1
|
Xu J, Liu H, Lan Y, Jiang R. The transcription factors Foxf1 and Foxf2 integrate the SHH, HGF and TGFβ signaling pathways to drive tongue organogenesis. Development 2022; 149:dev200667. [PMID: 36227576 PMCID: PMC10655918 DOI: 10.1242/dev.200667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2023]
Abstract
The tongue is a highly specialized muscular organ with diverse cellular origins, which provides an excellent model for understanding mechanisms controlling tissue-tissue interactions during organogenesis. Previous studies showed that SHH signaling is required for tongue morphogenesis and tongue muscle organization, but little is known about the underlying mechanisms. Here we demonstrate that the Foxf1/Foxf2 transcription factors act in the cranial neural crest cell (CNCC)-derived mandibular mesenchyme to control myoblast migration into the tongue primordium during tongue initiation, and thereafter continue to regulate intrinsic tongue muscle assembly and lingual tendon formation. We performed chromatin immunoprecipitation sequencing analysis and identified Hgf, Tgfb2 and Tgfb3 among the target genes of Foxf2 in the embryonic tongue. Through genetic analyses of mice with CNCC-specific inactivation of Smo or both Foxf1 and Foxf2, we show that Foxf1 and Foxf2 mediate hedgehog signaling-mediated regulation of myoblast migration during tongue initiation and intrinsic tongue muscle formation by regulating the activation of the HGF and TGFβ signaling pathways. These data uncover the molecular network integrating the SHH, HGF and TGFβ signaling pathways in regulating tongue organogenesis.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Lorda-Diez CI, Duarte-Olivenza C, Hurle JM, Montero JA. Transforming growth factor beta signaling: The master sculptor of fingers. Dev Dyn 2021; 251:125-136. [PMID: 33871876 DOI: 10.1002/dvdy.349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta (TGFβ) constitutes a large and evolutionarily conserved superfamily of secreted factors that play essential roles in embryonic development, cancer, tissue regeneration, and human degenerative pathology. Studies of this signaling cascade in the regulation of cellular and tissue changes in the three-dimensional context of a developing embryo have notably advanced in the understanding of the action mechanism of these growth factors. In this review, we address the role of TGFβ signaling in the developing limb, focusing on its essential function in the morphogenesis of the autopod. As we discuss in this work, modern mouse genetic experiments together with more classical embryological approaches in chick embryos, provided very valuable information concerning the role of TGFβ and Activin family members in the morphogenesis of the digits of tetrapods, including the formation of phalanxes, digital tendons, and interphalangeal joints. We emphasize the importance of the Activin and TGFβ proteins as digit inducing factors and their critical interaction with the BMP signaling to sculpt the hand and foot morphology.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
3
|
Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020; 104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
For decades, limb development has been a paradigm of three-dimensional patterning. Moreover, as the limb muscles and the other tissues of the limb's musculoskeletal system arise from distinct developmental sources, it has been a prime example of integrative morphogenesis and cross-tissue communication. As the limbs grow, all components of the musculoskeletal system (muscles, tendons, connective tissue, nerves) coordinate their growth and differentiation, ultimately giving rise to a functional unit capable of executing elaborate movement. While the molecular mechanisms governing global three-dimensional patterning and formation of the skeletal structures of the limbs has been a matter of intense research, patterning of the soft tissues is less understood. Here, we review the development of limb muscles with an emphasis on their interaction with other tissue types and the instructive roles these tissues play. Furthermore, we discuss the role of adult correlates of these embryonic accessory tissues in muscle regeneration.
Collapse
Affiliation(s)
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Borok MJ, Mademtzoglou D, Relaix F. Bu-M-P-ing Iron: How BMP Signaling Regulates Muscle Growth and Regeneration. J Dev Biol 2020; 8:jdb8010004. [PMID: 32053985 PMCID: PMC7151139 DOI: 10.3390/jdb8010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.
