1
|
Guo X, Yang Q, Cheng L, Hu G, Liu Z, Lan Y, Cheng Y. Metabolome and Transcriptome Combined Reveal the Main Floral Volatile Compounds and Key Regulatory Genes of Castanea mollissima. PLANTS (BASEL, SWITZERLAND) 2024; 13:2865. [PMID: 39458813 PMCID: PMC11511371 DOI: 10.3390/plants13202865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Chestnut (Castanea mollissima) is an economically important forest tree species, and its flowers possess functions such as repelling mosquitoes, killing bacteria, and clearing heat. However, the regulatory mechanisms of floral volatile organic compounds (VOCs) in chestnut are still unclear. This study analyzed the contents of major volatile compounds and related gene expression levels in chestnut flowers during the initial flowering stage (IFS) and full-flowering stage (FFS) using metabolomics and transcription techniques. In total, 926 volatile compounds were detected, mainly terpenes, heterocyclic compounds, and esters. Acetylenone, styrene, and β-pinene had contents that exceeded 5% in FFS chestnut flowers. In total, 325 differential metabolites between the IFS and FFS were significantly (p < 0.05) enriched in the biosynthetic pathways of sesquiterpenes and triterpenes, as well as the ethylbenzene metabolic pathway. In total, 31 differentially expressed genes (DEGs) were related to terpenoid biosynthesis. There were only two DEGs related to the ethylbenzene metabolic pathway. In summary, we identified the volatile components of chestnut flowers and analyzed the changes in the contents of major volatile compounds in the flowers and the expression patterns of the related genes. The research results are helpful for understanding the regulation of VOCs in chestnut flowers.
Collapse
Affiliation(s)
- Xiaomeng Guo
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China;
- College of Forestry, Shenyang Agriculture University, Shenyang 110866, China;
| | - Qianyu Yang
- College of Forestry, Shenyang Agriculture University, Shenyang 110866, China;
| | - Lili Cheng
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Guanglong Hu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Zhao Liu
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China;
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanping Lan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Yunhe Cheng
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| |
Collapse
|
2
|
Sun X, Bi X, Li G, Cui S, Xu X, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial metabolic engineering of Bacillus subtilis for menaquinone-7 biosynthesis. Biotechnol Bioeng 2024; 121:3338-3350. [PMID: 38965781 DOI: 10.1002/bit.28800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Menaquinone-7 (MK-7), a form of vitamin K2, supports bone health and prevents arterial calcification. Microbial fermentation for MK-7 production has attracted widespread attention because of its low cost and short production cycles. However, insufficient substrate supply, unbalanced precursor synthesis, and low catalytic efficiency of key enzymes severely limited the efficiency of MK-7 synthesis. In this study, utilizing Bacillus subtilis BSAT01 (with an initial MK-7 titer of 231.0 mg/L) obtained in our previous study, the glycerol metabolism pathway was first enhanced to increase the 3-deoxy-arabino-heptulonate 7-phosphate (DHAP) supply, which led to an increase in MK-7 titer to 259.7 mg/L. Subsequently, a combination of knockout strategies predicted by the genome-scale metabolic model etiBsu1209 was employed to optimize the central carbon metabolism pathway, and the resulting strain showed an increase in MK-7 production from 259.7 to 318.3 mg/L. Finally, model predictions revealed the methylerythritol phosphate pathway as the major restriction pathway, and the pathway flux was increased by heterologous introduction (Introduction of Dxs derived from Escherichia coli) and fusion expression (End-to-end fusion of two enzymes by a linker peptide), resulting in a strain with a titer of 451.0 mg/L in a shake flask and 474.0 mg/L in a 50-L bioreactor. This study achieved efficient MK-7 synthesis in B. subtilis, laying the foundation for large-scale MK-7 bioproduction.
