1
|
Koparir A, Lekszas C, Keseroglu K, Rose T, Rappl L, Rad A, Maroofian R, Narendran N, Hasanzadeh A, Karimiani EG, Boschann F, Kornak U, Klopocki E, Özbudak EM, Vona B, Haaf T, Liedtke D. Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome. Hum Genomics 2024; 18:23. [PMID: 38448978 PMCID: PMC10916241 DOI: 10.1186/s40246-024-00593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND/OBJECTIVES Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.
Collapse
Affiliation(s)
- Asuman Koparir
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Caroline Lekszas
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thalia Rose
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Lena Rappl
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Aboulfazl Rad
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nakul Narendran
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Atefeh Hasanzadeh
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran
| | | | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Klopocki
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
2
|
Liu WX, Li CX, Xie XX, Ge W, Qiao T, Sun XF, Shen W, Cheng SF. Transcriptomic landscape reveals germline potential of porcine skin-derived multipotent dermal fibroblast progenitors. Cell Mol Life Sci 2023; 80:224. [PMID: 37480481 PMCID: PMC11072884 DOI: 10.1007/s00018-023-04869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Chun-Xiao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Xiang Xie
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- Anqiu Women and Children's Hospital, Weifang, 262100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Sun L, Cao Y, Kong Q, Huang X, Yu Z, Sun D, Ren W, Yang G, Xu S. Over-expression of the bottlenose dolphin Hoxd13 gene in zebrafish provides new insights into the cetacean flipper formation. Genomics 2021; 113:2925-2933. [PMID: 34166750 DOI: 10.1016/j.ygeno.2021.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 06/19/2021] [Indexed: 11/24/2022]
Abstract
Cetaceans have evolved elongated soft-tissue flipper with digits made of hyperphalangy. Cetaceans were found to have 2-3 more alanine residues in Hoxd13 than other mammals, which were suggested to be related to their flipper. However, how Hoxd13 regulates other genes and induces hyperphalangy in cetaceans remain poorly understood. Here, we overexpressed the bottlenose dolphin Hoxd13 in zebrafish (Danio rerio). Combined with transcriptome data and evolutionary analyses, our results revealed that the Wingless/Integrated (Wnt) and Hedgehog signaling pathways and multiple genes might regulate hyperphalangy development in cetaceans. Meanwhile, the Notch and mitogen-activated protein kinase (Mapk) signaling pathways and Fibroblast growth factor receptor 1 (Fgfr1) are probably correlated with interdigital tissues retained in the cetacean flipper. In conclusion, this is the first study to use a transgenic zebrafish to explore the molecular evolution of Hoxd13 in cetaceans, and it provides new insights into cetacean flipper formation.
Collapse
Affiliation(s)
- Linxia Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yang Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qian Kong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Montero JA, Lorda-Diez CI, Sanchez-Fernandez C, Hurle JM. Cell death in the developing vertebrate limb: A locally regulated mechanism contributing to musculoskeletal tissue morphogenesis and differentiation. Dev Dyn 2020; 250:1236-1247. [PMID: 32798262 PMCID: PMC8451844 DOI: 10.1002/dvdy.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Our aim is to critically review current knowledge of the function and regulation of cell death in the developing limb. We provide a detailed, but short, overview of the areas of cell death observed in the developing limb, establishing their function in morphogenesis and structural development of limb tissues. We will examine the functions of this process in the formation and growth of the limb primordia, formation of cartilaginous skeleton, formation of synovial joints, and establishment of muscle bellies, tendons, and entheses. We will analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process, we will discuss a new biological perspective that explains cell death: this process, rather than secondary to a specific genetic program, is a consequence of the tissue building strategy employed by the embryo based on the formation of scaffolds that disintegrate once their associated neighboring structures differentiate. We examine the functions of cell death in the formation and growth of the limb primordia. We analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process and the absence of defined genetic program in their regulation we propose that cell death is a consequence of the tissue building strategy employed by the embryo regulated by epigenetic factors .
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | | | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
5
|
Lewis EMA, Sankar S, Tong C, Patterson ES, Waller LE, Gontarz P, Zhang B, Ornitz DM, Kroll KL. Geminin is required for Hox gene regulation to pattern the developing limb. Dev Biol 2020; 464:11-23. [PMID: 32450229 DOI: 10.1016/j.ydbio.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Development of the complex structure of the vertebrate limb requires carefully orchestrated interactions between multiple regulatory pathways and proteins. Among these, precise regulation of 5' Hox transcription factor expression is essential for proper limb bud patterning and elaboration of distinct limb skeletal elements. Here, we identified Geminin (Gmnn) as a novel regulator of this process. A conditional model of Gmnn deficiency resulted in loss or severe reduction of forelimb skeletal elements, while both the forelimb autopod and hindlimb were unaffected. 5' Hox gene expression expanded into more proximal and anterior regions of the embryonic forelimb buds in this Gmnn-deficient model. A second conditional model of Gmnn deficiency instead caused a similar but less severe reduction of hindlimb skeletal elements and hindlimb polydactyly, while not affecting the forelimb. An ectopic posterior SHH signaling center was evident in the anterior hindlimb bud of Gmnn-deficient embryos in this model. This center ectopically expressed Hoxd13, the HOXD13 target Shh, and the SHH target Ptch1, while these mutant hindlimb buds also had reduced levels of the cleaved, repressor form of GLI3, a SHH pathway antagonist. Together, this work delineates a new role for Gmnn in modulating Hox expression to pattern the vertebrate limb.
Collapse
Affiliation(s)
- Emily M A Lewis
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caili Tong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ethan S Patterson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Mathematical modeling of chondrogenic pattern formation during limb development: Recent advances in continuous models. Math Biosci 2020; 322:108319. [PMID: 32001201 DOI: 10.1016/j.mbs.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/20/2022]
Abstract
The phenomenon of chondrogenic pattern formation in the vertebrate limb is one of the best studied examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological background, then describe in detail several models which aim to describe qualitatively and quantitatively the corresponding biological phenomena. We concentrate on several new models that have been proposed in recent years, taking into account recent experimental progress. The major mathematical tools in these approaches are ordinary and partial differential equations. Moreover, we discuss models with non-local flux terms used to account for cell-cell adhesion forces and a structured population model with diffusion. We also include a detailed list of gene products and potential morphogens which have been identified to play a role in the process of limb formation and its growth.
