1
|
Liu X, Ye L, Ding Y, Gong W, Qian H, Jin K, Niu Y, Zuo Q, Song J, Han W, Chen G, Li B. Role of PI3K/AKT signaling pathway involved in self-renewing and maintaining biological properties of chicken primordial germ cells. Poult Sci 2024; 103:104140. [PMID: 39173217 PMCID: PMC11379996 DOI: 10.1016/j.psj.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Avian primordial germ cells (PGCs) are important culture cells for the production of transgenic chickens and preservation of the genetic resources of endangered species; however, culturing these cells in vitro proves challenging. Although the proliferation of chicken PGCs is dependent on insulin, the underlying molecular mechanisms remain unclear. In the present study, we explored the expression of the PI3K/AKT signaling pathway in PGCs, investigated its effects on PGC self-renewal and biological properties, and identified the underlying mechanisms. Our findings indicated that although supplementation with the PI3K/AKT activator IGF-1 failed to promote proliferation under the assessed culture conditions, the PI3K/AKT inhibitor LY294002 resulted in retarded cell proliferation and reduced expression of germ cell-related markers. We further demonstrated that inhibition of PI3K/AKT regulates the cell cycle and promotes apoptosis in PGCs by activating the expression of BAX and inhibiting that of Bcl-2. These findings indicated that the PI3K/AKT pathway is required for cell renewal, apoptosis, and maintenance of the reproductive potential in chicken PGCs. This study aimed to provide a theoretical basis for the optimization and improvement of a culture system for chicken PGCs and provide insights into the self-renewal of vertebrate PGCs as well as potential evolutionary changes in this unique cell population.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Liu Ye
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongwu Qian
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
2
|
De Felici M. Isolation and Purification of Viable PGCs from Mouse Embryos. Methods Mol Biol 2024; 2770:3-13. [PMID: 38351442 DOI: 10.1007/978-1-0716-3698-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In all organisms with sexual reproduction, sperm and oocytes derive from embryonic precursors termed primordial germ cells (PGCs) which pass on genetic information to subsequent generations. Studies aimed to unravel PGC development at molecular level in mammals can be traced at the early 1980s and were hampered by the difficulty in obtaining both sufficient quantities and purity of PGCs. For many laboratories, the isolation and purification methods of PGCs at different stages from embryos are the most shortcut and affordable tool to study many aspects of their development at cellular and molecular levels. In the present chapter, I focus on immunomagnetic cell sorting (MACS) and fluorescence-activated cell sorting (FACS) methods used in my laboratory for the purification of mouse PGCs from 10.5 to 12.5 dpc embryos before their differentiation in oogonia/oocytes in female and prospermatogonia in male.
Collapse
Affiliation(s)
- Massimo De Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, Faculty of Medicine and Surgery, "Tor Vergata" University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Ye L, Liu X, Jin K, Niu Y, Zuo Q, Song J, Han W, Chen G, Li B. Effects of Insulin on Proliferation, Apoptosis, and Ferroptosis in Primordial Germ Cells via PI3K-AKT-mTOR Signaling Pathway. Genes (Basel) 2023; 14:1975. [PMID: 37895324 PMCID: PMC10606282 DOI: 10.3390/genes14101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Primordial germ cells (PGCs) are essential for the genetic modification, resource conservation, and recovery of endangered breeds in chickens and need to remain viable and proliferative in vitro. Therefore, there is an urgent need to elucidate the functions of the influencing factors and their regulatory mechanisms. In this study, PGCs collected from Rugao yellow chicken embryonic eggs at Day 5.5 were cultured in media containing 0, 5, 10, 20, 50, and 100 μg/mL insulin. The results showed that insulin regulates cell proliferation in PGCs in a dose-dependent way, with an optimal dose of 10 μg/mL. Insulin mediates the mRNA expression of cell cycle-, apoptosis-, and ferroptosis-related genes. Insulin at 50 μg/mL and 100 μg/mL slowed down the proliferation with elevated ion content and GSH/oxidized glutathione (GSSG) in PGCs compared to 10 μg/mL. In addition, insulin activates the PI3K/AKT/mTOR pathway dose dependently. Collectively, this study demonstrates that insulin reduces apoptosis and ferroptosis and enhances cell proliferation in a dose-dependent manner via the PI3K-AKT-mTOR signaling pathway in PGCs, providing a new addition to the theory of the regulatory role of the growth and proliferation of PGC in vitro cultures.
Collapse
Affiliation(s)
- Liu Ye
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xin Liu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA;
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences/Poultry Institute of Jiangsu, Yangzhou 225003, China;
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
4
|
Golkar-Narenji A, Dziegiel P, Kempisty B, Petitte J, Mozdziak PE, Bryja A. In vitro culture of reptile PGCS to preserve endangered species. Cell Biol Int 2023; 47:1314-1326. [PMID: 37178380 DOI: 10.1002/cbin.12033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Primordial germ cells (PGCs), are the source of gametes in vertebrates. There are similarities in the development of PGCs of reptiles with avian and mammalian species PGCs development. PGCs culture has been performed for avian and mammalian species but there is no report for reptilian PGCs culture. In vitro culture of PGCs is needed to produce transgenic animals, preservation of endangered animals and for studies on cell behaviour and research on fertility. Reptiles are traded as exotic pets and a source of food and they are valuable for their skin and they are useful as model for medical research. Transgenic reptile has been suggested to be useful for pet industry and medical research. In this research different aspects of PGCs development was compared in three main classes of vertebrates including mammalian, avian and reptilian species. It is proposed that a discussion on similarities between reptilian PGCs development with avian and mammalian species helps to find clues for studies of reptilian PGCs development details and finding an efficient protocol for in vitro culture of reptilian PG.
Collapse
Affiliation(s)
- Afsaneh Golkar-Narenji
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wrocław Medical University, Wroclaw, Dolnoslaskie, Poland
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Toruń, Poland
- Graduate Physiology Program NC State University North Carolina State University, Raleigh, North Carolina, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Dolnoslaskie, Poland
| | - James Petitte
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Edward Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Graduate Physiology Program NC State University North Carolina State University, Raleigh, North Carolina, USA
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Dolnoslaskie, Poland
| |
Collapse
|
5
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
6
|
Single cell epigenomic and transcriptomic analysis uncovers potential transcription factors regulating mitotic/meiotic switch. Cell Death Dis 2023; 14:134. [PMID: 36797258 PMCID: PMC9935506 DOI: 10.1038/s41419-023-05671-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5+/- mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects.
Collapse
|
7
|
Burnet G, Bowles J, Spiller CM. Isolation and Culture Techniques for Fetal Mouse Germ Cells. Methods Mol Biol 2023; 2677:221-231. [PMID: 37464245 DOI: 10.1007/978-1-0716-3259-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The fetal gonad contains a great variety of differentiating cell populations, of which germ cells make up a relatively small percentage. In order to study germ cell-specific gene and protein expression, as well as determine direct effects of signaling molecules, it is necessary to prepare enriched populations of germ cells and maintain them in culture for several hours to multiple days. The protocols in this chapter are designed to provide a guide for the isolation or enrichment of primordial germ cells (from 9.5 days post coitum (dpc) to 18.5 dpc) by flow cytometry (Subheading 3.1) or magnetic sorting (Subheading 3.2), followed by feeder-free primary germ cell culture (Subheading 3.3).
