1
|
Sandamal S, Tennakoon A, Wijerathna P, Zhang HX, Yu WH, Qiang CG, Han JD, Zhang FM, Ratnasekera D, Ge S. Phenological and morphological variations of Oryza rufipogon and O. nivara in Sri Lanka and their evolutionary implications. Sci Rep 2024; 14:31126. [PMID: 39730894 DOI: 10.1038/s41598-024-82383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Phenological and morphological variation are widely viewed as a pivotal driver of ecological adaptation and speciation. Here, we investigate variation patterns of flowering phenology and morphological traits within and between O. rufipogon and O. nivara populations in Sri Lanka by incorporating the in situ observation in natural habitats and manipulative experiments in the common gardens. First, we observed varying degrees of phenological variation under different temporal and spatial conditions, suggesting that flowering phenology of two Oryza species varied depending on both environments and management practices. Particularly, the Sri Lankan O. nivara exhibits high plasticity in flowering phenology, implying that O. nivara might not be an annual in the strict sense. Second, the observation that flowering time of the two species overlapped suggests that the primary factor to maintain the species divergence in Sri Lanka may not be flowering time but rather environments. Third, our selection analysis suggests that interspecific divergence in the traits related to reproduction and habitat preference is adaptive and most likely driven by natural selection. Together, our case study on the Sri Lankan O. rufipogon and O. nivara enhances the understanding of the roles of phenotypic plasticity and environmental factors in the processes of adaptation and speciation.
Collapse
Affiliation(s)
- Salinda Sandamal
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Asanka Tennakoon
- Department of Agricultural Biology Faculty of Agriculture, Eastern University, 30350, Chenkaladi, Sri Lanka
| | - Parakkrama Wijerathna
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka
- Sea Institute of Oceanology, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Hong-Xiang Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Hao Yu
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cheng-Gen Qiang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing-Dan Han
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Fu-Min Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Disna Ratnasekera
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka.
| | - Song Ge
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Verrico B, Preston JC. Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change. THE NEW PHYTOLOGIST 2024. [PMID: 39722593 DOI: 10.1111/nph.20375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade. The time it takes a grass to flower has implications for its ability to escape harsh environments, while also indirectly affecting abiotic stress tolerance, inflorescence architecture, and grain yield. Here, we synthesize recent insights into the evolution of grass flowering time in response to past climate change, particularly focusing on genetic convergence in underlying traits. We then discuss how and why the rewiring of a shared ancestral flowering pathway affects grass yields, and outline ways in which researchers are using this and other information to breed higher yielding, climate-proof cereal crops.
Collapse
Affiliation(s)
- Brittany Verrico
- Department of Plant Biology, University of Vermont, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Jill C Preston
- Department of Plant Biology, University of Vermont, 63 Carrigan Drive, Burlington, VT, 05405, USA
| |
Collapse
|
3
|
Zhang K, Chen C, Miao J, Zou B, Xu R, Li X, Li X, Tan W, Gong Z, Yi C, Liang G, Zhou Y. OsbZIP23 delays flowering by repressing OsMADS14 expression in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109389. [PMID: 39657423 DOI: 10.1016/j.plaphy.2024.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Flowering time is a fundamental factor determining the global distribution and final yield of rice (Oryza sativa L.). The initiation of the floral transition process signifies the beginning of the reproductive phase. The florigens Heading Date 3a (Hd3a) and Rice Flowering Locus T 1 (RFT1) combine with GF14 proteins and OsFD-like basic leucine zipper (bZIP) transcription factors to form florigen activation/repressor complexes (FACs/FRCs) that regulate the transition to flowering. We herein report that a bZIP transcription factor (OsbZIP23) functions as a flowering repressor. Transgenic plants overexpressing OsbZIP23 exhibited delayed flowering, which was in contrast to the slightly early flowering of the osbzip23 mutants, under natural short-day and long-day conditions. Molecular and biochemical analyses indicated that OsbZIP23 can bind to the 5' untranslated region of OsMADS14 and suppress expression. Moreover, it delays the floral transition probably by interacting with OsFTL1/Hd3a/RFT1 and 14-3-3 proteins to form FRCs. Our findings have further elucidated the molecular mechanisms regulating the flowering time in rice.