Collapse
|
7
|
Bhat R, Glimm T, Linde-Medina M, Cui C, Newman SA. Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton. Mech Dev 2019; 156:41-54. [DOI: 10.1016/j.mod.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
8
|
Tian J, Shao J, Liu C, Hou HY, Chou CW, Shboul M, Li GQ, El-Khateeb M, Samarah OQ, Kou Y, Chen YH, Chen MJ, Lyu Z, Chen WL, Chen YF, Sun YH, Liu YW. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development. Cell Mol Life Sci 2019; 76:163-178. [PMID: 30327840 PMCID: PMC11105680 DOI: 10.1007/s00018-018-2928-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
Abstract
Low-density lipoprotein receptor-related protein 4 (LRP4) is a multi-functional protein implicated in bone, kidney and neurological diseases including Cenani-Lenz syndactyly (CLS), sclerosteosis, osteoporosis, congenital myasthenic syndrome and myasthenia gravis. Why different LRP4 mutation alleles cause distinct and even contrasting disease phenotypes remain unclear. Herein, we utilized the zebrafish model to search for pathways affected by a deficiency of LRP4. The lrp4 knockdown in zebrafish embryos exhibits cyst formations at fin structures and the caudal vein plexus, malformed pectoral fins, defective bone formation and compromised kidney morphogenesis; which partially phenocopied the human LRP4 mutations and were reminiscent of phenotypes resulting form a perturbed Notch signaling pathway. We discovered that the Lrp4-deficient zebrafish manifested increased Notch outputs in addition to enhanced Wnt signaling, with the expression of Notch ligand jagged1b being significantly elevated at the fin structures. To examine conservatism of signaling mechanisms, the effect of LRP4 missense mutations and siRNA knockdowns, including a novel missense mutation c.1117C > T (p.R373W) of LRP4, were tested in mammalian kidney and osteoblast cells. The results showed that LRP4 suppressed both Wnt/β-Catenin and Notch signaling pathways, and these activities were perturbed either by LRP4 missense mutations or by a knockdown of LRP4. Our finding underscore that LRP4 is required for limiting Jagged-Notch signaling throughout the fin/limb and kidney development, whose perturbation representing a novel mechanism for LRP4-related diseases. Moreover, our study reveals an evolutionarily conserved relationship between LRP4 and Jagged-Notch signaling, which may shed light on how the Notch signaling is fine-tuned during fin/limb development.
Collapse
Affiliation(s)
- Jing Tian
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China.
| | - Jinhui Shao
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Cong Liu
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Hsin-Yu Hou
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Chih-Wei Chou
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Guo-Qing Li
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | | | - Omar Q Samarah
- Orthopedic Division, Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Yao Kou
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Yu-Hsuan Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Mei-Jen Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Zhaojie Lyu
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Wei-Leng Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yu-Fu Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China
| | - Yi-Wen Liu
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan.
| |
Collapse
|
9
|
Al-Qattan MM. A Review of the Genetics and Pathogenesis of Syndactyly in Humans and Experimental Animals: A 3-Step Pathway of Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9652649. [PMID: 31637260 PMCID: PMC6766129 DOI: 10.1155/2019/9652649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022]
Abstract
Embryology of normal web space creation and the genetics of syndactyly in humans and experimental animals are well described in the literature. In this review, the author offers a 3-step pathway of pathogenesis for syndactyly. The first step is initiated either by the overactivation of the WNT canonical pathway or the suppression of the Bone Morphogenetic Protein (BMP) canonical pathway. This leads to an overexpression of Fibroblast Growth Factor 8 (FGF8). The final step is the suppression of retinoic acid in the interdigital mesenchyme leading to suppression of both apoptosis and extracellular matrix (ECM) degradation, resulting in syndactyly.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Professor of Hand Surgery, King Saud University, Riyadh, Saudi Arabia
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development 2017; 144:1743-1763. [PMID: 28512196 DOI: 10.1242/dev.148007] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.
Collapse
Affiliation(s)
- Jan Mašek
- Karolinska Institutet, Huddinge 14183, Sweden
| | | |
Collapse
|
11
|
Whitacre LK, Hoff JL, Schnabel RD, Albarella S, Ciotola F, Peretti V, Strozzi F, Ferrandi C, Ramunno L, Sonstegard TS, Williams JL, Taylor JF, Decker JE. Elucidating the genetic basis of an oligogenic birth defect using whole genome sequence data in a non-model organism, Bubalus bubalis. Sci Rep 2017; 7:39719. [PMID: 28045068 PMCID: PMC5206621 DOI: 10.1038/srep39719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/25/2016] [Indexed: 12/30/2022] Open
Abstract
Recent strong selection for dairy traits in water buffalo has been associated with higher levels of inbreeding, leading to an increase in the prevalence of genetic diseases such as transverse hemimelia (TH), a congenital developmental abnormality characterized by absence of a variable distal portion of the hindlimbs. Limited genomic resources available for water buffalo required an original approach to identify genetic variants associated with the disease. The genomes of 4 bilateral and 7 unilateral affected cases and 14 controls were sequenced. A concordance analysis of SNPs and INDELs requiring homozygosity unique to all unilateral and bilateral cases revealed two genes, WNT7A and SMARCA4, known to play a role in embryonic hindlimb development. Additionally, SNP alleles in NOTCH1 and RARB were homozygous exclusively in the bilateral cases, suggesting an oligogenic mode of inheritance. Homozygosity mapping by whole genome de novo assembly also supported oligogenic inheritance; implicating 13 genes involved in hindlimb development in bilateral cases and 11 in unilateral cases. A genome-wide association study (GWAS) predicted additional modifier genes. Although our data show a complex inheritance of TH, we predict that homozygous variants in WNT7A and SMARCA4 are necessary for expression of TH and selection against these variants should eradicate TH.
Collapse
Affiliation(s)
- Lynsey K Whitacre
- Informatics Institute, University of Missouri, Columbia, Missouri, USA.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jesse L Hoff
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Robert D Schnabel
- Informatics Institute, University of Missouri, Columbia, Missouri, USA.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | | | - Luigi Ramunno
- Department of Agriculture, University of Naples Federico II, Portici, Napoli, Italy
| | | | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jared E Decker
- Informatics Institute, University of Missouri, Columbia, Missouri, USA.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Cras-Méneur C, Conlon M, Zhang Y, Pasca Di Magliano M, Bernal-Mizrachi E. Early pancreatic islet fate and maturation is controlled through RBP-Jκ. Sci Rep 2016; 6:26874. [PMID: 27240887 PMCID: PMC4886527 DOI: 10.1038/srep26874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/10/2016] [Indexed: 01/29/2023] Open
Abstract
Notch signaling is known to control early pancreatic differentiation through Ngn3 repression. In later stages, downstream of Notch, the Presenilins are still required to maintain the endocrine fate allocation. Amongst their multiple targets, it remains unclear which one actually controls the maintenance of the fate of the early islets. Conditional deletions of the Notch effector RBP-Jκ with lineage tracing in Presenilin-deficient endocrine progenitors, demonstrated that this factor is central to the control of the fate through a non-canonical Notch mechanism. RBP-Jκ mice exhibit normal islet morphogenesis and function, however, a fraction of the progenitors fails to differentiate and develop into disorganized masses resembling acinar to ductal metaplasia and chronic pancreatitis. A subsequent deletion of RBP-Jκ in forming β-cells led to the transdifferentiation into the other endocrine cells types, indicating that this factor still mediates the maintenance of the fate within the endocrine lineage itself. These results highlight the dual importance of Notch signaling for the endocrine lineage. Even after Ngn3 expression, Notch activity is required to maintain both fate and maturation of the Ngn3 progenitors. In a subset of the cells, these alterations of Notch signaling halt their differentiation and leads to acinar to ductal metaplasia.