Collapse
Affiliation(s)
- Guillaume Burnet
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Cassy M Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Bahmanpour S, Moasses Z, Zarei-Fard N. Comparative effects of retinoic acid, granulosa cells conditioned medium or forskolin in combination with granulosa cell co-culturing on mouse germ cell differentiation. Mol Biol Rep 2023; 50:631-640. [PMID: 36371553 DOI: 10.1007/s11033-022-07920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Devising of an appropriate in vitro culture method for germ cells differentiation in the presence of soluble factors has attracted considerable attention, which results will provide new insight into reproductive biology. In this study, we compared the effects of forskolin, retinoic acid (RA) or granulosa cell-conditioned medium in the presence or absence of granulosa cell co-culturing on germ cell differentiation from embryonic stem cells (ESCs). METHODS AND RESULTS Embryonic stem cells were differentiated using embryoid bodies (EBs) for 5 days, and then EB-derived cells were co-cultured with or without adult mouse granulosa cells using monolayer protocol and treated with 50 µM forskolin, 1 µM RA and 50% granulosa cell-conditioned medium for 4 days. Granulosa cell-conditioned medium significantly increased the levels of Scp3, Rec8, Mvh and Gdf9 expression in the granulosa cell co-culture method compared to untreated cells. A significant elevation of Stra8, Rec8 and Mvh was observed after treatment with RA in the absence of granulosa cells and there was no significant increase in the levels of expression of germ cell-specific genes after treatment with forskolin compared to control. Furthermore, forskolin and RA significantly increased viability and proliferation of germ-like cells, compared with granulosa cell-conditioned medium. CONCLUSIONS Our study revealed that granulosa cell-conditioned medium and RA effectively can induce germ cell differentiation from ESCs, however combined application of granulosa cell-conditioned medium and co-culturing with granulosa cells had synergic effect on germ cell development in vitro as optimized protocol.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zia Moasses
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei-Fard
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Ghasemi D, Ebrahimi-Barough S, Nekoofar MH, Mohamadnia A, Lotfibakhshaiesh N, Bahrami N, Karimi R, Taghdiri Nooshabadi V, Azami M, Hasanzadeh E, Ai J. Differentiation of human endometrial stem cells encapsulated in alginate hydrogel into oocyte-like cells. BIOIMPACTS : BI 2022; 13:229-240. [PMID: 37431484 PMCID: PMC10329755 DOI: 10.34172/bi.2022.23960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/02/2021] [Accepted: 12/04/2021] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Human endometrial mesenchymal stem cells (hEnMSCs) are a rich source of mesenchymal stem cells (MSCs) with multi-lineage differentiation potential, making them an intriguing tool in regenerative medicine, particularly for the treatment of reproductive and infertility issues. The specific process of germline cell-derived stem cell differentiation remains unknown, the aim is to study novel ways to achieve an effective differentiation method that produces adequate and functioning human gamete cells. METHODS We adjusted the optimum retinoic acid (RA) concentration for enhancement of germ cell-derived hEnSCs generation in 2D cell culture after 7 days in this study. Subsequently, we developed a suitable oocyte-like cell induction media including RA and bone morphogenetic protein 4 (BMP4), and studied their effects on oocyte-like cell differentiation in 2D and 3D cell culture media utilizing cells encapsulated in alginate hydrogel. RESULTS Our results from microscopy analysis, real-time PCR, and immunofluorescence tests revealed that 10 µM RA concentration was the optimal dose for inducing germ-like cells after 7 days. We examined the alginate hydrogel structural characteristics and integrity by rheology analysis and SEM microscope. We also demonstrated encapsulated cell viability and adhesion in the manufactured hydrogel. We propose that in 3D cell cultures in alginate hydrogel, an induction medium containing 10 µM RA and 50 ng/mL BMP4 can enhance hEnSC differentiation into oocyte-like cells. CONCLUSION The production of oocyte-like cells using 3D alginate hydrogel may be viable in vitro approach for replacing gonad tissues and cells.
Collapse
Affiliation(s)
- Diba Ghasemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Farini D, De Felici M. The Beginning of Meiosis in Mammalian Female Germ Cells: A Never-Ending Story of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms232012571. [PMID: 36293427 PMCID: PMC9604137 DOI: 10.3390/ijms232012571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Meiosis is the unique division of germ cells resulting in the recombination of the maternal and paternal genomes and the production of haploid gametes. In mammals, it begins during the fetal life in females and during puberty in males. In both cases, entering meiosis requires a timely switch from the mitotic to the meiotic cell cycle and the transition from a potential pluripotent status to meiotic differentiation. Revealing the molecular mechanisms underlying these interrelated processes represents the essence in understanding the beginning of meiosis. Meiosis facilitates diversity across individuals and acts as a fundamental driver of evolution. Major differences between sexes and among species complicate the understanding of how meiosis begins. Basic meiotic research is further hindered by a current lack of meiotic cell lines. This has been recently partly overcome with the use of primordial-germ-cell-like cells (PGCLCs) generated from pluripotent stem cells. Much of what we know about this process depends on data from model organisms, namely, the mouse; in mice, the process, however, appears to differ in many aspects from that in humans. Identifying the mechanisms and molecules controlling germ cells to enter meiosis has represented and still represents a major challenge for reproductive medicine. In fact, the proper execution of meiosis is essential for fertility, for maintaining the integrity of the genome, and for ensuring the normal development of the offspring. The main clinical consequences of meiotic defects are infertility and, probably, increased susceptibility to some types of germ-cell tumors. In the present work, we report and discuss data mainly concerning the beginning of meiosis in mammalian female germ cells, referring to such process in males only when pertinent. After a brief account of this process in mice and humans and an historical chronicle of the major hypotheses and progress in this topic, the most recent results are reviewed and discussed.
Collapse
|
11
|
Oct4 dependent chromatin activation is required for chicken primordial germ cell migration. Stem Cell Rev Rep 2022; 18:2535-2546. [PMID: 35397052 DOI: 10.1007/s12015-022-10371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Primordial germ cells (PGCs) are the undifferentiated progenitors of the gametes. Unlike the poor maintenance of cultured mammalian PGCs, the avian PGCs can be expanded in vitro indefinitely while preserving pluripotency and germline competence. In mammals, the Oct4 is the master transcription factor that ensures the stemness of pluripotent cells such as PGCs, but the specific function of Oct4 in chicken PGCs remains unclear. As expected, the loss of Oct4 in chicken PGCs reduced the expression of key pluripotency factors and promoted the genes involved in endoderm and ectoderm differentiation. Furthermore, the global active chromatin was reduced as shown by the depletion of the H3K27ac upon Oct4 suppression. Interestingly, the de-activated chromatin caused the down-regulation of adjacent genes which are mostly known regulators of cell junction, chemotaxis and cell migration. Consequently, the Oct4-deficient PGCs show impaired cell migration and could not colonize the gonads when re-introduced into the bloodstream of the embryo. We propose that, in addition to maintaining pluripotency, the Oct4 mediated chromatin activation is dictating chicken PGC migration.
Collapse
|
12
|
PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. Int J Mol Sci 2021; 22:ijms22189838. [PMID: 34575999 PMCID: PMC8467417 DOI: 10.3390/ijms22189838] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Several studies indicate that the PI3K/PTEN/AKT signaling pathways are critical regulators of ovarian function including the formation of the germ cell precursors, termed primordial germ cells, and the follicular pool maintenance. This article reviews the current state of knowledge of the functional role of the PI3K/PTEN/AKT pathways during primordial germ cell development and the dynamics of the ovarian primordial follicle reserve and how dysregulation of these signaling pathways may contribute to the development of some types of germ cell tumors and ovarian dysfunctions.
Collapse
|
13
|
Jarysta A, Riou L, Firlej V, Lapoujade C, Kortulewski T, Barroca V, Gille AS, Dumont F, Jacques S, Letourneur F, Rosselli F, Allemand I, Fouchet P. Abnormal migration behavior linked to Rac1 signaling contributes to primordial germ cell exhaustion in Fanconi anemia pathway-deficient Fancg-/- embryos. Hum Mol Genet 2021; 31:97-110. [PMID: 34368842 PMCID: PMC8682768 DOI: 10.1093/hmg/ddab222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is a rare human genetic disorder characterized by bone marrow failure, predisposition to cancer and developmental defects including hypogonadism. Reproductive defects leading to germ cell aplasia are the most consistent phenotypes seen in FA mouse models. We examined the role of the nuclear FA core complex gene Fancg in the development of primordial germ cells (PGCs), the embryonic precursors of adult gametes, during fetal development. PGC maintenance was severely impaired in Fancg−/− embryos. We observed a defect in the number of PGCs starting at E9.5 and a strong attrition at E11.5 and E13.5. Remarkably, we observed a mosaic pattern reflecting a portion of testicular cords devoid of PGCs in E13.5 fetal gonads. Our in vitro and in vivo data highlight a potential role of Fancg in the proliferation and in the intrinsic cell motility abilities of PGCs. The random migratory process is abnormally activated in Fancg−/− PGCs, altering the migration of cells. Increased cell death and PGC attrition observed in E11.5 Fancg−/− embryos are features consistent with delayed migration of PGCs along the migratory pathway to the genital ridges. Moreover, we show that an inhibitor of RAC1 mitigates the abnormal migratory pattern observed in Fancg−/− PGCs.