Collapse
Affiliation(s)
- Kunming Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Chuyan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Bingyin Zou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Renyu Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiangbo Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wenchen Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Chuandeng Yi
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Guohua Liang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Kobayashi A, Suganami M, Yoshida H, Morinaka Y, Watanabe S, Machida Y, Chaya G, Nakaoka F, Sato N, Miura K, Matsuoka M. How have breeders adapted rice flowering to the growing region? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2736-2753. [PMID: 39451153 PMCID: PMC11622534 DOI: 10.1111/jipb.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
Flowering time is a crucial rice trait that influences its adaptation to various environments, cropping schedules, and agronomic characteristics. Rice breeders have exploited spontaneous mutations in heading date genes to regulate the flowering time. In the present study, we investigated how breeders in Fukui Prefecture regulated days to heading while developing promising rice varieties. Genome-wide association studies (GWAS) identified Hd1, Hd16, and Hd18 as the major genes controlling days to heading in the population. However, we suspected that this highly bred population might exhibit genomic stratification, which could lead to spurious or false correlations in the GWAS. Thus, we also conducted correlation and partial correlation analyses, which uncovered another key heading date gene, Hd17, that GWAS failed to detect because of its linkage disequilibrium with the major effect gene Hd16. Examination of haplotype frequencies across different breeding periods revealed that the early-heading Hd16 (Hd16(E)) and late-heading Hd17 (Hd17(L)) were increasingly co-selected in the Hd1 functional population. Varieties carrying this Hd16(E)/Hd17(L) combination exhibited days to heading in the range of 70-80, which corresponds to the peak temperature and sunshine period and is also optimal for grain quality and yield components in the Fukui environment. The present study highlights that it is imperative to remain vigilant for Type I (false positives) and Type II (false negatives) errors when performing GWAS on highly bred populations and to implement appropriate countermeasures by accounting for gene-by-gene interactions established through the breeding process. We also discuss the effectiveness of Hd16(E), which is not used outside Japan for subtle days to heading control but is widely used in Japan at certain latitudes.
Collapse
Affiliation(s)
- Asako Kobayashi
- Rice Breeding GroupFukui Agricultural Experiment StationFukui918‐8215Japan
| | - Mao Suganami
- Faculty of Food and Agricultural Sciences, Institute of Fermentation SciencesFukushima UniversityFukushima960‐1296Japan
| | - Hideki Yoshida
- Faculty of Food and Agricultural Sciences, Institute of Fermentation SciencesFukushima UniversityFukushima960‐1296Japan
| | - Yoichi Morinaka
- Faculty of Bioscience and BiotechnologyFukui Prefectural UniversityFukui910‐1195Japan
| | - Syuto Watanabe
- Rice Breeding GroupFukui Agricultural Experiment StationFukui918‐8215Japan
| | - Yoshie Machida
- Rice Breeding GroupFukui Agricultural Experiment StationFukui918‐8215Japan
| | - Genki Chaya
- Rice Breeding GroupFukui Agricultural Experiment StationFukui918‐8215Japan
| | - Fumihiro Nakaoka
- Rice Breeding GroupFukui Agricultural Experiment StationFukui918‐8215Japan
| | - Nobuhito Sato
- Rice Breeding GroupFukui Agricultural Experiment StationFukui918‐8215Japan
| | - Kotaro Miura
- Faculty of Bioscience and BiotechnologyFukui Prefectural UniversityFukui910‐1195Japan
| | - Makoto Matsuoka
- Faculty of Food and Agricultural Sciences, Institute of Fermentation SciencesFukushima UniversityFukushima960‐1296Japan
| |
Collapse
|
5
|
Kim MS, Kim JS, Song SI, Jun KM, Shim SH, Jeon JS, Lee TH, Lee SB, Lee GS, Kim YK. A combination of upstream alleles involved in rice heading hastens natural long-day responses. Genes Genomics 2024:10.1007/s13258-024-01597-5. [PMID: 39567417 DOI: 10.1007/s13258-024-01597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND The female parental line Jinbuol (JBO, early heading) and two recombinant isogenic lines, JSRIL1 and JSRIL2, have been shown to flower 44, 34 and 16 days earlier, respectively, than the male parental line Samgwang (SG, late heading) in paddy fields. OBJECTIVE To explore how photoperiodicity-related genes are involved in differential heading among these lines. METHODS Deep sequencing was conducted for these lines, photoperiodicity-related genes (71) were categorized, and qRT-PCR was performed for some key genes. RESULTS Deep sequencing revealed a nearly even contribution of parental groups, with 48.5% and 45% of the chromosomes in JSRIL1 and JSRIL2, respectively, inherited from the female parent JBO; however, Chr6 