Collapse
Affiliation(s)
- Corentin Cras-Méneur
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division Brehm Tower, 1000 Wall St, Ann Arbor, MI 48105-1912, USA
| | - Megan Conlon
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division Brehm Tower, 1000 Wall St, Ann Arbor, MI 48105-1912, USA
| | - Yaqing Zhang
- University of Michigan in Ann Arbor, Department of Surgery, General Surgery Division 4304 Cancer Center, 1500 E. Medical Center Drive, Ann Arbor MI 48109-5936, USA
| | - Marina Pasca Di Magliano
- University of Michigan in Ann Arbor, Department of Surgery, General Surgery Division 4304 Cancer Center, 1500 E. Medical Center Drive, Ann Arbor MI 48109-5936, USA
| | - Ernesto Bernal-Mizrachi
- University of Miami Miller School of Medicine, Department of General Internal Medicine, Division of Endocrinology, Diabetes and Metabolism 1400 NW 10th Ave, Miami, FL 33136-1031, USA
| |
Collapse
|
13
|
Southgate L, Sukalo M, Karountzos ASV, Taylor EJ, Collinson CS, Ruddy D, Snape KM, Dallapiccola B, Tolmie JL, Joss S, Brancati F, Digilio MC, Graul-Neumann LM, Salviati L, Coerdt W, Jacquemin E, Wuyts W, Zenker M, Machado RD, Trembath RC. Haploinsufficiency of the NOTCH1 Receptor as a Cause of Adams-Oliver Syndrome With Variable Cardiac Anomalies. ACTA ACUST UNITED AC 2015; 8:572-581. [PMID: 25963545 DOI: 10.1161/circgenetics.115.001086] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Adams-Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. METHODS AND RESULTS Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1-positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1, indicating that NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway. CONCLUSIONS These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders.
Collapse
Affiliation(s)
- Laura Southgate
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom.,Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maja Sukalo
- Institute of Human Genetics, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Edward J Taylor
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Claire S Collinson
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom
| | - Deborah Ruddy
- Department of Clinical Genetics, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie M Snape
- Department of Clinical Genetics, South West Thames Regional Genetics Service, St George's Healthcare NHS Trust, London, United Kingdom
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - John L Tolmie
- South West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow, United Kingdom
| | - Shelagh Joss
- South West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow, United Kingdom
| | - Francesco Brancati
- Department of Medical, Oral & Biotechnological Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman & Child Health, University of Padova, Padova, Italy
| | - Wiltrud Coerdt
- Institute of Human Genetics, Mainz University Medical Center, Mainz, Germany
| | - Emmanuel Jacquemin
- Pediatric Hepatology & Liver Transplantation Unit, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Hepatinov, Le Kremlin Bicêtre, France.,Inserm U1174, University Paris-Sud 11, Orsay, France
| | - Wim Wuyts
- Department of Medical Genetics, University & University Hospital of Antwerp, Edegem, Belgium
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Magdeburg, Germany
| | - Rajiv D Machado
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Richard C Trembath
- Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Clinical Genetics, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
14
|
Abstract
Memory is a temporally evolving molecular and structural process, which involves changes from local synapses to complex neural networks. There is increasing evidence for an involvement of developmental pathways in regulating synaptic communication in the adult nervous system. Notch signaling has been implicated in memory formation in a variety of species. Nevertheless, the mechanism of Notch underlying memory consolidation remains poorly understood. In this commentary, besides offering an overview of the advances in the field of Notch in memory, we highlight some of the weaknesses of the studies and attempt to cast light on the apparent discrepancies on the role of Notch in memory. We believe that future studies, employing high-throughput technologies and targeted Notch loss and gain of function animal models, will reveal the mechanisms of Notch dependent plasticity and resolve whether this signaling pathway is implicated in the cognitive deficit associated with dementia.
Collapse
Affiliation(s)
- Swananda Marathe
- Department of Medicine, Institute of Anatomy, University of Fribourg, Fribourg, Switzerland
| | - Lavinia Alberi
- Department of Medicine, Institute of Anatomy, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Abstract
Memory is a temporally evolving molecular and structural process, which involves changes from local synapses to complex neural networks. There is increasing evidence for an involvement of developmental pathways in regulating synaptic communication in the adult nervous system. Notch signaling has been implicated in memory formation in a variety of species. Nevertheless, the mechanism of Notch in memory consolidation remains poorly understood. In this commentary, besides offering an overview of the advances in the field of Notch in memory, we highlight some of the weaknesses of the studies and attempt to cast light on some of the apparent discrepancies on the role of Notch in memory. We believe that future studies, employing high-throughput technologies and targeted Notch loss and gain of function animal models, will reveal the mechanisms of Notch-dependent plasticity and resolve whether this signaling pathway is implicated in the cognitive deficit associated with dementia.
Collapse
Affiliation(s)
- Swananda Marathe
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Lavinia Alberi
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Al-Qattan MM. Formation of normal interdigital web spaces in the hand revisited: implications for the pathogenesis of syndactyly in humans and experimental animals. J Hand Surg Eur Vol 2014; 39:491-8. [PMID: 23719174 DOI: 10.1177/1753193413491931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The creation of the normal web spaces has been attributed to apoptosis. This paper presents evidence that lysosomal-mediated cell death and extracellular matrix degradation are important events in addition to cell death by apoptosis. The author proposes the use of the term interdigital cell death- extracellular matrix degradation instead of interdigital apoptosis. Furthermore, the concept of web creation by differential growth is introduced along with the discussion of the latest research in molecular biology and genetics on the topic.