Collapse
Affiliation(s)
- Xian Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, China
| | - Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guyue Li
- Richen Bioengineering Co., Ltd., Nantong, China
| | - Shixiu Cui
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Evans SE, Xu Y, Bergman ME, Ford SA, Liu Y, Sharkey TD, Phillips MA. Rubisco supplies pyruvate for the 2-C-methyl-D-erythritol-4-phosphate pathway. NATURE PLANTS 2024; 10:1453-1463. [PMID: 39367254 DOI: 10.1038/s41477-024-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (Rubisco) produces pyruvate in the chloroplast through β-elimination of the aci-carbanion intermediate1. Here we show that this side reaction supplies pyruvate for isoprenoid, fatty acid and branched-chain amino acid biosynthesis in photosynthetically active tissue. 13C labelling studies of intact Arabidopsis plants demonstrate that the total carbon commitment to pyruvate is too large for phosphoenolpyruvate to serve as a precursor. Low oxygen stimulates Rubisco carboxylase activity and increases pyruvate production and flux through the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which supplies the precursors for plastidic isoprenoid biosynthesis2,3. Metabolome analysis of mutants defective in phosphoenolpyruvate or pyruvate import and biochemical characterization of isolated chloroplasts further support Rubisco as the main source of pyruvate in chloroplasts. Seedlings incorporated exogenous,13C-labelled pyruvate into MEP pathway intermediates, while adult plants did not, underscoring the developmental transition in pyruvate sourcing. Rubisco β-elimination leading to pyruvate constituted 0.7% of the product profile in in vitro assays, which translates to 2% of the total carbon leaving the Calvin-Benson-Bassham cycle. These insights solve the "pyruvate paradox"4, improve the fit of metabolic models for central metabolism and connect the MEP pathway directly to carbon assimilation.
Collapse
Affiliation(s)
- Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Yuan Xu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Scott A Ford
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Yingxia Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Michael A Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
4
|
Gayubas B, Castillo MC, León J. Arabidopsis VQ motif-containing proteins VQ1 and VQ10 interact with plastidial 1-deoxy-D-xylulose-5-phosphate synthase. Sci Rep 2024; 14:18930. [PMID: 39147804 DOI: 10.1038/s41598-024-70061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
VQ1 and VQ10 are largely unstructured homologous proteins with a significant potential for protein-protein interactions. Yeast two-hybrid (Y2H) analysis confirmed that both proteins interact not only with themselves and each other but also with other VQ and WRKY proteins. Screening an Arabidopsis Y2H library with VQ1 as bait identified 287 interacting proteins. Validation of the screening confirmed that interactions with VQ1 also occurred with VQ10, supporting their functional homology. Although VQ1 or VQ10 proteins do not localize in plastids, 47 VQ1-targets were found to be plastidial proteins. In planta interaction with the isoprenoid biosynthetic enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS) was confirmed by co-immunoprecipitation. DXS oligomerizes through redox-regulated intermolecular disulfide bond formation, and the interaction with VQ1 or VQ10 do not involve their unique C residues. The VQ-DXS protein interaction did not alter plastid DXS localization or its oligomerization state. Although plants with enhanced or reduced VQ1 and VQ10 expression did not exhibit significantly altered levels of isoprenoids compared to wild-type plants, they did display significantly improved or diminished photosynthesis efficiency, respectively.
Collapse
Affiliation(s)
- Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain.
| |
Collapse
|
5
|
Chen N, Cao W, Yuan Y, Wang Y, Zhang X, Chen Y, Yiasmin MN, Tristanto NA, Hua X. Recent advancements in mogrosides: A review on biological activities, synthetic biology, and applications in the food industry. Food Chem 2024; 449:139277. [PMID: 38608607 DOI: 10.1016/j.foodchem.2024.139277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Mogrosides are low-calorie, biologically active sweeteners that face high production costs due to strict cultivation requirements and the low yield of monk fruit. The rapid advancement in synthetic biology holds the potential to overcome this challenge. This review presents mogrosides exhibiting antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and liver protective activities, with their efficacy in diabetes treatment surpassing that of Xiaoke pills (a Chinese diabetes medication). It also discusses the latest elucidated biosynthesis pathways of mogrosides, highlighting the challenges and research gaps in this field. The critical and most challenging step in this pathway is the transformation of mogrol into a variety of mogrosides by different UDP-glucosyltransferases (UGTs), primarily hindered by the poor substrate selectivity, product specificity, and low catalytic efficiency of current UGTs. Finally, the applications of mogrosides in the current food industry and the challenges they face are discussed.