contained the most biased parental contribution, with 99.4% inherited from the female parent. The variation in single-nucleotide polymorphisms (SNPs) among many known flower-inducing genes, including rice GIGANTEA (OsGI); grain number, plant height and heading date 7 (Ghd7); and EARLY HEADING DATE 1 (Ehd1), was minimal. In the JSRILs, HEADING DATE 1 (Hd1) and VERNALIZATION INSENSITIVE 3-LIKE 1 (OsVIL2) originated from JBO, whereas FLAVIN-BINDING, KELCH REPEAT, F BOX 1 (OsFKF1) originated from SG. Interestingly, HEN1 suppressor 1 (OsHESO1) originated from SG in JSRIL1 and JBO in JSRIL2. RNA sequencing and qRT‒PCR analyses of plants at the floral meristem stage revealed that transcriptional regulation through chromosomal restructuring and posttranscriptional regulation might control minute gene regulation, resulting in delayed heading in JSRILs. CONCLUSION Our gene expression and SNP analyses of elite recombinant isogenic lines could be helpful in understanding how photoperiodicity-related genes in rice are modulated.
Collapse
Affiliation(s)
- Myung-Shin Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea
| | - Joung Sug Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea
| | - Sang Ik Song
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene BioTech Inc., 16‑4 Dongbaekjungang‑ro 16beon‑gil, Giheung‑gu, Yongin, Gyeonggi‑do, 17015, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Tae-Ho Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, 54875, Republic of Korea
| | - Sang-Bok Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, 54875, Republic of Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, 54875, Republic of Korea
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea.
| |
Collapse
|
6
|
Kim YK. Knockout of OsWOX13 moderately delays flowering in rice under natural long-day conditions. Biosci Biotechnol Biochem 2024; 88:1307-1315. [PMID: 39164217 DOI: 10.1093/bbb/zbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Plants are sensitive to photoperiods and are also equipped with systems to adjust their flowering time in response to various changes in the environment and developmental hormones. In the present study, previously generated rice OsWOX13 overexpression and newly generated OsWOX13 knockout lines constructed via CRISPR/Cas9 technology flowered 10 days earlier and 4-6 days later than the wild type, respectively. Quantitative real-time polymerase chain reaction analyses revealed that OsWOX13 might be involved in drought escape responses through the b-ZIP TRANSCRIPTION FACTOR 23 signaling pathway during rice flowering via photoperiod signaling genes such as Grain number, plant height and heading date 7, Early heading date 1, RICE FLOWERING LOCUS T1, Heading date 3a, and MADS14. Future investigations of OsWOX13 may provide insight into how plants adjust their flowering under stress conditions and how OsWOX13 could be precisely controlled to achieve maximum productivity in rice breeding.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Peng M, Gan F, Pan C, Lin X, Lin F, Ren Y, Na S, Zhu X, Tang W, Wu Z, Fan X, Chen K. Expression of AtNF-YB1 activates early flowering, showing potential in breeding hybrid rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14538. [PMID: 39344294 DOI: 10.1111/ppl.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/02/2024] [Indexed: 10/01/2024]
Abstract
The nuclear factor Y (NF-Y) has been shown to be involved in plant growth and development in response to various environmental signals. However, the integration of these mechanisms into breeding practices for new cultivars has not been extensively investigated. In this study, the Arabidopsis gene AtNF-YB1 was introduced into rice, including inbred Kasalath and the hybrids Jinfeng × Chenghui 727 and Jinfeng × Chuanhui 907. The obtained transgenic rice showed early flowering under both natural long day (NLD) and natural short day (NSD) conditions. For the inbred Kasalath, the transgenic lines clearly showed a shorter plant height and lower grain yield, with a decrease in spike length and grain number but more productive panicles. However, the hybrids with AtNF-YB1 had much smaller or even zero reduction in spike length and grain number and more productive panicles. Thus, maintained or even increased grain yields of the transgenic hybrids were recorded under the NLD conditions. Quantitative PCR analysis indicated that the rice flowering initiation pathways were early activated via the suppression of Ghd7 induction in the transgenic rice. RNA-Seq further demonstrated that three pathways related to plant photosynthesis were markedly upregulated in both Jinfeng B and the hybrid Jinfeng × Chuanhui 907 with AtNF-YB1 expression. Moreover, physiological experiments showed an upregulation of photosynthetic rates in the transgenic lines. Taken together, this study suggests that AtNF-YB1 expression in rice not only induces early flowering but also benefits photosynthesis, which might be used to develop hybrid varieties with early ripening.