Collapse
Affiliation(s)
- Amandine Jarysta
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Lydia Riou
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Virginie Firlej
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Clémentine Lapoujade
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris-Saclay, Inserm, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire de RadioPathologie, F-92265, Fontenay-aux-Roses, France
| | - Vilma Barroca
- Université de Paris and Université Paris-Saclay, Inserm, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Gille
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France.,Département de Génétique, Développement et Cancer. Team From Gametes to Birth, Institut Cochin, INSERM U1016, Paris, France
| | - Florent Dumont
- Université Paris Saclay, UMS IPSIT, F-92296, Châtenay-Malabry, France
| | - Sébastien Jacques
- Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris, 22 rue Méchain, 75014 Paris, France
| | - Franck Letourneur
- Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris, 22 rue Méchain, 75014 Paris, France
| | - Filippo Rosselli
- CNRS-UMR9019, Intégrité du Génome et Cancers, Equipe Labellisée « La Ligue Contre Le cancer », Gustave Roussy Cancer Center, Université Paris-Saclay, 94805 Villejuif, France
| | - Isabelle Allemand
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Pierre Fouchet
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| |
Collapse
|
14
|
Di Giovannantonio LG, Acampora D, Omodei D, Nigro V, Barba P, Barbieri E, Chambers I, Simeone A. Direct repression of Nanog and Oct4 by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage. Development 2021; 148:263923. [PMID: 33999993 DOI: 10.1242/dev.199166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.
Collapse
Affiliation(s)
| | - Dario Acampora
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Daniela Omodei
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Tommaso De Amicis, 95, 80145 Naples, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania 'Luigi Vanvitelli', Via L. De Crecchio, 7, 80138 Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80087 Pozzuoli (NA), Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Elisa Barbieri
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Antonio Simeone
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
15
|
Borkowska M, Leitch HG. Mouse Primordial Germ Cells: In Vitro Culture and Conversion to Pluripotent Stem Cell Lines. Methods Mol Biol 2021; 2214:59-73. [PMID: 32944903 DOI: 10.1007/978-1-0716-0958-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes. Despite decades of research, in vitro culture of PGCs remains a major challenge and has previously relied on undefined components such as serum and feeders. Notably, PGCs cultured for extended periods do not maintain their lineage identity but instead undergo conversion to form pluripotent stem cell lines called embryonic germ (EG) cells in response to LIF/STAT3 signaling. Here we report both established and new methodologies to derive EG cells, in a range of different conditions. We show that basic fibroblast growth factor is not required for EG cell conversion. We detail the steps taken in our laboratory to systematically remove complex components and establish a fully defined protocol that allows efficient conversion of isolated PGCs to pluripotent EG cells. In addition, we demonstrate that PGCs can adhere and proliferate in culture without the support of feeder cells or serum. This may well suggest novel approaches to establishing short-term culture of PGCs in defined conditions.
Collapse
Affiliation(s)
- Malgorzata Borkowska
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
16
|
Ge W, Wang JJ, Zhang RQ, Tan SJ, Zhang FL, Liu WX, Li L, Sun XF, Cheng SF, Dyce PW, De Felici M, Shen W. Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cell Mol Life Sci 2021; 78:695-713. [PMID: 32367190 PMCID: PMC11072979 DOI: 10.1007/s00018-020-03533-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 01/22/2023]
Abstract
Meiosis is one of the most finely orchestrated events during gametogenesis with distinct developmental patterns in males and females. However, the molecular mechanisms involved in this process remain not well known. Here, we report detailed transcriptome analyses of cell populations present in the mouse female gonadal ridges (E11.5) and the embryonic ovaries from E12.5 to E14.5 using single-cell RNA sequencing (scRNA seq). These periods correspond with the initiation and progression of meiosis throughout the first stage of prophase I. We identified 13 transcriptionally distinct cell populations and 7 transcriptionally distinct germ cell subclusters that correspond to mitotic (3 clusters) and meiotic (4 clusters) germ cells. By analysing cluster-specific gene expression profiles, we found four cell clusters correspond to different cell stages en route to meiosis and characterized their detailed transcriptome dynamics. Our scRNA seq analysis here represents a new important resource for deciphering the molecular pathways driving female meiosis initiation.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Rui-Qian Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shao-Jing Tan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen-Xiang Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
17
|
Sorrenti M, Klinger FG, Iona S, Rossi V, Marcozzi S, DE Felici M. Expression and possible roles of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cell development. J Reprod Dev 2020; 66:399-409. [PMID: 32418930 PMCID: PMC7593634 DOI: 10.1262/jrd.2019-141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the present work, we described the expression and activity of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cells (PGCs) from
8.5–14.5 days post coitum (dpc) and investigated whether these kinases play a role in regulating the various processes of PGC development. Using
immunofluorescence and immunoblotting to detect the active phosphorylated form of ERK1-2 (p-ERK1-2), we found that the kinases were present in most
proliferating 8.5–10.5 dpc PGCs, low in 11.5 dpc PGCs, and progressively increasing between 12.5–14.5 dpc both in female and male PGCs. In
vitro culture experiments showed that inhibiting activation of ERK1-2 with the MEK-specific inhibitor U0126 significantly reduced the growth of 8.5
dpc PGCs in culture but had little effect on 11.5–12.5 dpc PGCs. Moreover, we found that the inhibitor did not affect the adhesion of 11.5 dpc PGCs, but it
significantly reduced their motility features onto a cell monolayer. Further, while the ability of female PGCs to begin meiosis was not significantly affected
by U0126, their progression through meiotic prophase I was slowed down. Notably, the activity of ERK1-2 was necessary for maintaining the correct expression of
oocyte-specific genes crucial for germ cells survival and the formation of primordial follicles.
Collapse
Affiliation(s)
- Maria Sorrenti
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Saveria Iona
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Valerio Rossi
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Serena Marcozzi
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Massimo DE Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| |
Collapse
|
18
|
Zuo Q, Jin J, Jin K, Zhou J, Sun C, Song J, Chen G, Zhang Y, Li B. P53 and H3K4me2 activate N6-methylated LncPGCAT-1 to regulate primordial germ cell formation via MAPK signaling. J Cell Physiol 2020; 235:9895-9909. [PMID: 32458486 DOI: 10.1002/jcp.29805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/11/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) participate in the formation of primordial germ cells (PGCs); however, the identity of the key lncRNAs and the molecular mechanisms responsible for the formation of PGCs remain unknown. Here, we identify a key candidate lncRNA (lncRNA PGC transcript-1, LncPGCAT-1) via RNA sequencing of embryonic stem cells, PGCs, and Spermatogonial stem cells (SSCs). Functional experiments confirmed that LncPGCAT-1 positively regulated the formation of PGCs by elevating the expression of Cvh and C-kit while downregulating the pluripotency(Nanog) in vitro and in vivo; PAS staining of genital ridges in vivo also showed that interference with LncPGCAT-1 can significantly reduce the number of PGCs in genital ridges, while overexpression of LncPGCAT-1 had the opposite result. The result of luciferase reporter assay combined with CHIP-qPCR showed that the expression of LncPGCAT-1 was promoted by the transcription factor P53 and high levels of H3K4me2. Mechanistically, the luciferase reporter assay confirmed that mitogen-activated protein kinase 1 (MAPK1) was the target gene of LncPGCAT-1 and gga-mir-1591. In the ceRNA system, high levels of N6 methylation of LncPGCAT-1 enhanced the adsorption capacity of LncPGCAT-1 for gga-mir-1591. Adsorption of gga-mir-1591 activated the MAPK1/ERK signaling cascade by relieving the gga-mir-1591-dependent inhibition of MAPK1 expression. Moreover, LncPGCAT-1 interacted with interleukin enhancer binding factor 3 (ILF3) to regulate the ubiquitination of P53 and phosphorylation of JNK. Interaction with ILF3 resulted in positive self-feedback regulation of LncPGCAT-1 and activation of JNK signaling, ultimately promoting PGC formation. Altogether, the study expands our knowledge of the function and molecular mechanisms of lncRNAs in PGC development.