Collapse
Affiliation(s)
- Matthew J Borok
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Despoina Mademtzoglou
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Frederic Relaix
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
- Ecole Nationale Veterinaire d’Alfort, 94700 Maison Alfort, France
- Etablissement Français du Sang, 94017 Créteil, France
- APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, 94000 Créteil, France
- Correspondence: ; Tel.: +33-149-813-940
| |
Collapse
|
5
|
Adachi N, Pascual-Anaya J, Hirai T, Higuchi S, Kuroda S, Kuratani S. Stepwise participation of HGF/MET signaling in the development of migratory muscle precursors during vertebrate evolution. ZOOLOGICAL LETTERS 2018; 4:18. [PMID: 29946484 PMCID: PMC6004694 DOI: 10.1186/s40851-018-0094-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The skeletal musculature of gnathostomes, which is derived from embryonic somites, consists of epaxial and hypaxial portions. Some hypaxial muscles, such as tongue and limb muscles, undergo de-epithelialization and migration during development. Delamination and migration of these myoblasts, or migratory muscle precursors (MMPs), is generally thought to be regulated by hepatocyte growth factor (HGF) and receptor tyrosine kinase (MET) signaling. However, the prevalence of this mechanism and the expression patterns of the genes involved in MMP development across different vertebrate species remain elusive. RESULTS We performed a comparative analysis of Hgf and Met gene expression in several vertebrates, including mouse, chicken, dogfish (Scyliorhinus torazame), and lamprey (Lethenteron camtschaticum). While both Hgf and Met were expressed during development in the mouse tongue muscle, and in limb muscle formation in the mouse and chicken, we found no clear evidence for the involvement of HGF/MET signaling in MMP development in shark or lamprey embryos. CONCLUSIONS Our results indicate that the expressions and functions of both Hgf and Met genes do not represent shared features of vertebrate MMPs, suggesting a stepwise participation of HGF/MET signaling in MMP development during vertebrate evolution.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Present address: Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Juan Pascual-Anaya
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Shinnosuke Higuchi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shunya Kuroda
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
6
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
7
|
The chemokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb development. Sci Rep 2017; 7:17279. [PMID: 29222527 PMCID: PMC5722906 DOI: 10.1038/s41598-017-17490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Connective tissues (CT) support and connect organs together. Understanding the formation of CT is important, as CT deregulation leads to fibrosis. The identification of CT specific markers has contributed to a better understanding of CT function during development. In developing limbs, Osr1 transcription factor is involved in the differentiation of irregular CT while the transcription factor Scx labels tendon. In this study, we show that the CXCL12 and CXCL14 chemokines display distinct expression pattern in limb CT during chick development. CXCL12 positively regulates the expression of OSR1 and COL3A1, a collagen subtype of irregular CT, while CXCL14 activates the expression of the tendon marker SCX. We provide evidence that the CXCL12 effect on irregular CT involves CXCR4 receptor and vessels. In addition, the expression of CXCL12, CXCL14 and OSR genes is suppressed by the anti-fibrotic BMP signal. Finally, mechanical forces, known to be involved in adult fibrosis, control the expression of chemokines, CT-associated transcription factors and collagens during limb development. Such unexpected roles of CXCL12 and CXCL14 chemokines during CT differentiation can contribute to a better understanding of the fibrosis mechanisms in adult pathological conditions.
Collapse
|
8
|
Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front Cell Dev Biol 2017; 5:22. [PMID: 28386539 PMCID: PMC5362625 DOI: 10.3389/fcell.2017.00022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.