Collapse
Affiliation(s)
- M M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Zuniga A, Zeller R, Probst S. The molecular basis of human congenital limb malformations. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:803-22. [PMID: 23799625 DOI: 10.1002/wdev.59] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review focuses predominantly on the human congenital malformations caused by alterations affecting the morphoregulatory gene networks that control early limb bud patterning and outgrowth. Limb defects are among the most frequent congenital malformations in humans that are caused by genetic mutations or teratogenic effects resulting either in abnormal, loss of, or additional skeletal elements. Spontaneous and engineered mouse models have been used to identify and study the molecular alterations and disrupted gene networks that underlie human congenital limb malformations. More recently, mouse genetics has begun to reveal the alterations that affect the often-large cis-regulatory landscapes that control gene expression in limb buds and cause devastating effects on limb bud development. These findings have paved the way to identifying mutations in cis-regulatory regions as causal to an increasing number of congenital limb malformations in humans. In these cases, no mutations in the coding region of a presumed candidate were previously detected. This review highlights how the current understanding of the molecular gene networks and interactions that control mouse limb bud development provides insight into the etiology of human congenital limb malformations.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
18
|
Tu X, Chen J, Lim J, Karner CM, Lee SY, Heisig J, Wiese C, Surendran K, Kopan R, Gessler M, Long F. Physiological notch signaling maintains bone homeostasis via RBPjk and Hey upstream of NFATc1. PLoS Genet 2012; 8:e1002577. [PMID: 22457635 PMCID: PMC3310726 DOI: 10.1371/journal.pgen.1002577] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/18/2012] [Indexed: 01/22/2023] Open
Abstract
Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo. Osteoporosis is a disease caused by disruption of the balance between bone formation and resorption resulting in a net loss of bone mass. Although anti-resorptive agents are the current mainstay of osteoporosis therapy, novel strategies to promote bone formation are critically needed for more effective prevention and treatment of the disease. Notch signaling, an evolutionally conserved mechanism among multi-cellular organisms, was recently shown to control bone formation and therefore represents a potential target pathway for novel bone-promoting therapeutics. In this study we elucidate the intracellular signaling mechanism through which Notch controls bone formation, providing a molecular framework that may guide future drug development.
Collapse
Affiliation(s)
- Xiaolin Tu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 698] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Wang CKL, Tsugane MH, Scranton V, Kosher RA, Pierro LJ, Upholt WB, Dealy CN. Pleiotropic patterning response to activation of Shh signaling in the limb apical ectodermal ridge. Dev Dyn 2011; 240:1289-302. [PMID: 21465622 DOI: 10.1002/dvdy.22628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2011] [Indexed: 11/07/2022] Open
Abstract
Sonic hedgehog (Shh) signaling in the limb plays a central role in coordination of limb patterning and outgrowth. Shh expression in the limb is limited to the cells of the zone of polarizing activity (ZPA), located in posterior limb bud mesoderm. Shh is not expressed by limb ectoderm or apical ectodermal ridge (AER), but recent studies suggest a role for AER-Shh signaling in limb patterning. Here, we have examined the effects of activation of Shh signaling in the AER. We find that targeted expression of Shh in the AER activates constitutive Shh signaling throughout the AER and subjacent limb mesoderm, and causes a range of limb patterning defects with progressive severity from mild polydactyly, to polysyndactyly with proximal defects, to severe oligodactyly with phocomelia and partial limb ventralization. Our studies emphasize the importance of control of the timing, level and location of Shh pathway signaling for limb anterior-posterior, proximal-distal, and dorsal-ventral patterning.
Collapse
Affiliation(s)
- Chi-Kuang Leo Wang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hernández-Martínez R, Covarrubias L. Interdigital cell death function and regulation: New insights on an old programmed cell death model. Dev Growth Differ 2011; 53:245-58. [DOI: 10.1111/j.1440-169x.2010.01246.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Tian J, Ling L, Shboul M, Lee H, O'Connor B, Merriman B, Nelson SF, Cool S, Ababneh OH, Al-Hadidy A, Masri A, Hamamy H, Reversade B. Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet 2010; 87:768-78. [PMID: 21129727 DOI: 10.1016/j.ajhg.2010.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/03/2010] [Accepted: 11/12/2010] [Indexed: 01/10/2023] Open
Abstract
We delineated a syndromic recessive preaxial brachydactyly with partial duplication of proximal phalanges to 16.8 Mb over 4 chromosomes. High-throughput sequencing of all 177 candidate genes detected a truncating frameshift mutation in the gene CHSY1 encoding a chondroitin synthase with a Fringe domain. CHSY1 was secreted from patients' fibroblasts and was required for synthesis of chondroitin sulfate moieties. Noticeably, its absence triggered massive production of JAG1 and subsequent NOTCH activation, which could only be reversed with a wild-type but not a Fringe catalytically dead CHSY1 construct. In vitro, depletion of CHSY1 by RNAi knockdown resulted in enhanced osteogenesis in fetal osteoblasts and remarkable upregulation of JAG2 in glioblastoma cells. In vivo, chsy1 knockdown in zebrafish embryos partially phenocopied the human disorder; it increased NOTCH output and impaired skeletal, pectoral-fin, and retinal development. We conclude that CHSY1 is a secreted FRINGE enzyme required for adjustment of NOTCH signaling throughout human and fish embryogenesis and particularly during limb patterning.
Collapse
Affiliation(s)
- Jing Tian
- Institute of Medical Biology, A(∗)STAR, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu J, Zhang YT, Alber MS, Newman SA. Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One 2010; 5:e10892. [PMID: 20531940 PMCID: PMC2878345 DOI: 10.1371/journal.pone.0010892] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/07/2010] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Major unresolved questions regarding vertebrate limb development concern how the numbers of skeletal elements along the proximodistal (P-D) and anteroposterior (A-P) axes are determined and how the shape of a growing limb affects skeletal element formation. There is currently no generally accepted model for these patterning processes, but recent work on cartilage development (chondrogenesis) indicates that precartilage tissue self-organizes into nodular patterns by cell-molecular circuitry with local auto-activating and lateral inhibitory (LALI) properties. This process is played out in the developing limb in the context of a gradient of fibroblast growth factor (FGF) emanating from the apical ectodermal ridge (AER). RESULTS We have simulated the behavior of the core chondrogenic mechanism of the developing limb in the presence of an FGF gradient using a novel computational environment that permits simulation of LALI systems in domains of varying shape and size. The model predicts the normal proximodistal pattern of skeletogenesis as well as distal truncations resulting from AER removal. Modifications of the model's parameters corresponding to plausible effects of Hox proteins and formins, and of the reshaping of the model limb, bud yielded simulated phenotypes resembling mutational and experimental variants of the limb. Hypothetical developmental scenarios reproduce skeletal morphologies with features of fossil limbs. CONCLUSIONS The limb chondrogenic regulatory system operating in the presence of a gradient has an inherent, robust propensity to form limb-like skeletal structures. The bare bones framework can accommodate ancillary gene regulatory networks controlling limb bud shaping and establishment of Hox expression domains. This mechanism accounts for major features of the normal limb pattern and, under variant geometries and different parameter values, those of experimentally manipulated, genetically aberrant and evolutionary early forms, with no requirement for an independent system of positional information.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Mathematics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yong-Tao Zhang
- Department of Mathematics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mark S. Alber
- Department of Mathematics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| |
Collapse
|
24
|
Abstract
Physiological cell death is a key mechanism that ensures appropriate development and maintenance of tissues and organs in multicellular organisms. Most structures in the vertebrate embryo exhibit defined areas of cell death at precise stages of development. In this regard the areas of interdigital cell death during limb development provide a paradigmatic model of massive cell death with an evident morphogenetic role in digit morphogenesis. Physiological cell death has been proposed to occur by apoptosis, cellular phenomena genetically controlled to orchestrate cell suicide following two main pathways, cytochrome C liberation from the mitochondria or activation of death receptors. Such pathways converge in the activation of cysteine proteases known as caspases, which execute the cell death program, leading to typical morphologic changes within the cell, termed apoptosis. According to these findings it would be expected that caspases loss of function experiments could cause inhibition of interdigital cell death promoting syndactyly phenotypes. A syndactyly phenotype is characterized by absence of digit freeing during development that, when caused by absence of interdigital cell death, is accompanied by the persistence of an interdigital membrane. However this situation has not been reported in any of the KO mice or chicken loss of function experiments ever performed. Moreover histological analysis of dying cells within the interdigit reveals the synchronic occurrence of different types of cell death. All these findings are indicative of caspase alternative and/or complementary mechanisms responsible for physiological interdigital cell death. Characterization of alternative cell death pathways is required to explain vertebrate morphogenesis. Today there is great interest in cell death via autophagy, which could substitute or act synergistically to the apoptotic pathway. Here we discuss what is known about physiological cell death in the developing interdigital tissue of vertebrate embryos, paying special attention to the avian species.