Collapse
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Changhua Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
19
|
Gell JJ, Liu W, Sosa E, Chialastri A, Hancock G, Tao Y, Wamaitha SE, Bower G, Dey SS, Clark AT. An Extended Culture System that Supports Human Primordial Germ Cell-like Cell Survival and Initiation of DNA Methylation Erasure. Stem Cell Reports 2020; 14:433-446. [PMID: 32059791 PMCID: PMC7066331 DOI: 10.1016/j.stemcr.2020.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/30/2023] Open
Abstract
The development of an in vitro system in which human primordial germ cell-like cells (hPGCLCs) are generated from human pluripotent stem cells (hPSCs) has been invaluable to further our understanding of human primordial germ cell (hPGC) specification. However, the means to evaluate the next fundamental steps in germ cell development have not been well established. In this study we describe a two dimensional extended culture system that promotes proliferation of specified hPGCLCs, without reversion to a pluripotent state. We demonstrate that hPGCLCs in extended culture undergo partial epigenetic reprogramming, mirroring events described in hPGCs in vivo, including a genome-wide reduction in DNA methylation and maintenance of depleted H3K9me2. This extended culture system provides a new approach for expanding the number of hPGCLCs for downstream technologies, including transplantation, molecular screening, or possibly the differentiation of hPGCLCs into gametes by in vitro gametogenesis.
Collapse
Affiliation(s)
- Joanna J Gell
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine, Department of Pediatrics, Division of Hematology-Oncology, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Enrique Sosa
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Grace Hancock
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Tao
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sissy E Wamaitha
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Grace Bower
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Function of leukaemia inhibitory factor in spermatogenesis of a teleost fish, the medaka Oryzias latipes. ZYGOTE 2019; 27:423-431. [PMID: 31617472 DOI: 10.1017/s0967199419000558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In response to gonadotropins and androgens, testicular cells produce various molecules that control proper proliferation and differentiation of spermatogenic cells through their paracrine and autocrine actions. However, molecules functioning downstream of the hormonal stimulation are poorly understood. Leukaemia inhibitory factor (Lif) is known to maintain the pluripotency of stem cells including embryonic stem cells and primordial germ cells at least in vitro, but its actual roles in vivo remain to be elucidated. To clarify the function of Lif in teleost (medaka) testes, we examined the effects of Lif on spermatogenesis in a newly established cell culture system using a cell line (named Mtp1) derived from medaka testicular somatic cells as feeder cells. We found that addition of baculovirus-produced recombinant medaka Lif to the culture medium or co-culture with Lif-overexpressing Mtp1 cells increased the number of spermatogonia. In situ hybridization and immunohistochemical analyses of the medaka testes showed that mRNAs and proteins of Lif are expressed in spermatogonia and the surrounding Sertoli cells, with higher expression levels in type A (undifferentiated) spermatogonia than in type B (differentiated) spermatogonia. Our findings suggest that Lif regulates spermatogonial cell proliferation in the medaka.
Collapse
|
21
|
Li J, Li Z, Tu J, Jin G, Li L, Wang K, Wang H. In vitro and in vivo investigations of a-C/a-C:Ti nanomultilayer coated Ti6Al4V alloy as artificial femoral head. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:816-826. [PMID: 30889756 DOI: 10.1016/j.msec.2019.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
Hydrogen-free a-C/a-C:Ti nanomultilayer (a-C NM) films were deposited on medical Ti6Al4V by the magnetron sputtering technique under bias-graded voltage. Cell tests and implantations were performed for the a-C NM films coated Ti6Al4V with the uncoated Ti6Al4V as the control. The canine total hip arthroplasty (THA) surgeries were conducted for 12 dogs using the coated femoral heads, with the CoCr heads as the control. Results of cell tests showed that the coated Ti6Al4V had no cytotoxicity, and there was no statistical difference of the cell attachment rates between the coated and uncoated sample (P = 0.091). No significant difference of the tissue response around the coated and uncoated implants were observed after the intramuscular (P = 0.679) and intraosseous implantations (P = 0.122). After two years of successful canine THA, the polyethylene wear particles isolated from periprosthetic soft tissue showed similar sizes, shapes and counts in the two groups (all of the P values >0.05). The retrieved femoral heads showed slightly change of the surface roughness, but no statistical differences between groups (P = 0.696). However, the systemic metal ion analysis indicated that the content of Co and Cr ions released in the coated group (Co: 0.71 ± 0.06 μg/L, Cr: 0.52 ± 0.05 μg/L) were significant lower than that in the control (Co: 1.98 ± 0.16 μg/L, Cr: 1.17 ± 0.19 μg/L) (both P < 0.005). Histological analysis of the periprosthetic tissue in CoCr group showed a severer histiocyte response than that in the coated group (P = 0.029). The head-taper interfaces showed galvanic corrosion attack in the CoCr group, but not in the coated Ti6Al4V group. Therefore, the a-C NM films coated Ti6Al4V exhibited good biocompatibility as an implant material. Compared with the CoCr, the coated Ti6Al4V femoral head could provide comparable in vivo wear properties, release less harmful metal ions and reduce the inflammatory response in periprosthetic tissue, which may help to prolong the longevity of prostheses.
Collapse
Affiliation(s)
- Ji Li
- Department of Orthopedics, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhongli Li
- Department of Orthopedics, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Jiangping Tu
- State Key Laboratory of Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co., No. 20 Kechuang Road, Economic and Technological Development Zone, Beijing 100176, China
| | - Lingling Li
- State Key Laboratory of Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ketao Wang
- Department of Orthopedics, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Haoran Wang
- Department of Orthopedics, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
22
|
Abstract
Germ cells are the stem cells of the species. Thus, it is critical that we have a good understanding of how they are specified, how the somatic cells instruct and support them, how they commit to one or other sex, and how they ultimately develop into functional gametes. Here, we focus on specifics of how sexual fate is determined during fetal life. Because the majority of relevant experimental work has been done using the mouse model, we focus on that species. We review evidence regarding the identity of instructive signals from the somatic cells, and the molecular responses that occur in germ cells in response to those extrinsic signals. In this way we aim to clarify progress to date regarding the mechanisms underlying the mitotic to meiosis switch in germ cells of the fetal ovary, and those involved in adopting and securing male fate in germ cells of the fetal testis.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Todaro F, Campolo F, Barrios F, Pellegrini M, Di Cesare S, Tessarollo L, Rossi P, Jannini EA, Dolci S. Regulation of Kit Expression in Early Mouse Embryos and ES Cells. Stem Cells 2019; 37:332-344. [PMID: 30566254 DOI: 10.1002/stem.2960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 11/15/2018] [Accepted: 11/24/2018] [Indexed: 01/01/2023]
Abstract
Kit is a growth factor receptor that regulates proliferation and/or survival of many embryonic and postnatal stem cell types. When mutated, it can induce malignant transformation of the host cells. To dissect the Kit role in the control of ESC pluripotency, we studied its expression during early mouse embryogenesis and during the process of ESC derivation from inner cell mass (ICM) cells. We followed the in vitro development of early mouse embryos obtained from transgenic mice carrying Kit promoter regions fused to EGFP (Kit-EGFP) and found that they initiate EGFP expression at morula stage. EGFP expression is then maintained in the blastocyst, within the ICM, and its levels increase when cultured in the presence of MAPK and GSK3β inhibitors (2i) plus LIF compared with the LIF-only condition. Kit-EGFP ESCs showed nonhomogeneous EGFP expression pattern when cultured in LIF condition, but they upregulated EGFP expression, as well as that of Sox2, Nanog, Prdm14, when shifted to 2i-LIF culture. Similarly, primordial germ cells (PGCs) in the process of embryonic germ cell (EGC) conversion showed enhanced EGFP expression in 2i-LIF. Kit expression was affected by manipulating Sox2 levels in ESCs. Chromatin immunoprecipitation experiments confirmed that Sox2 binds Kit regulatory regions containing Sox2 consensus sequences. Finally, Kit constitutive activation induced by the D814Y mutation increased ESC proliferation and cloning efficiency in vitro and in teratoma assays in vivo. Our results identify Kit as a pluripotency-responsive gene and suggest a role for Kit in the regulation of ESC proliferation. Stem Cells 2019;37:332-344.