Collapse
Affiliation(s)
- Sonya Nassari
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Delphine Duprez
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Claire Fournier-Thibault
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| |
Collapse
|
9
|
Bourgeois A, Esteves de Lima J, Charvet B, Kawakami K, Stricker S, Duprez D. Stable and bicistronic expression of two genes in somite- and lateral plate-derived tissues to study chick limb development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:39. [PMID: 26518454 PMCID: PMC4628273 DOI: 10.1186/s12861-015-0088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022]
Abstract
Background Components of the limb musculoskeletal system have distinct mesoderm origins. Limb skeletal muscles originate from somites, while the skeleton and attachments (tendons and connective tissues) derive from limb lateral plate. Despite distinct mesoderm origins, the development of muscle, skeleton and attachments is highly coordinated both spatially and temporally to ensure complete function of the musculoskeletal system. A system to study molecular interactions between somitic-derived tissues (muscles) and lateral-plate-derived tissues (skeletal components and attachments) during limb development is missing. Results We designed a gene delivery system in chick embryos with the ultimate aim to study the interactions between the components of the musculoskeletal system during limb development. We combined the Tol2 genomic integration system with the viral T2A system and developed new vectors that lead to stable and bicistronic expression of two proteins at comparable levels in chick cells. Combined with limb somite and lateral plate electroporation techniques, two fluorescent reporter proteins were co-expressed in stoichiometric proportion in the muscle lineage (somitic-derived) or in skeleton and their attachments (lateral-plate-derived). In addition, we designed three vectors with different promoters to target muscle cells at different steps of the differentiation process. Conclusion Limb somite electroporation technique using vectors containing these different promoters allowed us to target all myogenic cells, myoblasts or differentiated muscle cells. These stable and promoter-specific vectors lead to bicistronic expression either in somitic-derived myogenic cells or lateral plate-derived cells, depending on the electroporation sites and open new avenues to study the interactions between myogenic cells and tendon or connective tissue cells during limb development.
Collapse
Affiliation(s)
- Adeline Bourgeois
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| | - Joana Esteves de Lima
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| | - Benjamin Charvet
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France.
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan.
| | - Sigmar Stricker
- Institue for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195, Berlin, Germany.
| | - Delphine Duprez
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| |
Collapse
|
10
|
Xiong Y, Liu Y, Song Z, Hao F, Yang X. Identification of Wnt/β-catenin signaling pathway in dermal papilla cells of human scalp hair follicles: TCF4 regulates the proliferation and secretory activity of dermal papilla cell. J Dermatol 2013; 41:84-91. [PMID: 24354472 DOI: 10.1111/1346-8138.12313] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
Abstract
It is clear that the dermal papilla cell (DPC), which is located at the bottom of the hair follicle, is a special mesenchymal component, and it plays a leading role in regulating hair follicle development and periodic regeneration. Recent studies showed that the Wnt signaling pathway through β-catenin (canonical Wnt signaling pathway) is an essential component in maintaining the hair-inducing activity of the dermal papilla and growth of hair papilla cells. However, the intrinsic pathways and regulating mechanism are largely unknown. In the previous work, we constructed a cDNA subtractive library of DPC and first found that the TCF4 gene, as a key factor of Wnt signaling pathway, was expressed as the upregulated gene of the hair follicle in low-passage DPC. This study was to explore the role of TCF4 in regulating the proliferation and secretory activity of DPC. We constructed a pcDNA3.0-TCF4 expression vector and transfected it into DPC to achieve stable expression by bangosome 2000. Furthermore, we used the method of chemosynthesis to synthesize three pairs of TCF4 siRNA and transfected them into DPC. Meanwhile, we compared the transfection group and non-transfection group. We first proposed that there was expression difference in TCF4 in DPC under different biological condition. This study may have a high impact on the molecular mechanism of follicular lesions and provide a new vision for the treatment of clinic diseases.