Collapse
|
25
|
Cras-Méneur C, Li L, Kopan R, Permutt MA. Presenilins, Notch dose control the fate of pancreatic endocrine progenitors during a narrow developmental window. Genes Dev 2009; 23:2088-101. [PMID: 19723764 PMCID: PMC2751975 DOI: 10.1101/gad.1800209] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/24/2009] [Indexed: 12/18/2022]
Abstract
Canonical Notch signaling is thought to control the endocrine/exocrine decision in early pancreatic progenitors. Later, RBP-Jkappa interacts with Ptf1a and E12 to promote acinar differentiation. To examine the involvement of Notch signaling in selecting specific endocrine lineages, we deregulated this pathway by targeted deletion of presenilin1 and presenilin2, the catalytic core of gamma-secretase, in Ngn3- or Pax6-expressing endocrine progenitors. Surprisingly, whereas Pax6(+) progenitors were irreversibly committed to the endocrine fate, we discovered that Ngn3(+) progenitors were bipotential in vivo and in vitro. When presenilin amounts are limiting, Ngn3(+) progenitors default to an acinar fate; subsequently, they expand rapidly to form the bulk of the exocrine pancreas. gamma-Secretase inhibitors confirmed that enzymatic activity was required to block acinar fate selection by Ngn3 progenitors. Genetic interactions identified Notch2 as the substrate, and suggest that gamma-secretase and Notch2 act in a noncanonical titration mechanism to sequester RBP-Jkappa away from Ptf1a, thus securing selection of the endocrine fate by Ngn3 progenitors. These results revise the current view of pancreatic cell fate hierarchy, establish that Ngn3 is not in itself sufficient to commit cells to the endocrine fate in the presence of Ptf1a, reveal a noncanonical action for Notch2 protein in endocrine cell fate selection, and demonstrate that acquisition of an endocrine fate by Ngn3(+) progenitors is gamma-secretase-dependent until Pax6 expression begins.
Collapse
Affiliation(s)
- Corentin Cras-Méneur
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lin Li
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Raphael Kopan
- Department of Developmental Biology and Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - M. Alan Permutt
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
26
|
Abstract
The elimination of unwanted cells by programmed cell death is a common feature of animal development. Genetic studies in the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have not only revealed the molecular machineries that cause the programmed demise of specific cells, but have also allowed us to get a glimpse of the types of pathways that regulate these machineries during development. Rather than serving as a broad overview of programmed cell death during development, this review focuses on recent advances in our understanding of the regulation of specific programmed cell death events during nematode, fly, and mouse development. Recent studies have revealed that many of the regulatory pathways involved play additional important roles in development, which confirms that the programmed cell death fate is an integral aspect of animal development.
Collapse
Affiliation(s)
- Barbara Conradt
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
27
|
Takasato M, Kobayashi C, Okabayashi K, Kiyonari H, Oshima N, Asashima M, Nishinakamura R. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development. Biochem Biophys Res Commun 2008; 373:648-52. [PMID: 18593568 DOI: 10.1016/j.bbrc.2008.06.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 06/23/2008] [Indexed: 01/16/2023]
Abstract
Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development.
Collapse
Affiliation(s)
- Minoru Takasato
- Division of Integrative Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol 2008; 6:e123. [PMID: 18507503 PMCID: PMC2430908 DOI: 10.1371/journal.pbio.0060123] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 04/10/2008] [Indexed: 01/18/2023] Open
Abstract
Epidermal keratinocytes form a highly organized stratified epithelium and sustain a competent barrier function together with dermal and hematopoietic cells. The Notch signaling pathway is a critical regulator of epidermal integrity. Here, we show that keratinocyte-specific deletion of total Notch signaling triggered a severe systemic B-lymphoproliferative disorder, causing death. RBP-j is the DNA binding partner of Notch, but both RBP-j–dependent and independent Notch signaling were necessary for proper epidermal differentiation and lipid deposition. Loss of both pathways caused a persistent defect in skin differentiation/barrier formation. In response, high levels of thymic stromal lymphopoietin (TSLP) were released into systemic circulation by Notch-deficient keratinocytes that failed to differentiate, starting in utero. Exposure to high TSLP levels during neonatal hematopoiesis resulted in drastic expansion of peripheral pre- and immature B-lymphocytes, causing B-lymphoproliferative disorder associated with major organ infiltration and subsequent death, a previously unappreciated systemic effect of TSLP. These observations demonstrate that local skin perturbations can drive a lethal systemic disease and have important implications for a wide range of humoral and autoimmune diseases with skin manifestations. Skin is the largest organ of the body, forming an elaborate barrier that prevents water loss and protects the internal environment from outside invaders. When this barrier is compromised, keratinocytes, keratin-producing epidermal cells, alert and recruit the immune cells to the site of the breach as part of an adaptive defense mechanism. However, chronic activation of such an “alarm” could have undesired consequences. Using genetic engineering to progressively remove components of Notch signaling from mouse skin in utero resulted in chronic skin-barrier defects, mimicking a form of human skin disease called atopic dermatitis. Surprisingly, we discovered that a persistent alarm signal in newborns triggered a systemic B-lymphoproliferative disorder, which precisely mirrored the degree of skin defect and was lethal in its extreme form. This alarm signal, in the form of a cytokine called thymic stromal lymphopoietin, was produced by Notch-deficient keratinocytes that failed to form a competent skin barrier. Therefore, we uncovered a long-range proliferative effect on fetal pre-B cells in vivo that is induced by injured skin and mediated by thymic stromal lymphopoietin. These findings highlight the central role that skin-derived factors can play in initiating systemic diseases with skin involvement. A skin-derived factor plays a lead role in initiating a lethal systemic disease. The current findings point to a novel impact of Notch-deficient skin on hematopoiesis, where unique biology of a keratinocyte-derived cytokine contributes to a severe neonatal blood disease.