Collapse
Affiliation(s)
- Meifang Peng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Gan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chunmei Pan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaomin Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuanhang Ren
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shungui Na
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xinhai Zhu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenwen Tang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhixue Wu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoli Fan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kegui Chen
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
9
|
Wei Y, Zhang H, Fan J, Cai Q, Zhang Z, Wang J, Zhang M, Yan F, Jiang J, Xie H, Luo X, Wei L, Lin Y, He W, Qu M, Zhang X, Zhu Y, Xie H, Zhang J. Multiplex-genome-editing based rapid directional improvement of complex traits in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2624-2628. [PMID: 38803114 PMCID: PMC11331775 DOI: 10.1111/pbi.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Although thousands of genes have been identified or cloned in rice (Oryza sativa) in the last two decades, the majority of them have only been separately characterized in specific varieties or single-gene modified backgrounds, thus limiting their practical application. We developed an optimized multiplex genome editing (MGE) toolbox that can efficiently assemble and stably express up to twelve sgRNA targets in a single plant expression vector. In this study, we established the MGE-based Rapid Directional Improvement (MRDI) strategy for directional improvement of complex agronomic traits in one small-scale rice transformation. This approach provides a rapid and practical procedure, encompassing sgRNA assembly, transgene-free screening and the creation of promising germplasm, by combining the precision of gene editing with phenotype-based field breeding. The MRDI strategy was used to generate the full diversity of twelve main agronomic genes in rice cultivar FXZ for the directional improvement of its growth duration and plant architecture. After applying the MRDI to FXZ, ideal plants with the desired traits of early heading date reduced plant height, and more effective panicles were generated without compromising yield, blast resistance and grain quality. Furthermore, the results of whole-genome sequencing (WGS), including the analysis of structural variations (SVs) and single nucleotide variations (SNVs) in the MGE plants, confirmed the high specificity and low frequency of unwanted mutations associated with this strategy. The MRDI breeding strategy would be a robust approach for exploring and applying crucial agronomic genes, as well as for generating novel elite germplasm in the future.