Collapse
Affiliation(s)
- Ya Xiong
- Department of Dermatology, Southwest Hospital, Chongqing, China
| | | | | | | | | |
Collapse
|
11
|
Yusuf F, Brand-Saberi B. Myogenesis and muscle regeneration. Histochem Cell Biol 2012; 138:187-99. [DOI: 10.1007/s00418-012-0972-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
|
12
|
Yvernogeau L, Auda-Boucher G, Fontaine-Perus J. Limb bud colonization by somite-derived angioblasts is a crucial step for myoblast emigration. Development 2011; 139:277-87. [PMID: 22129828 DOI: 10.1242/dev.067678] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have combined the use of mouse genetic strains and the mouse-into-chicken chimera system to determine precisely the sequence of forelimb colonization by presomitic mesoderm (PSM)-derived myoblasts and angioblasts, and the possible role of this latter cell type in myoblast guidance. By creating a new Flk1/Pax3 double reporter mouse line, we have established the precise timetable for angioblast and myoblast delamination/migration from the somite to the limb bud. This timetable was conserved when mouse PSM was grafted into a chicken host, which further validates the experimental model. The use of Pax3(GFP/GFP) knockout mice showed that establishment of vascular endothelial and smooth muscle cells (SMCs) is not compromised by the absence of Pax3. Of note, Pax3(GFP/GFP) knockout mouse PSM-derived cells can contribute to aortic, but not to limb, SMCs that are derived from the somatopleure. Finally, using the Flk1(lacZ)(/)(lacZ) knockout mouse, we show that, in the absence of angioblast and vascular network formation, myoblasts are prevented from migrating into the limb. Taken together, our study establishes for the first time the time schedule for endothelial and skeletal muscle cell colonization in the mouse limb bud and establishes the absolute requirement of endothelial cells for myoblast delamination and migration to the limb. It also reveals that cells delaminating from the somites display marked differentiation traits, suggesting that if a common progenitor exists, its lifespan is extremely short and restricted to the somite.
Collapse
Affiliation(s)
- Laurent Yvernogeau
- Université de Nantes, CNRS 6204, 2 rue de la Houssinière, 44322 Nantes, France.
| | | | | |
Collapse
|
13
|
Abstract
OLs (oligodendrocytes) are the myelinating cells of the CNS (central nervous system), wrapping axons in conductive sheathes to ensure effective transmission of neural signals. The regulation of OL development, from precursor to mature myelinating cell, is controlled by a variety of inhibitory and inductive signalling factors. The dorsal spinal cord contains signals that inhibit OL development, possibly to prevent premature and ectopic precursor differentiation. The Wnt and BMP (bone morphogenic protein) signalling pathways have been identified as dorsal spinal cord signals with overlapping temporal activity, and both have similar inhibitory effects on OL differentiation. Both these pathways feature prominently in many developmental processes and demyelinating events after injury, and they are known to interact in complex inductive, inhibitive and synergistic manners in many developing systems. The interaction between BMP and Wnt signalling in OL development, however, has not been extensively explored. In the present study, we examine the relationship between the canonical Wnt and BMP pathways. We use pharmacological and genetic paradigms to show that both Wnt3a and BMP4 will inhibit OL differentiation in vitro. We also show that when the canonical BMP signalling pathway is blocked, neither Wnt3a nor BMP4 have inhibitory effects on OL differentiation. In contrast, abrogating the Wnt signalling pathway does not alter the actions of BMP4 treatment. Our results indicate that the BMP signalling pathway is necessary for the canonical Wnt signalling pathway to exert its effects on OL development, but not vice versa, suggesting that Wnt signals upstream of BMP.
Collapse
|
14
|
Hasson P. "Soft" tissue patterning: muscles and tendons of the limb take their form. Dev Dyn 2011; 240:1100-7. [PMID: 21438070 DOI: 10.1002/dvdy.22608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2011] [Indexed: 12/18/2022] Open
Abstract
The musculoskeletal system grants our bodies a vast range of movements. Because it is mainly composed of easily identifiable components, it serves as an ideal model to study patterning of the specific tissues that make up the organ. Surprisingly, although critical for the function of the musculoskeletal system, understanding of the embryonic processes that regulate muscle and tendon patterning is very limited. The recent identification of specific markers and the reagents stemming from them has revealed some of the molecular events regulating patterning of these soft tissues. This review will focus on some of the current work, with an emphasis on the roles of the muscle connective tissue, and discuss several key points that addressing them will advance our understanding of these patterning events.
