PMC9129086 DOI: 10.1111/pbi.13790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 05/20/2023]
Abstract
Fluorescent tagging protein localization (FTPL) and bimolecular fluorescence complementation (BiFC) are popular tools for in vivo analyses of the subcellular localizations of proteins and protein-protein interactions in plant cells. The efficiency of fluorescent fusion protein (FFP) expression analyses is typically impaired when the FFP genes are co-transformed on separate plasmids compared to when all are cloned and transformed in a single vector. Functional genomics applications using FFPs such as a gene family studies also often require the generation of multiple plasmids. Here, to address these needs, we developed an efficient, modular all-in-one (Aio) FFP (AioFFP) vector toolbox, including a set of fluorescently labelled organelle markers, FTPL and BiFC plasmids and associated binary vectors. This toolbox uses Gibson assembly (GA) and incorporates multiple unique nucleotide sequences (UNSs) to facilitate efficient gene cloning. In brief, this system enables convenient cloning of a target gene into various FFP vectors or the insertion of two or more target genes into the same FFP vector in a single-tube GA reaction. This system also enables integration of organelle marker genes or fluorescently fused target gene expression units into a single transient expression plasmid or binary vector. We validated the AioFFP system by testing genes encoding proteins known to be functional in FTPL and BiFC assays. In addition, we performed a high-throughput assessment of the accurate subcellular localizations of an uncharacterized rice CBSX protein subfamily. This modular UNS-guided GA-mediated AioFFP vector toolkit is cost-effective, easy to use and will promote functional genomics research in plants.
Collapse
Affiliation(s)
- Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Kun Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant ProtectionPlant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Lian Zhou
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jintao Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Shijuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yuke Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
29
|
Hamdan MF, Mohd Noor SN, Abd-Aziz N, Pua TL, Tan BC. Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. PLANTS (BASEL, SWITZERLAND) 2022; 11:1297. [PMID: 35631721 PMCID: PMC9146367 DOI: 10.3390/plants11101297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Technological applications in agriculture have evolved substantially to increase crop yields and quality to meet global food demand. Conventional techniques, such as seed saving, selective breeding, and mutation breeding (variation breeding), have dramatically increased crop production, especially during the 'Green Revolution' in the 1990s. However, newer issues, such as limited arable lands, climate change, and ever-increasing food demand, pose challenges to agricultural production and threaten food security. In the following 'Gene Revolution' era, rapid innovations in the biotechnology field provide alternative strategies to further improve crop yield, quality, and resilience towards biotic and abiotic stresses. These innovations include the introduction of DNA recombinant technology and applications of genome editing techniques, such as transcription activator-like effector (TALEN), zinc-finger nucleases (ZFN), and clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR/Cas) systems. However, the acceptance and future of these modern tools rely on the regulatory frameworks governing their development and production in various countries. Herein, we examine the evolution of technological applications in agriculture, focusing on the motivations for their introduction, technical challenges, possible benefits and concerns, and regulatory frameworks governing genetically engineered product development and production.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Siti Nurfadhlina Mohd Noor
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Nazrin Abd-Aziz
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Teen-Lee Pua
- Topplant Laboratories Sdn. Bhd., Jalan Ulu Beranang, Negeri Sembilan 71750, Malaysia;
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
30
|
Heterologous Biosynthesis of Health-Promoting Baicalein in Lycopersicon esculentum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103086. [PMID: 35630564 PMCID: PMC9146059 DOI: 10.3390/molecules27103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
Abstract
Baicalein is a valuable flavonoid isolated from the medicinal plant Scutellaria baicalensis Georgi, which exhibits intensive biological activities, such as anticancer and antiviral activities. However, its production is limited in the root with low yield. In this study, In-Fusion and 2A peptide linker were developed to assemble SbCLL-7, SbCHI, SbCHS-2, SbFNSII-2 and SbCYP82D1.1 genes driven by the AtPD7, CaMV 35S and AtUBQ10 promoters with HSP, E9 and NOS terminators, and were used to engineer baicalein biosynthesis in transgenic tomato plants. The genetically modified tomato plants with this construct synthesized baicalein, ranging from 150 ng/g to 558 ng/g FW (fresh weight). Baicalein-fortified tomatoes have the potential to be health-promoting fresh vegetables and provide an alternative source of baicalein production, with great prospects for market application.