Collapse
Affiliation(s)
- Yidong Wei
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Haomin Zhang
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Jiaxing Fan
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qiuhua Cai
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Zhixing Zhang
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinlan Wang
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Min Zhang
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fengting Yan
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiahuan Jiang
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Hongguang Xie
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Xi Luo
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Linyan Wei
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Yuelong Lin
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Wei He
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Mengyu Qu
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinxin Zhang
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yongsheng Zhu
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Huaan Xie
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Jianfu Zhang
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou BranchNational Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| |
Collapse
|
10
|
Dai S, Chen H, Shi Y, Xiao X, Xu L, Qin C, Zhu Y, Yi K, Lei M, Zeng H. PHOSPHATE1-mediated phosphate translocation from roots to shoots regulates floral transition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5054-5075. [PMID: 38753441 DOI: 10.1093/jxb/erae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Phosphorus nutrition has been known for a long time to influence floral transition in plants, but the underlying mechanism is unclear. Arabidopsis phosphate transporter PHOSPHATE1 (PHO1) plays a critical role in phosphate translocation from roots to shoots, but whether and how it regulates floral transition is unknown. Here, we show that knockout mutation of PHO1 delays flowering under both long- and short-day conditions. The late flowering of pho1 mutants can be partially rescued by Pi supplementation in rosettes or shoot apices. Grafting assay indicates that the late flowering of pho1 mutants is a result of impaired phosphate translocation from roots to shoots. Knockout mutation of SPX1 and SPX2, two negative regulators of the phosphate starvation response, partially rescues the late flowering of pho1 mutants. PHO1 is epistatic to PHO2, a negative regulator of PHO1, in flowering time regulation. Loss of PHO1 represses the expression of some floral activators, including FT encoding florigen, and induces the expression of some floral repressors in shoots. Genetic analyses indicate that at least jasmonic acid signaling is partially responsible for the late flowering of pho1 mutants. In addition, we find that rice PHO1;2, the homolog of PHO1, plays a similar role in floral transition. These results suggest that PHO1 integrates phosphorus nutrition and flowering time, and could be used as a potential target in modulating phosphorus nutrition-mediated flowering time in plants.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yutao Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinlong Xiao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingguang Lei
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
11
|
Colleoni PE, van Es SW, Winkelmolen T, Immink RGH, van Esse GW. Flowering time genes branching out. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4195-4209. [PMID: 38470076 PMCID: PMC11263490 DOI: 10.1093/jxb/erae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Plants are sessile by nature, and as such they have evolved to sense changes in seasonality and their surrounding environment, and adapt to these changes. One prime example of this is the regulation of flowering time in angiosperms, which is precisely timed by the coordinated action of two proteins: FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). Both of these regulators are members of the PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN (PEBP) family of proteins. These regulatory proteins do not interact with DNA themselves, but instead interact with transcriptional regulators, such as FLOWERING LOCUS D (FD). FT and TFL1 were initially identified as key regulators of flowering time, acting through binding with FD; however, PEBP family members are also involved in shaping plant architecture and development. In addition, PEBPs can interact with TCP transcriptional regulators, such as TEOSINTE BRANCHED 1 (TB1), a well-known regulator of plant architecture, and key domestication-related genes in many crops. Here, we review the role of PEBPs in flowering time, plant architecture, and development. As these are also key yield-related traits, we highlight examples from the model plant Arabidopsis as well as important food and feed crops such as, rice, barley, wheat, tomato, and potato.
Collapse
Affiliation(s)
- Pierangela E Colleoni
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sam W van Es
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ton Winkelmolen
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - G Wilma van Esse
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
12
|
Zong W, Guo X, Zhang K, Chen L, Liu YG, Guo J. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3762-3777. [PMID: 38779909 DOI: 10.1093/jxb/erae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Plants must accurately integrate external environmental signals with their own development to initiate flowering at the appropriate time for reproductive success. Photoperiod and temperature are key external signals that determine flowering time; both are cyclical and periodic, and they are closely related. In this review, we describe photoperiod-sensitive genes that simultaneously respond to temperature signals in rice (Oryza sativa). We introduce the mechanisms by which photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. We also discuss the prospects for designing different combinations of heading date genes and other cold tolerance or thermo-tolerance genes to help rice better adapt to changes in light and temperature via molecular breeding to enhance yield in the future.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Zhao L, Liu Y, Zhu Y, Chen S, Du Y, Deng L, Liu L, Li X, Chen W, Xu Z, Xiong Y, Ming Y, Fang S, Chen L, Wang H, Yu D. Transcription factor OsWRKY11 induces rice heading at low concentrations but inhibits rice heading at high concentrations. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1385-1407. [PMID: 38818952 DOI: 10.1111/jipb.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