Collapse
Affiliation(s)
- Peleg Hasson
- Department of Anatomy and Cell Biology, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Bat Galim, Haifa, Israel.
| |
Collapse
|
15
|
Wang H, Bonnet A, Delfini MC, Kawakami K, Takahashi Y, Duprez D. Stable, conditional, and muscle-fiber-specific expression of electroporated transgenes in chick limb muscle cells. Dev Dyn 2010; 240:1223-32. [PMID: 21509896 DOI: 10.1002/dvdy.22498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 11/07/2022] Open
Abstract
Limb muscle formation is spread out over time and, consequently, muscle cells are not easy to target at any particular stages. We aimed to design a technique to study gene function in the different steps of limb muscle formation. We have associated transposon-mediated gene transfer and a tetracycline-dependent activation method with forelimb somite electroporation. In addition, we have established a new vector combining a differentiated-muscle-cell-specific promoter and the transposon system, which allows stable gene expression in limb differentiated muscle cells and not in muscle progenitors. Using these methods, we observed that conditional Fgf4 expression in muscle cells at the onset of fetal muscle differentiation and specific Fgf4 expression in differentiated muscle cells alter muscle fiber formation in chick limbs. Limb somite electroporation with these set of vectors allowing stable, conditional, and differentiated-muscle-specific expression of transgenes opens new perspectives for investigating gene function at various steps of limb muscle formation.
Collapse
Affiliation(s)
- Hui Wang
- CNRS, UMR7622, Biologie Moléculaire et Cellulaire du Développement, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Rehimi R, Khalida N, Yusuf F, Morosan-Puopolo G, Brand-Saberi B. A novel role of CXCR4 and SDF-1 during migration of cloacal muscle precursors. Dev Dyn 2010; 239:1622-31. [PMID: 20503359 DOI: 10.1002/dvdy.22288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cloaca acts as a common chamber into which gastrointestinal and urogenital tracts converge in lower vertebrates. The distal end of the cloaca is guarded by a ring of cloacal muscles or sphincters, the equivalent of perineal muscles in mammals. It has recently been shown that the development of the cloacal musculature depends on hindlimb muscle formation. The signaling molecules responsible for the outward migration of hindlimb myogenic precursors are not known. Based on the expression studies for CXCR4 and SDF-1, we hypothesized a role of this signaling pair during cloacal muscle precursor migration. The aim of our study was to investigate the role of SDF-1/CXCR4 during cloacal muscle precursor migration in the chicken embryos. We show that SDF-1 is expressed in the cloacal region, and by experimentally manipulating the SDF-1/CXCR4 signaling, we can show that SDF-1 guides the migration of CXCR4-expressing cloacal muscle precursors.
Collapse
Affiliation(s)
- Rizwan Rehimi
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Itasaki N, Hoppler S. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 2010; 239:16-33. [PMID: 19544585 DOI: 10.1002/dvdy.22009] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Wnt and the bone morphogenic protein (BMP) pathways are evolutionarily conserved and essentially independent signaling mechanisms, which, however, often regulate similar biological processes. Wnt and BMP signaling are functionally integrated in many biological processes, such as embryonic patterning in Drosophila and vertebrates, formation of kidney, limb, teeth and bones, maintenance of stem cells, and cancer progression. Detailed inspection of regulation in these and other tissues reveals that Wnt and BMP signaling are functionally integrated in four fundamentally different ways. The molecular mechanism evolved to mediate this integration can also be summarized in four different ways. However, a fundamental aspect of functional and mechanistic interaction between these pathways relies on tissue-specific mechanisms, which are often not conserved and cannot be extrapolated to other tissues. Integration of the two pathways contributes toward the sophisticated means necessary for creating the complexity of our bodies and the reliable and healthy function of its tissues and organs.