Collapse
|
31
|
Zhu Q, Tan J, Liu YG. Molecular farming using transgenic rice endosperm. Trends Biotechnol 2022; 40:1248-1260. [PMID: 35562237 DOI: 10.1016/j.tibtech.2022.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
Abstract
Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids. Here, we explore the use of molecular farming from producing medicines to developing functional food crops (biofortification). We review recent progress in producing pharmaceutical proteins and bioactive substances in rice endosperm and compare this platform with other plant expression systems. We describe how rice endosperm could be modified to design metabolic pathways and express and store stable products and discuss the factors restricting the commercialization of transgenic rice products and future prospects.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
32
|
Role of Nodulation-Enhancing Rhizobacteria in the Promotion of Medicago sativa Development in Nutrient-Poor Soils. PLANTS 2022; 11:plants11091164. [PMID: 35567168 PMCID: PMC9099972 DOI: 10.3390/plants11091164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Legumes are usually used as cover crops to improve soil quality due to the biological nitrogen fixation that occurs due to the interaction of legumes and rhizobia. This symbiosis can be used to recover degraded soils using legumes as pioneer plants. In this work, we screened for bacteria that improve the legume–rhizobia interaction in nutrient-poor soils. Fourteen phosphate solubilizer-strains were isolated, showing at least three out of the five tested plant growth promoting properties. Furthermore, cellulase, protease, pectinase, and chitinase activities were detected in three of the isolated strains. Pseudomonas sp. L1, Chryseobacterium soli L2, and Priestia megaterium L3 were selected to inoculate seeds and plants of Medicago sativa using a nutrient-poor soil as substrate under greenhouse conditions. The effects of the three bacteria individually and in consortium showed more vigorous plants with increased numbers of nodules and a higher nitrogen content than non-inoculated plants. Moreover, bacterial inoculation increased plants’ antioxidant activities and improved their development in nutrient-poor soils, suggesting an important role in the stress mechanisms of plants. In conclusion, the selected strains are nodulation-enhancing rhizobacteria that improve leguminous plants growth and nodulation in nutrient-poor soils and could be used by sustainable agriculture to promote plants’ development in degraded soils.
Collapse
|
33
|
Scarano A, Gerardi C, Sommella E, Campiglia P, Chieppa M, Butelli E, Santino A. Engineering the polyphenolic biosynthetic pathway stimulates metabolic and molecular changes during fruit ripening in "Bronze" tomato. HORTICULTURE RESEARCH 2022; 9:uhac097. [PMID: 35795395 PMCID: PMC9249581 DOI: 10.1093/hr/uhac097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The metabolic engineered Bronze tomato line is characterized by the constitutive over-expression of the VvStSy gene encoding a structural protein responsible for the stilbenoids biosynthesis and the fruit-specific over-expression of AmDel/Rosea1 and AtMYB12 genes encoding transcription factors that activate the polyphenol biosynthetic pathway. This tomato line is known for the increased levels of polyphenols in ripe fruits and for beneficial health promoting antioxidant and anti-inflammatory effects. In this study we analyzed the transcriptional and metabolic profiling in mature green, breaker, orange and ripe fruits compared to the normal tomato counterparts during ripening, to unravel the effect of regulatory and structural transgenes on metabolic fluxes of primary and secondary metabolisms. Our results showed that the shikimate synthase (SK) gene was up-regulated in the Bronze fruit, and the transcriptional activation is consistent with the metabolic changes observed throughout fruit ripening. These results paralleled with a reduced level of simple sugars and malate, highlighting the consumption of primary metabolites to favor secondary metabolites production and accumulation. Finally, carotenoids quantification revealed a change in the lycopene/β-carotene ratio in the Bronze fruit as a consequence of significant lower level of the first and higher levels of the latter. The high polyphenols and β-carotene content displayed by the Bronze fruit at the later stages of fruit ripening renders this line an interesting model to study the additive or synergic effects of these phyto-chemicals in the prevention of human pathologies.