The heading date of rice is a crucial agronomic characteristic that influences its adaptability to different regions and its productivity potential. Despite the involvement of WRKY transcription factors in various biological processes related to development, the precise mechanisms through which these transcription factors regulate the heading date in rice have not been well elucidated. The present study identified OsWRKY11 as a WRKY transcription factor which exhibits a pivotal function in the regulation of the heading date in rice through a comprehensive screening of a clustered regularly interspaced palindromic repeats (CRISPR) ‒ CRISPR-associated nuclease 9 mutant library that specifically targets the WRKY genes in rice. The heading date of oswrky11 mutant plants and OsWRKY11-overexpressing plants was delayed compared with that of the wild-type plants under short-day and long-day conditions. Mechanistic investigation revealed that OsWRKY11 exerts dual effects on transcriptional promotion and suppression through direct and indirect DNA binding, respectively. Under normal conditions, OsWRKY11 facilitates flowering by directly inducing the expression of OsMADS14 and OsMADS15. The presence of elevated levels of OsWRKY11 protein promote formation of a ternary protein complex involving OsWRKY11, Heading date 1 (Hd1), and Days to heading date 8 (DTH8), and this complex then suppresses the expression of Ehd1, which leads to a delay in the heading date. Subsequent investigation revealed that a mild drought condition resulted in a modest increase in OsWRKY11 expression, promoting heading. Conversely, under severe drought conditions, a significant upregulation of OsWRKY11 led to the suppression of Ehd1 expression, ultimately causing a delay in heading date. Our findings uncover a previously unacknowledged mechanism through which the transcription factor OsWRKY11 exerts a dual impact on the heading date by directly and indirectly binding to the promoters of target genes.
Collapse
Affiliation(s)
- Lirong Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunwei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yi Zhu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| | - Yang Du
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Luyao Deng
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Lei Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yangyang Xiong
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - You Ming
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Siyu Fang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| |
Collapse
|
14
|
Wen X, Zhong Z, Xu P, Yang Q, Wang Y, Liu L, Wu Z, Wu Y, Zhang Y, Liu Q, Zhou Z, Peng Z, He Y, Cheng S, Cao L, Zhan X, Wu W. OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:162. [PMID: 38884792 DOI: 10.1007/s00122-024-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
KEY MESSAGE OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.
Collapse
Affiliation(s)
- Xiaoxia Wen
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhengzheng Zhong
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peng Xu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qinqin Yang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yinping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Ling Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaozhong Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yewen Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yingxin Zhang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qunen Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zhengping Zhou
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zequn Peng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shihua Cheng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liyong Cao
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiaodeng Zhan
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Weixun Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
15
|
Lee N, Shim JS, Kang MK, Kwon M. Insight from expression profiles of FT orthologs in plants: conserved photoperiodic transcriptional regulatory mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1397714. [PMID: 38887456 PMCID: PMC11180818 DOI: 10.3389/fpls.2024.1397714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Floral transition from the vegetative to the reproductive stages is precisely regulated by both environmental and endogenous signals. Among these signals, photoperiod is one of the most important environmental factors for onset of flowering. A florigen, FLOWERING LOCUS T (FT) in Arabidopsis, has thought to be a major hub in the photoperiod-dependent flowering time regulation. Expression levels of FT likely correlates with potence of flowering. Under long days (LD), FT is mainly synthesized in leaves, and FT protein moves to shoot apical meristem (SAM) where it functions and in turns induces flowering. Recently, it has been reported that Arabidopsis grown under natural LD condition flowers earlier than that grown under laboratory LD condition, in which a red (R)/far-red (FR) ratio of light sources determines FT expression levels. Additionally, FT expression profile changes in response to combinatorial effects of FR light and photoperiod. FT orthologs exist in most of plants and functions are thought to be conserved. Although molecular mechanisms underlying photoperiodic transcriptional regulation of FT orthologs have been studied in several plants, such as rice, however, dynamics in expression profiles of FT orthologs have been less spotlighted. This review aims to revisit previously reported but overlooked expression information of FT orthologs from various plant species and classify these genes depending on the expression profiles. Plants, in general, could be classified into three groups depending on their photoperiodic flowering responses. Thus, we discuss relationship between photoperiodic responsiveness and expression of FT orthologs. Additionally, we also highlight the expression profiles of FT orthologs depending on their activities in flowering. Comparative analyses of diverse plant species will help to gain insight into molecular mechanisms for flowering in nature, and this can be utilized in the future for crop engineering to improve yield by controlling flowering time.