Collapse
Affiliation(s)
- Nobue Itasaki
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| | | |
Collapse
|
18
|
Hasson P, DeLaurier A, Bennett M, Grigorieva E, Naiche LA, Papaioannou VE, Mohun TJ, Logan MP. Tbx4 and tbx5 acting in connective tissue are required for limb muscle and tendon patterning. Dev Cell 2010; 18:148-56. [PMID: 20152185 PMCID: PMC3034643 DOI: 10.1016/j.devcel.2009.11.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/28/2009] [Accepted: 11/06/2009] [Indexed: 02/07/2023]
Abstract
Proper functioning of the musculo-skeletal system requires the precise
integration of bones, muscles and tendons. Complex morphogenetic events ensure
that these elements are linked together in the appropriate 3D configuration. It
has been difficult, however, to tease apart the mechanisms that regulate tissue
morphogenesis. We find that deletion of Tbx5 in forelimb (or
Tbx4 in hindlimbs) specifically affects muscle and tendon
patterning without disrupting skeletal development thus suggesting that distinct
cues regulate these processes. We identify muscle connective tissue as the site
of action of these transcription factors and show that N-Cadherin and
β-Catenin are key downstream effectors acting in muscle connective tissue
regulating soft-tissue morphogenesis. In humans, TBX5 mutations
lead to Holt-Oram syndrome, which is characterised by forelimb musculo-skeletal
defects. Our results suggest that a focus on connective tissue is required to
understand the aetiology of diseases affecting soft tissue formation.
Collapse
Affiliation(s)
- Peleg Hasson
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - April DeLaurier
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - Michael Bennett
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - Elena Grigorieva
- Division of Developmental Neurobiology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - L. A. Naiche
- Columbia University, College of Physicians and Surgeons, Department
of Genetics and Development, 701 W. 168th St., New York, NY 10032, USA
| | - Virginia E. Papaioannou
- Columbia University, College of Physicians and Surgeons, Department
of Genetics and Development, 701 W. 168th St., New York, NY 10032, USA
| | - Timothy J. Mohun
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - Malcolm P.O. Logan
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
- Author for correspondence:
| |
Collapse
|
19
|
Bonnet A, Dai F, Brand-Saberi B, Duprez D. Vestigial-like 2 acts downstream of MyoD activation and is associated with skeletal muscle differentiation in chick myogenesis. Mech Dev 2009; 127:120-36. [PMID: 19833199 DOI: 10.1016/j.mod.2009.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 09/14/2009] [Accepted: 10/03/2009] [Indexed: 12/23/2022]
Abstract
The co-factor Vestigial-like 2 (Vgl-2), in association with the Scalloped/Tef/Tead transcription factors, has been identified as a component of the myogenic program in the C2C12 cell line. In order to understand Vgl-2 function in embryonic muscle formation, we analysed Vgl-2 expression and regulation during chick embryonic development. Vgl-2 expression was associated with all known sites of skeletal muscle formation, including those in the head, trunk and limb. Vgl-2 was expressed after the myogenic factor MyoD, regardless of the site of myogenesis. Analysis of Vgl-2 regulation by Notch signalling showed that Vgl-2 expression was down-regulated by Delta1-activated Notch, similarly to the muscle differentiation genes MyoD, Myogenin,Desmin, and Mef2c, while the expression of the muscle progenitor markers such as Myf5, Six1 and FgfR4 was not modified. Moreover, we established that the Myogenic Regulatory Factors (MRFs) associated with skeletal muscle differentiation (MyoD, Myogenin and Mrf4) were sufficient to activate Vgl-2 expression, while Myf5 was not able to do so. The Vgl-2 endogenous expression, the similar regulation of Vgl-2 and that of MyoD and Myogenin by Notch signalling, and the positive regulation of Vgl-2 by these MRFs suggest that Vgl-2 acts downstream of MyoD activation and is associated with the differentiation step in embryonic skeletal myogenesis.
