1
|
Haddox CL, Nathenson MJ, Mazzola E, Lin JR, Baginska J, Nau A, Weirather JL, Choy E, Marino-Enriquez A, Morgan JA, Cote GM, Merriam P, Wagner AJ, Sorger PK, Santagata S, George S. Phase II Study of Eribulin plus Pembrolizumab in Metastatic Soft-tissue Sarcomas: Clinical Outcomes and Biological Correlates. Clin Cancer Res 2024; 30:1281-1292. [PMID: 38236580 PMCID: PMC10982640 DOI: 10.1158/1078-0432.ccr-23-2250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE Eribulin modulates the tumor-immune microenvironment via cGAS-STING signaling in preclinical models. This non-randomized phase II trial evaluated the combination of eribulin and pembrolizumab in patients with soft-tissue sarcomas (STS). PATIENTS AND METHODS Patients enrolled in one of three cohorts: leiomyosarcoma (LMS), liposarcomas (LPS), or other STS that may benefit from PD-1 inhibitors, including undifferentiated pleomorphic sarcoma (UPS). Eribulin was administered at 1.4 mg/m2 i.v. (days 1 and 8) with fixed-dose pembrolizumab 200 mg i.v. (day 1) of each 21-day cycle, until progression, unacceptable toxicity, or completion of 2 years of treatment. The primary endpoint was the 12-week progression-free survival rate (PFS-12) in each cohort. Secondary endpoints included the objective response rate, median PFS, safety profile, and overall survival (OS). Pretreatment and on-treatment blood specimens were evaluated in patients who achieved durable disease control (DDC) or progression within 12 weeks [early progression (EP)]. Multiplexed immunofluorescence was performed on archival LPS samples from patients with DDC or EP. RESULTS Fifty-seven patients enrolled (LMS, n = 19; LPS, n = 20; UPS/Other, n = 18). The PFS-12 was 36.8% (90% confidence interval: 22.5-60.4) for LMS, 69.6% (54.5-89.0) for LPS, and 52.6% (36.8-75.3) for UPS/Other cohorts. All 3 patients in the UPS/Other cohort with angiosarcoma achieved RECIST responses. Toxicity was manageable. Higher IFNα and IL4 serum levels were associated with clinical benefit. Immune aggregates expressing PD-1 and PD-L1 were observed in a patient that completed 2 years of treatment. CONCLUSIONS The combination of eribulin and pembrolizumab demonstrated promising activity in LPS and angiosarcoma.
Collapse
Affiliation(s)
- Candace L. Haddox
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael J. Nathenson
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jia-Ren Lin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Joanna Baginska
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allison Nau
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L. Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edwin Choy
- Division of Hematology Oncology, Massachusetts General Cancer Center, Boston, Massachusetts
| | | | - Jeffrey A. Morgan
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gregory M. Cote
- Division of Hematology Oncology, Massachusetts General Cancer Center, Boston, Massachusetts
| | - Priscilla Merriam
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J. Wagner
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter K. Sorger
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Sandro Santagata
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Suzanne George
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
2
|
van der Pan K, Khatri I, de Jager AL, Louis A, Kassem S, Naber BA, de Laat IF, Hameetman M, Comans SE, Orfao A, van Dongen JJ, Díez P, Teodosio C. Performance of spectral flow cytometry and mass cytometry for the study of innate myeloid cell populations. Front Immunol 2023; 14:1191992. [PMID: 37275858 PMCID: PMC10235610 DOI: 10.3389/fimmu.2023.1191992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Monitoring of innate myeloid cells (IMC) is broadly applied in basic and translational research, as well as in diagnostic patient care. Due to their immunophenotypic heterogeneity and biological plasticity, analysis of IMC populations typically requires large panels of markers. Currently, two cytometry-based techniques allow for the simultaneous detection of ≥40 markers: spectral flow cytometry (SFC) and mass cytometry (MC). However, little is known about the comparability of SFC and MC in studying IMC populations. Methods We evaluated the performance of two SFC and MC panels, which contained 21 common markers, for the identification and subsetting of blood IMC populations. Based on unsupervised clustering analysis, we systematically identified 24 leukocyte populations, including 21 IMC subsets, regardless of the cytometry technique. Results Overall, comparable results were observed between the two technologies regarding the relative distribution of these cell populations and the staining resolution of individual markers (Pearson's ρ=0.99 and 0.55, respectively). However, minor differences were observed between the two techniques regarding intra-measurement variability (median coefficient of variation of 42.5% vs. 68.0% in SFC and MC, respectively; p<0.0001) and reproducibility, which were most likely due to the significantly longer acquisition times (median 16 min vs. 159 min) and lower recovery rates (median 53.1% vs. 26.8%) associated with SFC vs. MC. Discussion Altogether, our results show a good correlation between SFC and MC for the identification, enumeration and characterization of IMC in blood, based on large panels (>20) of antibody reagents.
Collapse
Affiliation(s)
- Kyra van der Pan
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Anniek L. de Jager
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Alesha Louis
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sara Kassem
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Brigitta A.E. Naber
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Inge F. de Laat
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Marjolijn Hameetman
- Flow Cytometry Core Facility, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Suzanne E.T. Comans
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jacques J.M. van Dongen
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Paula Díez
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Sarcomas and Experimental Therapeutics Laboratory, Health Research Institute of Asturias (ISPA) and Asturias Central University Hospital (HUCA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Asturias, Spain
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|