Collapse
|
29
|
VanKoevering KK, Williams BO. Transgenic mouse strains for conditional gene deletion during skeletal development. ACTA ACUST UNITED AC 2008. [DOI: 10.1138/20080312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008; 14:306-14. [PMID: 18297083 DOI: 10.1038/nm1716] [Citation(s) in RCA: 461] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/20/2007] [Indexed: 02/07/2023]
Abstract
Postnatal bone marrow houses mesenchymal progenitor cells that are osteoblast precursors. These cells have established therapeutic potential, but they are difficult to maintain and expand in vitro, presumably because little is known about the mechanisms controlling their fate decisions. To investigate the potential role of Notch signaling in osteoblastogenesis, we used conditional alleles to genetically remove components of the Notch signaling system during skeletal development. We found that disruption of Notch signaling in the limb skeletogenic mesenchyme markedly increased trabecular bone mass in adolescent mice. Notably, mesenchymal progenitors were undetectable in the bone marrow of mice with high bone mass. As a result, these mice developed severe osteopenia as they aged. Moreover, Notch signaling seemed to inhibit osteoblast differentiation through Hes or Hey proteins, which diminished Runx2 transcriptional activity via physical interaction. These results support a model wherein Notch signaling in bone marrow normally acts to maintain a pool of mesenchymal progenitors by suppressing osteoblast differentiation. Thus, mesenchymal progenitors may be expanded in vitro by activating the Notch pathway, whereas bone formation in vivo may be enhanced by transiently suppressing this pathway.
Collapse
Affiliation(s)
- Matthew J Hilton
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Koo BK, Yoon MJ, Yoon KJ, Im SK, Kim YY, Kim CH, Suh PG, Jan YN, Kong YY. An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One 2007; 2:e1221. [PMID: 18043734 PMCID: PMC2082076 DOI: 10.1371/journal.pone.0001221] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2(-/-) mice were viable and grossly normal. In contrast, conditional inactivation of Mib1 in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants. CONCLUSIONS/SIGNIFICANCE Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable.
Collapse
Affiliation(s)
- Bon-Kyoung Koo
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | - Mi-Jeong Yoon
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | - Ki-Jun Yoon
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | - Sun-Kyoung Im
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | - Yoon-Young Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Pann-Ghill Suh
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, Department of Biochemistry, University of California at San Francisco, San Francisco, California, United States of America
| | - Young-Yun Kong
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Khandelwal A, Chandu D, Roe CM, Kopan R, Quatrano RS. Moonlighting activity of presenilin in plants is independent of gamma-secretase and evolutionarily conserved. Proc Natl Acad Sci U S A 2007; 104:13337-42. [PMID: 17684101 PMCID: PMC1948938 DOI: 10.1073/pnas.0702038104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Indexed: 12/29/2022] Open
Abstract
Presenilins (PS) provide the catalytic activity for gamma-secretase, which cleaves physiologically relevant substrates including Notch, ErbB4, and APP. Recent genetic studies indicated that the contribution of PS1 to mouse development includes gamma-secretase-independent functions that cannot be easily explained by any of the demonstrated or hypothesized functions of this protein. To begin a nonbiased analysis of PS1 activity unencumbered by the dominant effect stemming from loss of Notch function, we characterized PS functions in the early land plant Physcomitrella patens, which lacks Notch, ErbB4, and APP. Removal of P. patens PS resulted in phenotypic abnormalities. Further assays performed to delineate the defective pathways in PS-deficient P. patens implicated improper function of the cytoskeletal network. Importantly, this characterization of a nonmetazoan PS uncovered a previously undescribed, evolutionarily conserved function (human PS1 can rescue the growth and light responses) that is gamma-secretase-independent (mutants with substitutions of the catalytic aspartyl residues retain the activity). Introduction of PpPS into PS-deficient mouse embryonic fibroblasts rescues normal growth rates, demonstrating that at least some metazoan functions of PS are evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Catherine M. Roe
- Division of Biostatistics, Washington University, St. Louis, MO 63110
| | | | | |
Collapse
|
33
|
Andrade RP, Palmeirim I, Bajanca F. Molecular clocks underlying vertebrate embryo segmentation: A 10-year-old hairy-go-round. ACTA ACUST UNITED AC 2007; 81:65-83. [PMID: 17600780 DOI: 10.1002/bdrc.20094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Segmentation of the vertebrate embryo body is a fundamental developmental process that occurs with strict temporal precision. Temporal control of this process is achieved through molecular segmentation clocks, evidenced by oscillations of gene expression in the unsegmented presomitic mesoderm (PSM, precursor tissue of the axial skeleton) and in the distal limb mesenchyme (limb chondrogenic precursor cells). The first segmentation clock gene, hairy1, was identified in the chick embryo PSM in 1997. Ten years later, chick hairy2 expression unveils a molecular clock operating during limb development. This review revisits vertebrate embryo segmentation with special emphasis on the current knowledge on somitogenesis and limb molecular clocks. A compilation of human congenital disorders that may arise from deregulated embryo clock mechanisms is presented here, in an attempt to reconcile different sources of information regarding vertebrate embryo development. Challenging open questions concerning the somitogenesis clock are presented and discussed, such as When?, Where?, How?, and What for? Hopefully the next decade will be equally rich in answers.
Collapse
Affiliation(s)
- Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
34
|
Pajni-Underwood S, Wilson CP, Elder C, Mishina Y, Lewandoski M. BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development 2007; 134:2359-68. [PMID: 17537800 DOI: 10.1242/dev.001677] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate limbs that lack webbing, the embryonic interdigit region is removed by programmed cell death (PCD). Established models suggest that bone morphogenetic proteins (BMPs) directly trigger such PCD, although no direct genetic evidence exists for this. Alternatively, BMPs might indirectly affect PCD by regulating fibroblast growth factors (FGFs), which act as cell survival factors. Here, we inactivated the mouse BMP receptor gene Bmpr1a specifically in the limb bud apical ectodermal ridge (AER), a source of FGF activity. Early inactivation completely prevents AER formation. However, inactivation after limb bud initiation causes an upregulation of two AER-FGFs, Fgf4 and Fgf8, and a loss of interdigital PCD leading to webbed limbs. To determine whether excess FGF signaling inhibits interdigit PCD in these Bmpr1a mutant limbs, we performed double and triple AER-specific inactivations of Bmpr1a, Fgf4 and Fgf8. Webbing persists in AER-specific inactivations of Bmpr1a and Fgf8 owing to elevated Fgf4 expression. Inactivation of Bmpr1a, Fgf8 and one copy of Fgf4 eliminates webbing. We conclude that during normal embryogenesis, BMP signaling to the AER indirectly regulates interdigit PCD by regulating AER-FGFs, which act as survival factors for the interdigit mesenchyme.