Collapse
Affiliation(s)
- Nayoung Lee
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
16
|
Yoshikawa GV, Boden SA. Finding the right balance: The enduring role of florigens during cereal inflorescence development and their influence on fertility. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102539. [PMID: 38599051 DOI: 10.1016/j.pbi.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Flowering is a vital process in a plant's lifecycle and variation for flowering-time has helped cereals adapt to diverse environments. Much cereal research has focused on understanding how flowering signals, or florigens, regulate the floral transition and timing of ear emergence. However, flowering genes also perform an enduring role during inflorescence development, with genotypes that elicit a weaker flowering signal producing more elaborately branched inflorescences with extra floret-bearing spikelets. While this outcome indicates that variable expression of flowering genes could boost yield potential, further analysis has shown that dampened florigen levels can compromise fertility, negating the benefit of extra grain-producing sites. Here, we discuss ways that florigens contribute to early and late inflorescence development, including their influence on branch/spikelet architecture and fertility. We propose that a deeper understanding of the role for florigens during inflorescence development could be used to balance the effects of florigens throughout flowering to improve productivity.
Collapse
Affiliation(s)
- Guilherme V Yoshikawa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Scott A Boden
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
17
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
18
|
Tadesse D, Yee EF, Wolabu TW, Wang H, Yun J, Grosjean N, Kumaran D, Santiago K, Kong W, Sharma A, Chen J, Paterson AH, Xie M, Tadege M. Sorghum SbGhd7 is a major regulator of floral transition and directly represses genes crucial for flowering activation. THE NEW PHYTOLOGIST 2024; 242:786-796. [PMID: 38451101 DOI: 10.1111/nph.19591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.
Collapse
Affiliation(s)
- Dimiru Tadesse
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Estella F Yee
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Tezera W Wolabu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Hui Wang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianfei Yun
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Nicolas Grosjean
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kassandra Santiago
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Wenqian Kong
- Department of Soil and Crop Science, University of Georgia, Athens, GA, 30602, USA
| | - Ankush Sharma
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Jianghua Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| |
Collapse
|
19
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study. BMC PLANT BIOLOGY 2024; 24:124. [PMID: 38373874 PMCID: PMC10877931 DOI: 10.1186/s12870-024-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.
Collapse
Grants
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India.
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), South Asia Hub, ICRISAT, Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | |
Collapse
|
20
|
Li S, Luo Y, Wei G, Zong W, Zeng W, Xiao D, Zhang H, Song Y, Hao Y, Sun K, Lei C, Guo X, Xu B, Li W, Wu Z, Liu Y, Xie X, Guo J. Improving yield-related traits by editing the promoter of the heading date gene Ehd1 in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:239. [PMID: 37930441 DOI: 10.1007/s00122-023-04489-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
KEY MESSAGE We developed an efficient promoter editing method to create different weak Ehd1 alleles in elite japonica rice variety ZJ8 with slightly delayed heading and improved yield for use in breeding. Heading date is an important agronomic trait of rice (Oryza sativa) that determines the planting areas and cultivation seasons of different varieties, thus affecting final yield. Early heading date 1 (Ehd1) is a major rice integrator gene in the regulatory network of heading date whose expression level is negatively correlated with heading date and grain yield. Some elite japonica varieties such as Zhongjia 8 (ZJ8) show very early heading with poor agronomic traits when planted in South China. This problem can be addressed by downregulating the expression of Ehd1. In this study, we analyzed the cis-regulatory elements in the Ehd1 promoter region. We then used CRISPR/Cas9-mediated editing to modify the Ehd1 promoter at multiple target sites in ZJ8. We rapidly identified homozygous allelic mutations in the T2 generation via long-read sequencing. We obtained several Ehd1 promoter mutants with different degrees of lower Ehd1 expression, delayed heading date, and improved yield-related traits. We developed an efficient promoter editing method to create different weak Ehd1 alleles for breeding selection. Using this method, a series of heading date materials from elite varieties can be created to expand the planting area of rice and improve grain yields.
Collapse
Affiliation(s)
- Shengting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Guangliang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanyong Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Han Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingang Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bingqun Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weitao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zeqiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|