Collapse
Affiliation(s)
- Aurelia Scarano
- ISPA-CNR, Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Carmela Gerardi
- ISPA-CNR, Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Marcello Chieppa
- Department of Public Health, Experimental and Forensic Medicine, Dietetics and Clinical Nutrition Laboratory, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
34
|
Jeong YS, Choi H, Kim JK, Baek SA, You MK, Lee D, Lim SH, Ha SH. Overexpression of OsMYBR22/OsRVE1 transcription factor simultaneously enhances chloroplast-dependent metabolites in rice grains. Metab Eng 2022; 70:89-101. [PMID: 35032672 DOI: 10.1016/j.ymben.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022]
Abstract
The OsMYBR22 (same to OsRVE1), an R1type-MYB transcription factor belonging to the rice CCA1-like family, was upregulated under blue light condition, which enhanced the chlorophyll and carotenoid accumulation. The overexpression of OsMYBR22 in rice (Oryza sativa, L) led to everlasting green seeds and leaves of a darker green. Transgene expression patterns showed more concordance with chlorophyll than carotenoid profiles. The transcript levels of most genes related to chlorophyll biosynthesis and degradation examined were similarly repressed in the late maturing stages of seeds. It proposed that rice seeds have the feedback regulatory mechanism for chlorophyll biosynthesis and also implied that evergreen seed traits might be caused due to the inhibition of degradation rather than the promotion of biosynthesis for chlorophylls. Metabolomics revealed that OsMYBR22 overexpression largely and simultaneously enhanced the contents of nutritional and functional metabolites such as chlorophylls, carotenoids, amino acids including lysine and threonine, and amino acid derivatives including γ-aminobutyric acid, which are mostly biosynthesized in chloroplasts. Transmission electron microscopy anatomically demonstrated greener phenotypes with an increase in the number and thickness of chloroplasts in leaves and the structurally retentive chloroplasts in tubular and cross cells of the seed inner pericarp region. In conclusion, the molecular actions of OsMYBR22/OsRVE1 provided a new strategy for the biofortified rice variety, an "Evergreen Rice," with high accumulation of chloroplast-localized metabolites in rice grains.
Collapse
Affiliation(s)
- Ye Sol Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Heebak Choi
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seung-A Baek
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon, 22012, Republic of Korea
| | - Min-Kyoung You
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Dongho Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sun-Hyung Lim
- School of Biotechnology, Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
35
|
Amiot MJ, Latgé C, Plumey L, Raynal S. Intake Estimation of Phytochemicals in a French Well-Balanced Diet. Nutrients 2021; 13:nu13103628. [PMID: 34684628 PMCID: PMC8539512 DOI: 10.3390/nu13103628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Phytochemicals contribute to the health benefits of plant-rich diets, notably through their antioxidant and anti-inflammatory effects. However, recommended daily amounts of the main dietary phytochemicals remain undetermined. We aimed to estimate the amounts of phytochemicals in a well-balanced diet. A modelled diet was created, containing dietary reference intakes for adults in France. Two one-week menus (summer and winter) were devised to reflect typical intakes of plant-based foods. Existing databases were used to estimate daily phytochemical content for seven phytochemical families: phenolic acids, flavonoids (except anthocyanins), anthocyanins, tannins, organosulfur compounds, carotenoids, and caffeine. The summer and winter menus provided 1607 and 1441 mg/day, respectively, of total polyphenols (phenolic acids, flavonoids, anthocyanins, and tannins), the difference being driven by reduced anthocyanin intake in winter. Phenolic acids, flavonoids (including anthocyanins), and tannins accounted for approximately 50%, 25%, and 25% of total polyphenols, respectively. Dietary carotenoid and organosulfur compound content was estimated to be approximately 17 and 70 mg/day, respectively, in both seasons. Finally, both menus provided approximately 110 mg/day of caffeine, exclusively from tea and coffee. Our work supports ongoing efforts to define phytochemical insufficiency states that may occur in individuals with unbalanced diets and related disease risk factors.