Collapse
Affiliation(s)
- Federica Todaro
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Federica Campolo
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Florencia Barrios
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | | | - Silvia Di Cesare
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Lino Tessarollo
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Pellegrino Rossi
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Emmanuele A Jannini
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
24
|
Induction of fetal primary oocytes and the meiotic prophase from mouse pluripotent stem cells. Methods Cell Biol 2018; 144:409-429. [PMID: 29804680 DOI: 10.1016/bs.mcb.2018.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiosis is a key mechanism that ensures sexual reproduction and creates genetic diversity. Here we describe a method that induces fetal oocytes and the prophase of the first meiotic division from mouse pluripotent stem cells (PSCs) under defined conditions. PSCs are induced into epiblast-like cells (EpiLCs), which are in turn induced into primordial germ cell-like cells (PGCLCs). PGCLCs are expanded robustly in the presence of forskolin and rolipram, which elevate intracellular cyclic AMP levels. The expanded PGCLCs comprehensively erase their DNA methylome in a manner that recapitulates genome-wide DNA demethylation in germ cells in vivo, and are in turn induced efficiently into the oogenic pathway and the prophase of the first meiotic division up to the pachytene stage in response to bone morphogenetic protein and retinoic acid. This in vitro strategy provides a powerful foundation for exploring the mechanisms of initiation and progression of mammalian oogenesis and meiosis.
Collapse
|
25
|
Dyce PW, Tenn N, Kidder GM. Retinoic acid enhances germ cell differentiation of mouse skin-derived stem cells. J Ovarian Res 2018; 11:19. [PMID: 29490681 PMCID: PMC5831580 DOI: 10.1186/s13048-018-0390-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinoic acid (RA) signaling has been identified as a key driver in male and female gamete development. The presence of RA is a critical step in the initiation of meiosis and is required for the production of competent oocytes from primordial germ cells. Meiosis has been identified as a difficult biological process to recapitulate in vitro, when differentiating stem cells to germ cells. We have previously shown that primordial germ cell-like cells, and more advanced oocyte-like cells (OLCs), can be formed by differentiating mouse skin-derived stem cells. However, the OLCs remain unable to function due to what appears to be failure of meiotic initiation. The aim of this study was to determine the effect of RA treatment, during stem cell differentiation to germ cells, particularly on the initiation of meiosis. RESULTS Using qPCR we found significant increases in the meiosis markers Stra8 and Sycp3 and a significant reduction in the meiosis inhibitor Nanos2, in the differentiating populations. Furthermore, OLCs from the RA treated group, expressed significantly more of the meiosis regulatory gene Marf1 and the oocyte marker Oct4. At the protein level RA treatment was found to increase the expression of the gap junction protein CX43 and the pluripotency marker OCT4. Moreover, the expression of SYCP3 was significantly upregulated and the localization pattern better matched that of control fetal ovarian cells. RA treatment also improved the structural integrity of the OLCs produced by initiating the expression of all three zona pellucida transcripts (Zp1-3) and improving ZP3 expression levels and localization. Finally, the addition of RA during differentiation led to an almost two-fold increase in the number of OLCs recovered and increased their in vitro growth. CONCLUSION RA is a key driver in the formation of functioning gametes and its addition during stem cell to germ cell differentiation improves OLCs entry into meiosis.
Collapse
Affiliation(s)
- Paul W Dyce
- Department of Animal Sciences, College of Agriculture, Auburn University, CASIC Building, 559 Devall Drive, Auburn, AL, 36849, USA.
| | - Neil Tenn
- Department of Physiology and Pharmacology, The University of Western Ontario and Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada
| | - Gerald M Kidder
- Department of Physiology and Pharmacology, The University of Western Ontario and Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada
| |
Collapse
|
26
|
PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation. Stem Cell Res 2018; 27:46-56. [PMID: 29324254 PMCID: PMC5858915 DOI: 10.1016/j.scr.2017.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 01/01/2023] Open
Abstract
Germ cell tumors (GCTs) are a heterogeneous group of tumors occurring in gonadal and extragonadal locations. GCTs are hypothesized to arise from primordial germ cells (PGCs), which fail to differentiate. One recently identified susceptibility loci for human GCT is PR (PRDI-BF1 and RIZ) domain proteins 14 (PRDM14). PRDM14 is expressed in early primate PGCs and is repressed as PGCs differentiate. To examine PRDM14 in human GCTs we profiled human GCT cell lines and patient samples and discovered that PRDM14 is expressed in embryonal carcinoma cell lines, embryonal carcinomas, seminomas, intracranial germinomas and yolk sac tumors, but is not expressed in teratomas. To model constitutive overexpression in human PGCs, we generated PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs) and discovered that elevated expression of PRDM14 does not block early PGC formation. Instead, we show that elevated PRDM14 in PGCLCs causes proliferation and differentiation defects in the germline.
Collapse
|
27
|
Nagaoka SI, Saitou M. Reconstitution of Female Germ Cell Fate Determination and Meiotic Initiation in Mammals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:213-222. [PMID: 29208639 DOI: 10.1101/sqb.2017.82.033803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a fundamental process that underpins sexual reproduction. In mammals, the execution of meiosis is tightly integrated within the complex processes of oogenesis and spermatogenesis, and elucidation of the molecular mechanisms regulating meiotic initiation remains challenging. We have recently developed in vitro culture strategies to induce mouse pluripotent stem cells into germ cells, which successfully contribute to both oogenesis and spermatogenesis and to fertile offspring. The culture strategies faithfully recapitulate transcriptional and epigenetic dynamics as well as signaling principles for germ cell specification, proliferation, and female sex determination/meiotic induction, providing a valuable platform for studies to illuminate the molecular mechanisms underlying such critical processes. Here, we review mammalian gametogenesis with a focus on the implementation of meiosis and, based on our recent studies, discuss new insights into the mechanisms for meiotic initiation and germ cell sex determination in mice.
Collapse
Affiliation(s)
- So I Nagaoka
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for iPS Cell Research and Application, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Mullen AC, Wrana JL. TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022186. [PMID: 28108485 DOI: 10.1101/cshperspect.a022186] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of transforming growth factor-β (TGF-β), seminal work in vertebrate and invertebrate models revealed the TGF-β family to be central regulators of tissue morphogenesis. Members of the TGF-β family direct some of the earliest cell-fate decisions in animal development, coordinate complex organogenesis, and contribute to tissue homeostasis in the adult. Here, we focus on the role of the TGF-β family in mammalian stem-cell biology and discuss its wide and varied activities both in the regulation of pluripotency and in cell-fate commitment.
Collapse
Affiliation(s)
- Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbam Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
29
|
Fattahi A, Latifi Z, Ghasemnejad T, Nejabati HR, Nouri M. Insights into in vitro spermatogenesis in mammals: Past, present, future. Mol Reprod Dev 2017; 84:560-575. [DOI: 10.1002/mrd.22819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Amir Fattahi
- Institute for Stem Cell and Regenerative Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Zeinab Latifi
- Department of Clinical Biochemistry, Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
30
|
Li L, Bai W, Wang X, Gu C, Jin G, Tu J. Mechanical Properties and in Vitro and in Vivo Biocompatibility of a-C/a-C:Ti Nanomultilayer Films on Ti6Al4V Alloy as Medical Implants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15933-15942. [PMID: 28467042 DOI: 10.1021/acsami.7b02552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrogen-free a-C/a-C:Ti nanomultilayer films are deposited on medical Ti6Al4V alloy using a closed field unbalanced magnetron sputtering under graded bias voltage. The mechanical and tribological properties of the nanomultilayer films are performed on the nanoindentor, Rockwell and scratch tests, and ball-on-disk tribometer. The biological properties are evaluated by cell cytotoxicity, genotoxicity, subchronic systemic toxicity and implant. The hard a-C/a-C:Ti nanomultilayer films on medical alloy exhibit high adhesion strength and excellent tribological properties in both ambient air and Hank's solution. Biocompatibility results reveal the film no cytotoxity, no genotoxicity, no subchronic systemic toxicity and no contraindications in implant systems. Because of excellent mechanical properties and biosafety, the carbon-based films on medical alloy unveils a prospective application in medical implants.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Wenqi Bai
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Changdong Gu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Gong Jin
- ZhongAo HuiCheng Technology Co. Ltd. , Beijing 100176, China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
- ZhongAo HuiCheng Technology Co. Ltd. , Beijing 100176, China
| |
Collapse
|
31
|
Abstract
The fetal gonad contains a great variety of differentiating cell populations, of which germ cells make up a small percentage. In order to study germ cell-specific gene and protein expression, as well as determine direct effects of signaling molecules, it is necessary to prepare enriched populations of germ cells and maintain them in culture for several hours to multiple days. The protocols in this chapter are designed to provide a guide for the isolation or enrichment of mouse primordial germ cells (from 9.5 days postcoitum (dpc) to 18.5 dpc) by flow cytometry (Subheading 3.1) or magnetic sorting (Subheading 3.2), followed by primary germ cell culture (Subheading 3.3).