Collapse
Affiliation(s)
- Sangeeta Pajni-Underwood
- Laboratory of Cancer and Developmental Biology National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
35
|
Vooijs M, Ong C, Hadland B, Huppert S, Liu Z, Korving J, van den Born M, Stappenbeck T, Wu Y, Clevers H, Kopan R. Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development 2007; 134:535-44. [PMID: 17215306 PMCID: PMC2583343 DOI: 10.1242/dev.02733] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The four highly conserved Notch receptors receive short-range signals that control many biological processes during development and in adult vertebrate tissues. The involvement of Notch1 signaling in tissue self-renewal is less clear, however. We developed a novel genetic approach N(1)IP-CRE (Notch1 Intramembrane Proteolysis) to follow, at high resolution, the descendents of cells experiencing Notch1 activation in the mouse. By combining N(1)IP-CRE with loss-of-function analysis, Notch activation patterns were correlated with function during development, self-renewal and malignancy in selected tissues. Identification of many known functions of Notch1 throughout development validated the utility of this approach. Importantly, novel roles for Notch1 signaling were identified in heart, vasculature, retina and in the stem cell compartments of self-renewing epithelia. We find that the probability of Notch1 activation in different tissues does not always indicate a requirement for this receptor and that gradients of Notch1 activation are evident within one organ. These findings highlight an underappreciated layer of complexity of Notch signaling in vivo. Moreover, NIP-CRE represents a general strategy applicable for monitoring proteolysis-dependent signaling in vivo.
Collapse
Affiliation(s)
- Marc Vooijs
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Division of Dermatology, Washington University Medical School, Saint Louis, MO, 63110, USA
- Netherlands Institute for Developmental Biology, Hubrecht Laboratory, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Correspondence should be addressed to: R.K. or M.V.
| | - Chintong Ong
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Division of Dermatology, Washington University Medical School, Saint Louis, MO, 63110, USA
| | - Brandon Hadland
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Division of Dermatology, Washington University Medical School, Saint Louis, MO, 63110, USA
| | - Stacey Huppert
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Division of Dermatology, Washington University Medical School, Saint Louis, MO, 63110, USA
| | - Zhenyi Liu
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Division of Dermatology, Washington University Medical School, Saint Louis, MO, 63110, USA
| | - Jeroen Korving
- Netherlands Institute for Developmental Biology, Hubrecht Laboratory, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maaike van den Born
- Netherlands Institute for Developmental Biology, Hubrecht Laboratory, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Thaddeus Stappenbeck
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Yumei Wu
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Division of Dermatology, Washington University Medical School, Saint Louis, MO, 63110, USA
| | - Hans Clevers
- Netherlands Institute for Developmental Biology, Hubrecht Laboratory, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Raphael Kopan
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Division of Dermatology, Washington University Medical School, Saint Louis, MO, 63110, USA
- Correspondence should be addressed to: R.K. or M.V.
| |
Collapse
|
36
|
Pascoal S, Carvalho CR, Rodriguez-León J, Delfini MC, Duprez D, Thorsteinsdóttir S, Palmeirim I. A Molecular Clock Operates During Chick Autopod Proximal-distal Outgrowth. J Mol Biol 2007; 368:303-9. [PMID: 17346744 DOI: 10.1016/j.jmb.2007.01.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Temporal control can be considered the fourth dimension in embryonic development. The identification of the somitogenesis molecular clock provided new insight into how embryonic cells measure time. We provide the first evidence of a molecular clock operating during chick fore-limb autopod outgrowth and patterning, by showing that the expression of the somitogenesis clock component hairy2 cycles in autopod chondrogenic precursor cells with a 6 h periodicity. We determined the length of time required to form an autopod skeletal limb element, and established a correlation between the latter and the periodicity of cyclic hairy2 gene expression. We suggest that temporal control exerted by cyclic gene expression can be a widespread mechanism providing cellular temporal information during vertebrate embryonic development.
Collapse
Affiliation(s)
- Susana Pascoal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
37
|
van den Akker NMS, Molin DGM, Peters PPWM, Maas S, Wisse LJ, van Brempt R, van Munsteren CJ, Bartelings MM, Poelmann RE, Carmeliet P, Gittenberger-de Groot AC. Tetralogy of Fallot and Alterations in Vascular Endothelial Growth Factor-A Signaling and Notch Signaling in Mouse Embryos Solely Expressing the VEGF120 Isoform. Circ Res 2007; 100:842-9. [PMID: 17332426 DOI: 10.1161/01.res.0000261656.04773.39] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of vascular endothelial growth factor-A (VEGF) and subsequent Notch signaling in cardiac outflow tract development is generally recognized. Although genetic heterogeneity and mutations of these genes in both humans and mouse models relate to a high susceptibility to develop outflow tract malformations such as tetralogy of Fallot and peripheral pulmonary stenosis, no etiology has been proposed so far. Using immunohistochemistry, in situ hybridization, and quantitative RT-PCR on embryonic hearts, we have shown spatiotemporal increase and abnormal patterning of
Vegf
/VEGF/(phosphorylated) VEGFR-2, (cleaved) Notch1, and Jagged2 in the outflow tract of
Vegf120/120
mouse embryos. This coincides with hyperplasia of specifically the outflow tract cushions and a high degree of subpulmonary myocardial apoptosis that, in later stages, manifest as pulmonary stenosis and ventricular septal defects. We postulate that increase of VEGF and Notch signaling during right ventricular outflow tract development can lead to abnormal development of both cushion and myocardial structures. Defective right ventricular outflow tract development as presented provides new insight in the etiology of tetralogy of Fallot.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/abnormalities
- Aorta, Thoracic/pathology
- Disease Models, Animal
- Embryo, Mammalian/abnormalities
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Gene Expression Regulation, Developmental
- Heart Ventricles/abnormalities
- Heart Ventricles/pathology
- Immunohistochemistry
- In Situ Hybridization
- Jagged-2 Protein
- Membrane Proteins/metabolism
- Mice
- Mice, Mutant Strains
- Myocardium/metabolism
- Myocardium/pathology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Tetralogy of Fallot/genetics
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Nynke M S van den Akker
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol 2007; 79:1-36. [PMID: 17498545 DOI: 10.1016/s0070-2153(06)79001-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During vertebrate evolution, successful adaptation of animal limbs to a variety of ecological niches depended largely on the formation and positioning of synovial joints. The function of a joint is to allow smooth articulation between opposing skeletal elements and to transmit biomechanical loads through the structure, and this is achieved through covering the ends of bones with articular cartilage, lubricating the joint with synovial fluid, using ligaments to bind the skeletal elements together, and encapsulating the joint in a protective fibrous layer of tissue. The diversity of limb generation has been proposed to occur through sequential branching and segmentation of precartilaginous skeletal elements along the proximodistal axis of the limb. The position of future joints is first delimited by areas of higher cell density called interzones initially through an as yet unidentified inductive signal, subsequently specification of these regions is controlled hierarchically by wnt14 and gdf5, respectively. Joint-forming cell fate although specified is not fixed, and joints will fuse if growth factor signaling is perturbed. Cavitation, the separation of the two opposing skeletal elements, and joint morphogenesis, the process whereby the joint cells organize and mature to establish a functional interlocking and reciprocally shaped joint, are slowly being unraveled through studying the plethora of molecules that make up the unique extracellular matrix of the forming structure. The joint lining tissue, articular cartilage, is avascular, and this limits its reparative capacity such that arthritis and associated joint pathologies are the single largest cause of disability in the adult population. Recent discoveries of adult stem cells and more specifically the isolation of chondroprogenitor cells from articular cartilage are extending available therapeutic options, though only with a more complete understanding of synovial joint development can such options have greater chances of success.