Collapse
Affiliation(s)
- Nuo Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuhang Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xijia Zhang
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yujie Chen
- Jiangsu Stevia Biotechnology Co., Ltd, Wuxi 214122, China
| | - Mst Nushrat Yiasmin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
7
|
Pérez-Pérez J, Minguillón S, Kabbas-Piñango E, Payá C, Campos L, Rodríguez-Concepción M, Espinosa-Ruiz A, Rodrigo I, Bellés JM, López-Gresa MP, Lisón P. Metabolic crosstalk between hydroxylated monoterpenes and salicylic acid in tomato defense response against bacteria. PLANT PHYSIOLOGY 2024; 195:2323-2338. [PMID: 38478585 PMCID: PMC11213251 DOI: 10.1093/plphys/kiae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/11/2024] [Indexed: 06/30/2024]
Abstract
Hydroxylated monoterpenes (HMTPs) are differentially emitted by tomato (Solanum lycopersicum) plants resisting bacterial infection. We have studied the defensive role of these volatiles in the tomato response to bacteria, whose main entrance is through stomatal apertures. Treatments with some HMTPs resulted in stomatal closure and pathogenesis-related protein 1 (PR1) induction. Particularly, α-terpineol induced stomatal closure in a salicylic acid (SA) and abscisic acid-independent manner and conferred resistance to bacteria. Interestingly, transgenic tomato plants overexpressing or silencing the monoterpene synthase MTS1, which displayed alterations in the emission of HMTPs, exhibited changes in the stomatal aperture but not in plant resistance. Measures of both 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate (MEcPP) and SA levels revealed competition for MEcPP by the methylerythritol phosphate (MEP) pathway and SA biosynthesis activation, thus explaining the absence of resistance in transgenic plants. These results were confirmed by chemical inhibition of the MEP pathway, which alters MEcPP levels. Treatments with benzothiadiazole (BTH), a SA functional analog, conferred enhanced resistance to transgenic tomato plants overexpressing MTS1. Additionally, these MTS1 overexpressors induced PR1 gene expression and stomatal closure in neighboring plants. Our results confirm the role of HMTPs in both intra- and interplant immune signaling and reveal a metabolic crosstalk between the MEP and SA pathways in tomato plants.
Collapse
Affiliation(s)
- Julia Pérez-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Samuel Minguillón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Elías Kabbas-Piñango
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Celia Payá
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Laura Campos
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Manuel Rodríguez-Concepción
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Ana Espinosa-Ruiz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - María Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| |
Collapse
|
8
|
Coco L, Toci EM, Chen PYT, Drennan CL, Freel Meyers CL. Potent Inhibition of E. coli DXP Synthase by a gem-Diaryl Bisubstrate Analog. ACS Infect Dis 2024; 10:1312-1326. [PMID: 38513073 PMCID: PMC11019550 DOI: 10.1021/acsinfecdis.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.
Collapse
Affiliation(s)
- Lauren
B. Coco
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eucolona M. Toci
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Percival Yang-Ting Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caren L. Freel Meyers
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Raghavan I, Juman R, Wang ZQ. The non-mevalonate pathway requires a delicate balance of intermediates to maximize terpene production. Appl Microbiol Biotechnol 2024; 108:245. [PMID: 38421431 PMCID: PMC10904526 DOI: 10.1007/s00253-024-13077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Terpenes are valuable industrial chemicals whose demands are increasingly being met by bioengineering microbes such as E. coli. Although the bioengineering efforts commonly involve installing the mevalonate (MVA) pathway in E. coli for terpene production, the less studied methylerythritol phosphate (MEP) pathway is a more attractive target due to its higher energy efficiency and theoretical yield, despite its tight regulation. In this study, we integrated an additional copy of the entire MEP pathway into the E. coli genome for stable, marker-free terpene production. The genomically integrated strain produced more monoterpene geraniol than a plasmid-based system. The pathway genes' transcription was modulated using different promoters to produce geraniol as the reporter of the pathway flux. Pathway genes, including dxs, idi, and ispDF, expressed from a medium-strength promoter, led to the highest geraniol production. Quantifying the MEP pathway intermediates revealed that the highest geraniol producers had high levels of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), but moderate levels of the pathway intermediates upstream of these two building blocks. A principal component analysis demonstrated that 1-deoxy-D-xylulose 5-phosphate (DXP), the product of the first enzyme of the pathway, was critical for determining the geraniol titer, whereas MEP, the product of DXP reductoisomerase (Dxr or IspC), was the least essential. This work shows that an intricate balance of the MEP pathway intermediates determines the terpene yield in engineered E. coli. The genetically stable and intermediate-balanced strains created in this study will serve as a chassis for producing various terpenes. KEY POINTS: • Genome-integrated MEP pathway afforded higher strain stability • Genome-integrated MEP pathway produced more terpene than the plasmid-based system • High monoterpene production requires a fine balance of MEP pathway intermediates.