Collapse
Affiliation(s)
- Cassy M Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guillaume Burnet
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
32
|
Chapin RE, Winton T, Nowland W, Danis N, Kumpf S, Johnson K, Coburn A, Stukenborg JB. Lost in translation: The search for an in vitro screen for spermatogenic toxicity. ACTA ACUST UNITED AC 2016; 107:225-242. [DOI: 10.1002/bdrb.21188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Robert E. Chapin
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Timothy Winton
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - William Nowland
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Nichole Danis
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
- Histopathology Laboratory; WRD; Groton CT USA
| | - Steven Kumpf
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Kjell Johnson
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
- Arbor Analytics; Ann Arbor MI USA
| | - Aleasha Coburn
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
33
|
Regulators in the apoptotic pathway during spermatogenesis: Killers or guards? Gene 2016; 582:97-111. [DOI: 10.1016/j.gene.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 01/24/2023]
|
34
|
Whyte J, Glover JD, Woodcock M, Brzeszczynska J, Taylor L, Sherman A, Kaiser P, McGrew MJ. FGF, Insulin, and SMAD Signaling Cooperate for Avian Primordial Germ Cell Self-Renewal. Stem Cell Reports 2015; 5:1171-1182. [PMID: 26677769 PMCID: PMC4682126 DOI: 10.1016/j.stemcr.2015.10.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 11/18/2022] Open
Abstract
Precise self-renewal of the germ cell lineage is fundamental to fertility and reproductive success. The early precursors for the germ lineage, primordial germ cells (PGCs), survive and proliferate in several embryonic locations during their migration to the embryonic gonad. By elucidating the active signaling pathways in migratory PGCs in vivo, we were able to create culture conditions that recapitulate this embryonic germ cell environment. In defined medium conditions without feeder cells, the growth factors FGF2, insulin, and Activin A, signaling through their cognate-signaling pathways, were sufficient for self-renewal of germline-competent PGCs. Forced expression of constitutively active MEK1, AKT, and SMAD3 proteins could replace their respective upstream growth factors. Unexpectedly, we found that BMP4 could replace Activin A in non-clonal growth conditions. These defined medium conditions identify the key molecular pathways required for PGC self-renewal and will facilitate efforts in biobanking of chicken genetic resources and genome editing. Avian primordial germ cell self-renewal is dependent on FGF2, insulin, and Activin A molecules BMP4 can replace Activin A in non-clonal growth conditions Defined culture medium conditions will facilitate studies of germ cell self-renewal in other vertebrate species
Collapse
Affiliation(s)
- Jemima Whyte
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - James D Glover
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Mark Woodcock
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Joanna Brzeszczynska
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Lorna Taylor
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Adrian Sherman
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Pete Kaiser
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.
| |
Collapse
|
35
|
Zhang LJ, Chen B, Feng XL, Ma HG, Sun LL, Feng YM, Liang GJ, Cheng SF, Li L, Shen W. Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells. Reprod Fertil Dev 2015; 27:294-303. [PMID: 24209976 DOI: 10.1071/rd13281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022] Open
Abstract
In mammals, ontogenesis starts from a fusion of spermatozoon and oocyte, which are produced by reductive nuclear division of a diploid germ cell in a specialised but complex biological process known as meiosis. However, little is known about the mechanism of meiotic initiation in germ cells, although many factors may be responsible for meiosis both in male and female gonads. In this study, 11.5 days post coitum (dpc) female fetal mouse genital ridges were cultured in vitro with exposure to Brefeldin A (BFA) for 6h, and the changes in meiosis were detected. Synaptonemal-complex analysis implied that BFA played a positive role in meiosis initiation and this hypothesis was confirmed by quantitative PCR of meiosis-specific genes: stimulated by retinoic acid gene 8 (Stra8) and deleted in a zoospermia-like (DAZL). At the same time, mRNA expression of retinoic acid synthetase (Raldh2) and retinoic acid (RA) receptors increased in female gonads with in vitro exposure to BFA. Transplanting genital ridges treated with BFA into the kidney capsule of immunodeficient mice demonstrated that the development capacity of female germ cells was normal, while formation of primordial follicles was seen to be a result of accelerated meiosis after exposure to BFA. In conclusion, the study indicated that BFA stimulated meiosis initiation partly by RA signalling and then promoted the development of follicles.
Collapse
Affiliation(s)
- Lian-Jun Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bo Chen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Lei Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hua-Gang Ma
- Center for Reproductive Biology, Weifang People's Hospital, Weifang, 261041, China
| | - Li-Lan Sun
- Center for Reproductive Biology, Weifang People's Hospital, Weifang, 261041, China
| | - Yan-Min Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gui-Jin Liang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
36
|
Ge W, Chen C, De Felici M, Shen W. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death Dis 2015; 6:e1906. [PMID: 26469955 PMCID: PMC4632295 DOI: 10.1038/cddis.2015.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/15/2023]
Abstract
Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells.
Collapse
Affiliation(s)
- W Ge
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - C Chen
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - M De Felici
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata', Rome 00133, Italy
| | - W Shen
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
37
|
PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation. Stem Cell Reports 2015; 5:337-49. [PMID: 26278040 PMCID: PMC4618453 DOI: 10.1016/j.stemcr.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 11/23/2022] Open
Abstract
Primordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However, when removed from their embryonic niche, PGCs undergo reversion to pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) is variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. Here we show that reverting PGCs to EGCs involved stable ICC methylation erasure at Snrpn, Igf2r, and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes erasure followed by de novo re-methylation. PGCs differentiated in vitro from ESCs completed Snrpn ICC erasure. However, the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC was abnormally hypermethylated in ESCs, this is not erased in PGCs differentiated from ESCs. Therefore, launching PGC differentiation from ESC lines with appropriately methylated ICCs is critical to the generation of germline cells that recapitulate endogenous ICC erasure.
Collapse
|
38
|
Gautier A, Bosseboeuf A, Auvray P, Sourdaine P. Maintenance of potential spermatogonial stem cells in vitro by GDNF treatment in a chondrichthyan model (Scyliorhinus canicula L.). Biol Reprod 2014; 91:91. [PMID: 25143357 DOI: 10.1095/biolreprod.113.116020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previous work in dogfish, Scyliorhinus canicula, has identified the testicular germinative area as the spermatogonial stem cell niche. In the present study, an in vitro co-culture system of spermatogonia and somatic cells from the germinative area was developed. Long-term maintenance of spermatogonia has been successful, and addition of GDNF has promoted the development of clones of spermatogonia expressing stem cell characteristics such as alkaline phosphatase activity and has allowed maintenance of self-renewal in spermatogonia for at least 5 mo under culture conditions, notably by decreasing cell apoptosis. Furthermore, clones of spermatogonia expressed the receptor of GDNF, GFRalpha1, which is consistent with the effect of GDNF on cells despite the lack of identification of a GDNF sequence in the dogfish's transcriptome. However, a sequence homologous to artemin has been identified, and in silico analysis supports the hypothesis that artemin could replace GDNF in the germinative area in dogfish. This study, as the first report on long-term in vitro maintenance of spermatogonia in a chondrichthyan species, suggests that the GFRalpha1 signaling function in self-renewal of spermatogonial stem cells is probably conserved in gnathostomes.