Collapse
Affiliation(s)
- I M Khan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF103US, Wales, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Over the past decade, the Notch signaling pathway has been shown to be crucially important for normal metazoan development and to be associated with several human inherited and late onset diseases. The realization that altered Notch signaling contributes at various levels to human disease lead in May to the first meeting dedicated solely to Notch signaling in vertebrate development and disease in Madrid, Spain. Hosted by the Cantoblanco Workshops on Biology and organized by Tom Gridley, José Luis de la Pompa and Juan Carlos Izpisúa Belmonte, the meeting covered diverse aspects of this important signaling pathway.
Collapse
Affiliation(s)
- Gerry Weinmaster
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737, USA.
| | | |
Collapse
|
40
|
Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2006; 2:e216. [PMID: 17194222 PMCID: PMC1713256 DOI: 10.1371/journal.pgen.0020216] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/06/2006] [Indexed: 12/16/2022] Open
Abstract
Bone morphogenetic protein (BMP) family members, including BMP2, BMP4, and BMP7, are expressed throughout limb development. BMPs have been implicated in early limb patterning as well as in the process of skeletogenesis. However, due to complications associated with early embryonic lethality, particularly for Bmp2 and Bmp4, and with functional redundancy among BMP molecules, it has been difficult to decipher the specific roles of these BMP molecules during different stages of limb development. To circumvent these issues, we have constructed a series of mouse strains lacking one or more of these BMPs, using conditional alleles in the case of Bmp2 and Bmp4 to remove them specifically from the limb bud mesenchyme. Contrary to earlier suggestions, our results indicate that BMPs neither act as secondary signals downstream of Sonic Hedghog (SHH) in patterning the anteroposterior axis nor as signals from the interdigital mesenchyme in specifying digit identity. We do find that a threshold level of BMP signaling is required for the onset of chondrogenesis, and hence some chondrogenic condensations fail to form in limbs deficient in both BMP2 and BMP4. However, in the condensations that do form, subsequent chondrogenic differentiation proceeds normally even in the absence of BMP2 and BMP7 or BMP2 and BMP4. In contrast, we find that the loss of both BMP2 and BMP4 results in a severe impairment of osteogenesis. A group of related signaling molecules called bone morphogenetic proteins (BMPs) are known to play important roles in the formation of the structures such as the limbs. However, because different members of this group often have similar effects on target cells and are produced in overlapping regions of the embryo and hence can be redundant with one another, removal of any single member of the BMP family may not reveal the full extent of the roles they play during development. We have therefore improved on this type of analysis by removing pairs of these factors (BMP2 and BMP4 or BMP2 and BMP7) specifically from the developing limb. Although some have speculated that these signals play an early role in organizing or “patterning” the different tissues of the limb, we find no evidence for such a role. We do find, however, that a minimal amount of BMP signal is required to form cartilage, and hence some cartilaginous elements fail to form in limbs deficient in both BMP2 and BMP4. Moreover, in the absence of these two BMP family members, there is a severe impairment in the development of bone tissue, resulting in severely deformed limbs. This study gives important new insight into the roles of these BMP signals in making skeletal tissues in the embryo.
Collapse
Affiliation(s)
- Amitabha Bandyopadhyay
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kunikazu Tsuji
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Karen Cox
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Souilhol C, Cormier S, Monet M, Vandormael-Pournin S, Joutel A, Babinet C, Cohen-Tannoudji M. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo. Genesis 2006; 44:277-86. [PMID: 16708386 PMCID: PMC2734965 DOI: 10.1002/dvg.20208] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jkappa binding sites. Here we show that this transgenic line, which we termed NAS (for Notch Activity Sensor), displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jkappa-deficient background, indicating that it indeed requires Notch/RBP-Jkappa signaling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signaling pathway.
Collapse
Affiliation(s)
- Céline Souilhol
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Sarah Cormier
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Marie Monet
- Genetique des Maladies Vasculaires
INSERM : U740Université Denis Diderot - Paris VIIFac de Medecine Lariboisiere-St Louis PARIS VII 10, Avenue de Verdun 75010 PARIS ,FR
| | - Sandrine Vandormael-Pournin
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Anne Joutel
- Genetique des Maladies Vasculaires
INSERM : U740Université Denis Diderot - Paris VIIFac de Medecine Lariboisiere-St Louis PARIS VII 10, Avenue de Verdun 75010 PARIS ,FR
| | - Charles Babinet
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Michel Cohen-Tannoudji
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
- * Correspondence should be adressed to: Michel Cohen-Tannoudji
| |
Collapse
|
42
|
Abstract
Bioactive retinoids are potent limb teratogens, upregulating apoptosis, decreasing chondrogenesis, and producing limb-reduction defects. To target the origins of these effects, we examined gene expression changes in the developing murine limb after 3 h of culture with teratogenic concentrations of vitamin A. Embryonic day 12 CD-1 limbs were cultured in the absence or presence of vitamin A (retinol acetate) at 1.25 and 62.5muM (n = 5). Total RNA was used to probe Atlas 1.2 cDNA arrays. Eighty-one genes were significantly upregulated by retinol exposure; among these were key limb development signaling molecules, extracellular matrix and adhesion proteins, oncogenes, and a large number of transcriptional regulators, including Eya2, Id3, Snail, and Hes1. To relate these expression changes to teratogenic outcome, the response of these four genes was assessed after culture with vitamin A and retinoid receptor antagonists that are able to rescue retinoid-induced malformations; expression levels were correlated with limb malformations. Lastly, pathways analysis revealed that a large number of the genes significantly affected by retinoid treatment are functionally linked through direct interactions. Several regulatory gene cascades emerged relevant to morphogenesis, cell-fate, and chondrogenesis; moreover, members of these cascades crosstalk with one other. These results indicate that retinoids act in a coordinated fashion to disrupt development at multiple levels. In sum, this work proposes several unifying mechanisms for retinoid-induced limb malformations, identifies novel retinoid targets, and highlights Eya2, Id3, Snail, and Hes1 as potential key teratogenic effectors.
Collapse
Affiliation(s)
- Sarah E Ali-Khan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | |
Collapse
|