Collapse
Affiliation(s)
- Indu Raghavan
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA
| | - Rosheena Juman
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA.
| |
Collapse
|
10
|
Luckie BA, Kashyap M, Pearson AN, Chen Y, Liu Y, Valencia LE, Carrillo Romero A, Hudson GA, Tao XB, Wu B, Petzold CJ, Keasling JD. Development of Corynebacterium glutamicum as a monoterpene production platform. Metab Eng 2024; 81:110-122. [PMID: 38056688 DOI: 10.1016/j.ymben.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.
Collapse
Affiliation(s)
- Bridget A Luckie
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Meera Kashyap
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Allison N Pearson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Luis E Valencia
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA
| | - Alexander Carrillo Romero
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Xavier B Tao
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bryan Wu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
11
|
Di X, Rodriguez-Concepcion M. Exploring the Deoxy-D-xylulose-5-phosphate Synthase Gene Family in Tomato ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2023; 12:3886. [PMID: 38005784 PMCID: PMC10675008 DOI: 10.3390/plants12223886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Isoprenoids are a wide family of metabolites including high-value chemicals, flavors, pigments, and drugs. Isoprenoids are particularly abundant and diverse in plants. The methyl-D-erythritol 4-phosphate (MEP) pathway produces the universal isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate in plant plastids for the downstream production of monoterpenes, diterpenes, and photosynthesis-related isoprenoids such as carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. The enzyme deoxy-D-xylulose 5-phosphate synthase (DXS) is the first and main rate-determining enzyme of the MEP pathway. In tomato (Solanum lycopersicum), a plant with an active isoprenoid metabolism in several tissues, three genes encode DXS-like proteins (SlDXS1 to 3). Here, we show that the expression patterns of the three genes suggest distinct physiological roles without excluding that they might function together in some tissues. We also confirm that SlDXS1 and 2 are true DXS enzymes, whereas SlDXS3 lacks DXS activity. We further show that SlDXS1 and 2 co-localize in plastidial speckles and that they can be immunoprecipitated together, suggesting that they might form heterodimers in vivo in at least some tissues. These results provide novel insights for the biotechnological use of DXS isoforms in metabolic engineering strategies to up-regulate the MEP pathway flux.
Collapse
Affiliation(s)
- Xueni Di
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC—Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC—Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
12
|
Germann AT, Nakielski A, Dietsch M, Petzel T, Moser D, Triesch S, Westhoff P, Axmann IM. A systematic overexpression approach reveals native targets to increase squalene production in Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2023; 14:1024981. [PMID: 37324717 PMCID: PMC10266222 DOI: 10.3389/fpls.2023.1024981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria are a promising platform for the production of the triterpene squalene (C30), a precursor for all plant and animal sterols, and a highly attractive intermediate towards triterpenoids, a large group of secondary plant metabolites. Synechocystis sp. PCC 6803 natively produces squalene from CO2 through the MEP pathway. Based on the predictions of a constraint-based metabolic model, we took a systematic overexpression approach to quantify native Synechocystis gene's impact on squalene production in a squalene-hopene cyclase gene knock-out strain (Δshc). Our in silico analysis revealed an increased flux through the Calvin-Benson-Bassham cycle in the Δshc mutant compared to the wildtype, including the pentose phosphate pathway, as well as lower glycolysis, while the tricarboxylic acid cycle predicted to be downregulated. Further, all enzymes of the MEP pathway and terpenoid synthesis, as well as enzymes from the central carbon metabolism, Gap2, Tpi and PyrK, were predicted to positively contribute to squalene production upon their overexpression. Each identified target gene was integrated into the genome of Synechocystis Δshc under the control of the rhamnose-inducible promoter Prha. Squalene production was increased in an inducer concentration dependent manner through the overexpression of most predicted genes, which are genes of the MEP pathway, ispH, ispE, and idi, leading to the greatest improvements. Moreover, we were able to overexpress the native squalene synthase gene (sqs) in Synechocystis Δshc, which reached the highest production titer of 13.72 mg l-1 reported for squalene in Synechocystis sp. PCC 6803 so far, thereby providing a promising and sustainable platform for triterpene production.
Collapse
Affiliation(s)
- Anna T. Germann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tim Petzel
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Moser
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|