Collapse
Affiliation(s)
- Aude Gautier
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France
| | - Adrien Bosseboeuf
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France Kelia, Group Cellis Pharma, Parc Technopolitain Atalante Saint Malo, Saint Malo, France
| | - Pierrick Auvray
- Kelia, Group Cellis Pharma, Parc Technopolitain Atalante Saint Malo, Saint Malo, France
| | - Pascal Sourdaine
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France
| |
Collapse
|
39
|
Feng XL, Sun YC, Zhang M, Cheng SF, Feng YN, Liu JC, Wang HH, Li L, Qin GQ, Shen W. Insulin regulates primordial-follicle assembly in vitro by affecting germ-cell apoptosis and elevating oestrogen. Reprod Fertil Dev 2014; 27:1197-204. [PMID: 24931389 DOI: 10.1071/rd14096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/28/2014] [Indexed: 11/23/2022] Open
Abstract
Insulin is a protein secreted by pancreatic β-cells, which plays an important role in the regulation of ovarian function. However, the specific molecular mechanism of its function remains largely unknown. This study aimed to assess the effect of insulin on mouse folliculogenesis using an in vitro ovary-culture model. The results demonstrated that insulin promoted the proliferation of ovarian granulosa cells in vitro, and thereby accelerated the progress of folliculogenesis (the percentage of oocytes in cysts declined from 42.6% to 29.3%); however, the percentage of apoptotic oocytes increased after insulin treatment. Further investigation indicated that apoptosis occurred mainly in germ-cell cysts. After 3 days of insulin treatment, oestrogen in the culture medium of mouse ovaries significantly increased (P<0.01), while the lower dose of oestrogen promoted primordial-follicle assembly in vitro. In conclusion, insulin promoted folliculogenesis by facilitating germ-cell apoptosis within the cysts and upregulating oestrogen levels.
Collapse
Affiliation(s)
- Xin-Lei Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan-Chao Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Min Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Ni Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing-Cai Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong-Hui Wang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Qin
- EMF Nutrition, 715 Marion Street, Winnipeg, Manitoba, R2J 0K6, Canada
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
40
|
Leitch HG, Tang WWC, Surani MA. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 2014; 104:149-87. [PMID: 23587241 DOI: 10.1016/b978-0-12-416027-9.00005-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes and represent the founder cells of the germline. Specification of PGCs is a critical divergent point during embryogenesis. Whereas the somatic lineages will ultimately perish, cells of the germline have the potential to form a new individual and hence progress to the next generation. It is therefore critical that the genome emerges intact and carrying the appropriate epigenetic information during its passage through the germline. To ensure this fidelity of transmission, PGC development encompasses extensive epigenetic reprogramming. The low cell numbers and relative inaccessibility of PGCs present a challenge to those seeking mechanistic understanding of the crucial developmental and epigenetic processes in this most fascinating of lineages. Here, we present an overview of PGC development in the mouse and compare this with the limited information available for other mammalian species. We believe that a comparative approach will be increasingly important to uncover the extent to which mechanisms are conserved and reveal the critical steps during PGC development in humans.
Collapse
Affiliation(s)
- Harry G Leitch
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
41
|
Expression analysis of PAWP during mouse embryonic stem cell-based spermatogenesis in vitro. In Vitro Cell Dev Biol Anim 2014; 50:475-81. [DOI: 10.1007/s11626-013-9722-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022]
|
42
|
Park ES, Woods DC, Tilly JL. Bone morphogenetic protein 4 promotes mammalian oogonial stem cell differentiation via Smad1/5/8 signaling. Fertil Steril 2013; 100:1468-75. [PMID: 23993924 DOI: 10.1016/j.fertnstert.2013.07.1978] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To test whether bone morphogenetic protein 4 (BMP4) directly regulates differentiation of adult mouse ovary-derived oogonial stem cells (OSCs) in vitro. DESIGN Animal study. SETTING Research laboratory. ANIMAL(S) Adult C57BL/6 female mice. INTERVENTION(S) After purification from adult ovaries by fluorescence-activated cell sorting, OSCs were cultured without or with BMP4 in the absence or presence of the BMP4 antagonist, Noggin. MAIN OUTCOME MEASURE(S) Rates of in vitro-derived (IVD) oocyte formation and changes in gene expression were assessed. RESULT(S) Cultured OSCs expressed BMP receptor (BMPR) 1A (BMPR1A), BMPR1B, and BMPR2, suggesting that BMP signaling can directly affect OSC function. In agreement with this, BMP4 significantly increased the number of IVD oocytes formed by cultured OSCs in a dose-dependent manner, and this response was inhibited in a dose-dependent fashion by cotreatment with Noggin. Exposure of OSCs to BMP4 was associated with rapid phosphorylation of BMPR-regulated Smad1/5/8 proteins, and this response was followed by increased expression of the meiosis initiation factors, stimulated by retinoic acid gene 8 (Stra8), muscle-segment homeobox 1 (Msx1), and Msx2. In keeping with the IVD oocyte formation data, the ability of BMP4 to activate Smad1/5/8 signaling and meiotic gene expression in OSCs was abolished by cotreatment with Noggin. CONCLUSION(S) Engagement of BMP4-mediated signaling in adult mouse ovary-derived OSCs cultured in vitro drives differentiation of these cells into IVD oocytes through Smad1/5/8 activation and transcriptional up-regulation of key meiosis-initiating genes.
Collapse
Affiliation(s)
- Eun-Sil Park
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, and Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
43
|
McCarrey JR. Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol Reprod 2013; 89:47. [PMID: 23843236 PMCID: PMC4076367 DOI: 10.1095/biolreprod.113.110502] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/06/2013] [Accepted: 06/26/2013] [Indexed: 11/01/2022] Open
Abstract
The germ cell lineages are among the best characterized of all cell lineages in mammals. This characterization includes precise nomenclature that distinguishes among numerous, often subtle, changes in function or morphology as development and differentiation of germ cells proceed to form the gametes. In male rodents, there are at least 41 distinct cell types that occur during progression through the male germ cell lineage that gives rise to spermatozoa. However, there is one period during male germ cell development-that which occurs immediately following the primordial germ cell stage and prior to the spermatogonial stage-for which the system of precise and informative cell type terminology is not adequate. Often, male germ cells during this period are referred to simply as "gonocytes." However, this term is inadequate for multiple reasons, and it is suggested here that nomenclature originally proposed in the 1970s by Hilscher et al., which employs the terms M-, T1-, and T2-prospermatogonia, is preferable. In this Minireview, the history, proper utilization, and advantages of this terminology relative to that of the term gonocytes are described.
Collapse
Affiliation(s)
- John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA.