Collapse
Affiliation(s)
- Marie-Josèphe Amiot
- INRAE, MoISA, University of Montpellier, CIHEAM-IAMM, CIRAD, Institut Agro-Montpellier SupAgro, IRD, Campus La Gaillarde, 2 Place Pierre Viala, 34000 Montpellier, France
- Correspondence: ; Tel.: +33-(0)4-99-61-22-16
| | - Christian Latgé
- Pierre Fabre Laboratories, Langlade-3 Avenue Hubert Curien-BP 13 562, CEDEX 1, 31035 Toulouse, France;
| | - Laurence Plumey
- NUTRITION CO&CO, 11 Avenue des Vignes, 92210 St Cloud, France;
| | - Sylvie Raynal
- Naturactive, Pierre Fabre Laboratories, 29 Avenue du Sidobre, 81106 Castres, France;
| |
Collapse
|
36
|
Biotechnological development of plants for space agriculture. Nat Commun 2021; 12:5998. [PMID: 34650060 PMCID: PMC8516993 DOI: 10.1038/s41467-021-26238-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
The ideal plant for cultivation in space would provide as many nutrients from as few inputs as possible. Here, we discuss how biotechnology could be used to produce a potato cultivar suitable for humans in space. The logistical and practical challenges of supplying food for long-term space missions are substantial. In this comment, the authors discuss potential biotechnological approaches that could be used to aid the production of food crops in space.
Collapse
|
37
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
38
|
Wu L, Han L, Li Q, Wang G, Zhang H, Li L. Using Interactome Big Data to Crack Genetic Mysteries and Enhance Future Crop Breeding. MOLECULAR PLANT 2021; 14:77-94. [PMID: 33340690 DOI: 10.1016/j.molp.2020.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
The functional genes underlying phenotypic variation and their interactions represent "genetic mysteries". Understanding and utilizing these genetic mysteries are key solutions for mitigating the current threats to agriculture posed by population growth and individual food preferences. Due to advances in high-throughput multi-omics technologies, we are stepping into an Interactome Big Data era that is certain to revolutionize genetic research. In this article, we provide a brief overview of current strategies to explore genetic mysteries. We then introduce the methods for constructing and analyzing the Interactome Big Data and summarize currently available interactome resources. Next, we discuss how Interactome Big Data can be used as a versatile tool to dissect genetic mysteries. We propose an integrated strategy that could revolutionize genetic research by combining Interactome Big Data with machine learning, which involves mining information hidden in Big Data to identify the genetic models or networks that control various traits, and also provide a detailed procedure for systematic dissection of genetic mysteries,. Finally, we discuss three promising future breeding strategies utilizing the Interactome Big Data to improve crop yields and quality.
Collapse
Affiliation(s)
- Leiming Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongwei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Transforming traditional nutrition paradigms with synthetic biology driven microbial production platforms. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
40
|
Liu T, Yu S, Xu Z, Tan J, Wang B, Liu YG, Zhu Q. Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput Struct Biotechnol J 2020; 18:3278-3286. [PMID: 33209212 PMCID: PMC7653203 DOI: 10.1016/j.csbj.2020.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/22/2022] Open
Abstract
Crocins are a group of highly valuable apocarotenoid-derived pigments mainly produced in Crocus sativus stigmas and Gardenia jasminoides fruits, which display great pharmacological activities for human health, such as anticancer, reducing the risk of atherosclerosis, and preventing Alzheimer's disease. However, traditional sources of crocins are no longer sufficient to meet current demands. The recent clarification of the crocin biosynthetic pathway opens up the possibility of large-scale production of crocins by synthetic metabolic engineering methods. In this review, we mainly introduce the crocin biosynthetic pathway, subcellular route, related key enzymes, and its synthetic metabolic engineering, as well as its challenges and prospects, with a view to providing useful references for further studies on the synthetic metabolic engineering of crocins.
Collapse
Affiliation(s)
- Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
41
|
Henkhaus N, Bartlett M, Gang D, Grumet R, Jordon‐Thaden I, Lorence A, Lyons E, Miller S, Murray S, Nelson A, Specht C, Tyler B, Wentworth T, Ackerly D, Baltensperger D, Benfey P, Birchler J, Chellamma S, Crowder R, Donoghue M, Dundore‐Arias JP, Fletcher J, Fraser V, Gillespie K, Guralnick L, Haswell E, Hunter M, Kaeppler S, Kepinski S, Li F, Mackenzie S, McDade L, Min Y, Nemhauser J, Pearson B, Petracek P, Rogers K, Sakai A, Sickler D, Taylor C, Wayne L, Wendroth O, Zapata F, Stern D. Plant science decadal vision 2020-2030: Reimagining the potential of plants for a healthy and sustainable future. PLANT DIRECT 2020; 4:e00252. [PMID: 32904806 PMCID: PMC7459197 DOI: 10.1002/pld3.252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/15/2020] [Indexed: 05/17/2023]
Abstract
Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020-2030 frames our ability to perform vital and far-reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1-4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant-based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid-response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non-invasive imaging, sensors, and plug-and-play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence-assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrew Nelson
- Boyce Thompson Institute for Plant ResearchIthacaNYUSA
| | | | - Brett Tyler
- Center for Genome Research and Biocomputing, and Department of Botany and Plant PathologyOregon State UniversityCorvallisArmenia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fay‐Wei Li
- Boyce Thompson Institute, and Plant Biology SectionCornell UniversityIthacaNYUSA
| | | | | | - Ya Min
- Harvard UniversitySeattleWAUSA
| | | | | | | | - Katie Rogers
- American Society of Plant BiologistsRockvilleMDUSA
| | | | | | | | | | | | | | - David Stern
- Boyce Thompson Institute for Plant ResearchIthacaNYUSA
| |
Collapse
|
42
|
Das P, Adak S, Lahiri Majumder A. Genetic Manipulation for Improved Nutritional Quality in Rice. Front Genet 2020; 11:776. [PMID: 32793287 PMCID: PMC7393646 DOI: 10.3389/fgene.2020.00776] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Food with higher nutritional value is always desired for human health. Rice is the prime staple food in more than thirty developing countries, providing at least 20% of dietary protein, 3% of dietary fat and other essential nutrients. Several factors influence the nutrient content of rice which includes agricultural practices, post-harvest processing, cultivar type as well as manipulations followed by selection through breeding and genetic means. In addition to mutation breeding, genetic engineering approach also contributed significantly for the generation of nutrition added varieties of rice in the last decade or so. In the present review, we summarize the research update on improving the nutritional characteristics of rice by using genetic engineering and mutation breeding approach. We also compare the conventional breeding techniques of rice with modern molecular breeding techniques toward the generation of nutritionally improved rice variety as compared to other cereals in areas of micronutrients and availability of essential nutrients such as folate and iron. In addition to biofortification, our focus will be on the efforts to generate low phytate in seeds, increase in essential fatty acids or addition of vitamins (as in golden rice) all leading to the achievements in rice nutrition science. The superiority of biotechnology over conventional breeding being already established, it is essential to ascertain that there are no serious negative agronomic consequences for consumers with any difference in grain size or color or texture, when a nutritionally improved variety of rice is generated through genetic engineering technology.
Collapse
|
43
|
Cui X, Han B. Plant Communications: An Open Access Venue for Communicating Diverse Plant Science Discoveries. PLANT COMMUNICATIONS 2020; 1:100018. [PMID: 33404543 PMCID: PMC7747980 DOI: 10.1016/j.xplc.2019.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
| | - Bin Han
- Editor-in-Chief, Plant Communications
| |
Collapse
|