| |
Collapse
|
44
|
Chen SR, Zheng QS, Zhang Y, Gao F, Liu YX. Disruption of genital ridge development causes aberrant primordial germ cell proliferation but does not affect their directional migration. BMC Biol 2013; 11:22. [PMID: 23497137 PMCID: PMC3652777 DOI: 10.1186/1741-7007-11-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/05/2013] [Indexed: 11/13/2022] Open
Abstract
Background The directional migration and the following development of primordial germ cells (PGCs) during gonad formation are key steps for germline development. It has been proposed that the interaction between germ cells and genital ridge (GR) somatic cells plays essential roles in this process. However, the in vivo functional requirements of GR somatic cells in germ cell development are largely unknown. Results Wt1 mutation (Wt1R394W/R394W) results in GR agenesis through mitotic arrest of coelomic epitheliums. In this study, we employed the GR-deficient mouse model, Wt1R394W/R394W, to investigate the roles of GR somatic cells in PGC migration and proliferation. We found that the number of PGCs was dramatically reduced in GR-deficient embryos at embryonic day (E) 11.5 and E12.5 due to decreased proliferation of PGCs, involving low levels of BMP signaling. In contrast, the germ cells in Wt1R394W/R394W embryos were still mitotically active at E13.5, while all the germ cells in control embryos underwent mitotic arrest at this stage. Strikingly, the directional migration of PGCs was not affected by the absence of GR somatic cells. Most of the PGCs reached the mesenchyme under the coelomic epithelium at E10.5 and no ectopic PGCs were noted in GR-deficient embryos. However, the precise positioning of PGCs was disrupted. Conclusions Our work provides in vivo evidence that the proliferation of germ cells is precisely regulated by GR somatic cells during different stages of gonad development. GR somatic cells are probably dispensable for the directional migration of PGCs, but they are required for precise positioning of PGCs at the final step of migration.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
45
|
Chen B, Zhang L, Tang J, Feng X, Feng Y, Liang G, Wang L, Feng Y, Li L, De Felici M, Shi Q, Shen W. Recovery of functional oocytes from cultured premeiotic germ cells after kidney capsule transplantation. Stem Cells Dev 2012; 22:567-80. [PMID: 22978409 DOI: 10.1089/scd.2012.0436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The efficiency of in vitro culture systems for a premeiotic female germ cell is still low, mostly because of our incomplete understanding of the mechanisms controlling oogenesis and the obvious difficulties in reproducing the complex in vivo environment of such a process under in vitro conditions. Here we explored the possibility of recovering the developmental potential of mouse oocytes generated in vitro from premeiotic germ cells by transplantation under a kidney capsule of adult animals. To this aim, mouse embryonic ovaries of 12.5 days postcoitum cultured in vitro in a serum-free medium for 7 or 14 days, were transplanted beneath the kidney capsule of immunodeficient mice and analyzed after 21 (7+21 group) or 14 days (14+14 group). Cultured ovaries before transplantation showed delayed oocyte meiotic progression and follicle development. Interestingly, grafted ovaries of both groups, especially those of the 7+21 group, seemed able to restore the reproductive cycle of recipients. While the almost complete absence of primordial follicles was observed in grafted ovaries, oocytes from these ovaries showed transcript levels of genes associated to oocyte maturation similar to control. Moreover, the developmental stage of follicles and oocytes of the 7+21 group ovaries were comparable to that of 21 days post partum in vivo ovaries, whereas significant developmental delay were found in the 14+14 group ovaries. Nevertheless, oocytes retrieved from transplanted ovaries of both groups matured (around 80%) and were fertilized in vitro (around 20%-45%). Two-cell embryos from the fertilized oocytes developed to hatching blastocysts (about 50%) or gave rise to healthy live offspring (from 6% to 10%) when transplanted in a host mother. In conclusion, our results indicate that premeiotic female germ cells cultured in vitro up to primordial/primary follicle stages preserve their capability to complete oogenesis and can be fertilized and generate live pups after transplantation into a suitable in vivo environment.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shen W, Park BW, Toms D, Li J. Midkine promotes proliferation of primordial germ cells by inhibiting the expression of the deleted in azoospermia-like gene. Endocrinology 2012; 153:3482-92. [PMID: 22564978 DOI: 10.1210/en.2011-1456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Primordial germ cell (PGC) development is an area of research that is hampered by low cell numbers as well as difficulty in isolation. They are, however, required for the production of gametes and as such represent an important area of understanding that has widespread implications for fertility and reproductive technologies. Here we investigated the role of the heparin-binding growth factor midkine (MK) on PGC development, first using our established model of porcine stem cell-derived PGC-like cells and then confirming our findings in PGC. Our results show that MK has a mitogenic effect on PGC, mediated through an increased cell proliferation as well as decreased apoptosis. Upon further investigation, we found these effects concomitant with the decreased expression of the germ cell-specific gene deleted in azoospermia-like (DAZL). This decrease in DAZL expression, and consequent decreases in the meiosis-related genes SCP3 and DMC1, suggest a role for MK in preventing a shift in the PGC phenotype toward meiosis. MK instead increases activity of mitotic pathways in PGC, keeping them in a proliferative, less differentiated state. Lentiviral-mediated overexpression of DAZL further confirmed its role in promoting meiosis in and reducing proliferation of PGC. These effects were mitigated by the addition of MK, which was able to limit the effect of this DAZL overexpression. Furthermore, a loss-of-function study showed that a DAZL knockdown by small interfering RNA had the same effect as that induced by the addition of MK. Taken together, these data suggest that MK is able to maintain a proliferative PGC phenotype mediated by the suppression of DAZL in early germ cells.
Collapse
Affiliation(s)
- Wei Shen
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
47
|
Ohta K, Yamamoto M, Lin Y, Hogg N, Akiyama H, Behringer RR, Yamazaki Y. Male differentiation of germ cells induced by embryonic age-specific Sertoli cells in mice. Biol Reprod 2012; 86:112. [PMID: 22262692 PMCID: PMC3338658 DOI: 10.1095/biolreprod.111.095943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/13/2011] [Accepted: 01/05/2012] [Indexed: 11/01/2022] Open
Abstract
Retinoic acid (RA) is a meiosis-inducing factor. Primordial germ cells (PGCs) in the developing ovary are exposed to RA, resulting in entry into meiosis. In contrast, PGCs in the developing testis enter mitotic arrest to differentiate into prospermatogonia. Sertoli cells express CYP26B1, an RA-metabolizing enzyme, providing a simple explanation for why XY PGCs do not initiate meios/is. However, regulation of entry into mitotic arrest is likely more complex. To investigate the mechanisms that regulate male germ cell differentiation, we cultured XX and XY germ cells at 11.5 and 12.5 days postcoitus (dpc) with an RA receptor inhibitor. Expression of Stra8, a meiosis initiation gene, was suppressed in all groups. However, expression of Dnmt3l, a male-specific gene, during embryogenesis was elevated but only in 12.5-dpc XY germ cells. This suggests that inhibiting RA signaling is not sufficient for male germ cell differentiation but that the male gonadal environment also contributes to this pathway. To define the influence of Sertoli cells on male germ cell differentiation, Sertoli cells at 12.5, 15.5, and 18.5 dpc were aggregated with 11.5 dpc PGCs, respectively. After culture, PGCs aggregated with 12.5 dpc Sertoli cells increased Nanos2 and Dnmt3l expression. Furthermore, these PGCs established male-specific methylation imprints of the H19 differentially methylated domains. In contrast, PGCs aggregated with Sertoli cells at late embryonic ages did not commit to the male pathway. These findings suggest that male germ cell differentiation is induced both by inhibition of RA signaling and by molecule(s) production by embryonic age-specific Sertoli cells.
Collapse
Affiliation(s)
- Kohei Ohta
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Hawaii, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Jameson SA, Natarajan A, Cool J, DeFalco T, Maatouk DM, Mork L, Munger SC, Capel B. Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genet 2012; 8:e1002575. [PMID: 22438826 PMCID: PMC3305395 DOI: 10.1371/journal.pgen.1002575] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights into the mechanisms by which different cell types in a single organ adopt their respective fates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
Macdonald J, Glover JD, Taylor L, Sang HM, McGrew MJ. Characterisation and germline transmission of cultured avian primordial germ cells. PLoS One 2010; 5:e15518. [PMID: 21124737 PMCID: PMC2993963 DOI: 10.1371/journal.pone.0015518] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 10/11/2010] [Indexed: 12/01/2022] Open
Abstract
Background Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. Principal Findings We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. Conclusions The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.
Collapse
Affiliation(s)
- Joni Macdonald
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - James D. Glover
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - Lorna Taylor
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - Helen M. Sang
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - Michael J. McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Fukunaga N, Teramura T, Onodera Y, Takehara T, Fukuda K, Hosoi Y. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram 2010; 12:369-76. [PMID: 20698776 DOI: 10.1089/cell.2009.0097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, several research groups have shown that germ cells can be produced in vitro from pluripotent embryonic stem cells (ESCs). In the mouse, live births of offspring using germ cells induced from ESCs in vitro have been reported. Furthermore, some efficient methods for inducing the useful number of germ cells from ESCs have also been developed. On the other hand, in primates, despite the appearances of germ cell-like cells including meiotic cells were observed by spontaneous differentiation or introducing transgenes, it has not been determined whether fully functional germ cells can be derived from ESCs. To elucidate the property for the germ cells induced from primate ESCs, specification of the promoting factors for the germ cell development and improving the efficiency of germ cell derivation are essential. Leukemia inhibitory factor (LIF) has been reported as one of the important factors for mouse primordial germ cell (PGC) survival in vitro. However, the effects of LIF on germ cell formation from pluripotent cells of primates have not been examined. The aim of this study is to determine whether LIF addition can improve in vitro germ cell production from cynomolgus monkey ESCs (cyESCs). After 8 days of differentiation, LIF added culture induced dome-shaped germ cell colonies as indicated by the intense expression of alkaline phosphatase activity (ALP). These cells also demonstrate high-level expression of the germ cell-marker VASA, OCT-4, and BLIMP-1, and show SSEA-1 expression that supports their early stage germ cell identity. Finally, we observed that adding LIF to differentiating cultures inhibited meiotic gene expressions and increased the percentage of ALP-positive cells, and demonstrate that the addition of LIF to differentiation media increases differentiation of early germ cells from the cyESCs.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Department of Biology Oriented Science and Technology, Kinki University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|