Collapse
Affiliation(s)
- Aline Bonnet
- CNRS, UMR7622, Biologie Moléculaire et Cellulaire du Développement, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
20
|
Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J Biol Chem 2009; 284:23159-68. [PMID: 19553665 PMCID: PMC2755721 DOI: 10.1074/jbc.m109.025478] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/22/2009] [Indexed: 11/06/2022] Open
Abstract
Cross-talk of BMP and Wnt signaling pathways has been implicated in many aspects of biological events during embryogenesis and in adulthood. A secreted protein Wise and its orthologs (Sostdc1, USAG-1, and Ectodin) have been shown to modulate Wnt signaling and also inhibit BMP signals. Modulation of Wnt signaling activity by Wise is brought about by an interaction with the Wnt co-receptor LRP6, whereas BMP inhibition is by binding to BMP ligands. Here we have investigated the mode of action of Wise on Wnt and BMP signals. It was found that Wise binds LRP6 through one of three loops formed by the cystine knot. The Wise deletion construct lacking the LRP6-interacting loop domain nevertheless binds BMP4 and inhibits BMP signals. Moreover, BMP4 does not interfere with Wise-LRP6 binding, suggesting separate domains for the physical interaction. Functional assays also show that the ability of Wise to block Wnt1 activity through LRP6 is not impeded by BMP4. In contrast, the ability of Wise to inhibit BMP4 is prevented by additional LRP6, implying a preference of Wise in binding LRP6 over BMP4. In addition to the interaction of Wise with BMP4 and LRP6, the molecular characteristics of Wise, such as glycosylation and association with heparan sulfate proteoglycans on the cell surface, are suggested. This study helps to understand the multiple functions of Wise at the molecular level and suggests a possible role for Wise in balancing Wnt and BMP signals.
Collapse
Affiliation(s)
| | - Sonia Guidato
- From the Divisions of Developmental Neurobiology and
| | - Alison Rowe
- From the Divisions of Developmental Neurobiology and
| | - José W. Saldanha
- Mathematical Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Nobue Itasaki
- From the Divisions of Developmental Neurobiology and
| |
Collapse
|
21
|
Beites CL, Hollenbeck PLW, Kim J, Lovell-Badge R, Lander AD, Calof AL. Follistatin modulates a BMP autoregulatory loop to control the size and patterning of sensory domains in the developing tongue. Development 2009; 136:2187-97. [PMID: 19474151 DOI: 10.1242/dev.030544] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The regenerative capacity of many placode-derived epithelial structures makes them of interest for understanding the molecular control of epithelial stem cells and their niches. Here, we investigate the interaction between the developing epithelium and its surrounding mesenchyme in one such system, the taste papillae and sensory taste buds of the mouse tongue. We identify follistatin (FST) as a mesenchymal factor that controls size, patterning and gustatory cell differentiation in developing taste papillae. FST limits expansion and differentiation of Sox2-expressing taste progenitor cells and negatively regulates the development of taste papillae in the lingual epithelium: in Fst(-/-) tongue, there is both ectopic development of Sox2-expressing taste progenitors and accelerated differentiation of gustatory cells. Loss of Fst leads to elevated activity and increased expression of epithelial Bmp7; the latter effect is consistent with BMP7 positive autoregulation, a phenomenon we demonstrate directly. We show that FST and BMP7 influence the activity and expression of other signaling systems that play important roles in the development of taste papillae and taste buds. In addition, using computational modeling, we show how aberrations in taste papillae patterning in Fst(-/-) mice could result from disruption of an FST-BMP7 regulatory circuit that normally suppresses noise in a process based on diffusion-driven instability. Because inactivation of Bmp7 rescues many of the defects observed in Fst(-/-) tongue, we conclude that interactions between mesenchyme-derived FST and epithelial BMP7 play a central role in the morphogenesis, innervation and maintenance of taste buds and their stem/progenitor cells.
Collapse
Affiliation(s)
- Crestina L Beites
- Department of Anatomy and Neurobiology and Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
22
|
Tokita M, Schneider RA. Developmental origins of species-specific muscle pattern. Dev Biol 2009; 331:311-25. [PMID: 19450573 DOI: 10.1016/j.ydbio.2009.05.548] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/15/2022]
Abstract
Vertebrate jaw muscle anatomy is conspicuously diverse but developmental processes that generate such variation remain relatively obscure. To identify mechanisms that produce species-specific jaw muscle pattern we conducted transplant experiments using Japanese quail and White Pekin duck, which exhibit considerably different jaw morphologies in association with their particular modes of feeding. Previous work indicates that cranial muscle formation requires interactions with adjacent skeletal and muscular connective tissues, which arise from neural crest mesenchyme. We transplanted neural crest mesenchyme from quail to duck embryos, to test if quail donor-derived skeletal and muscular connective tissues could confer species-specific identity to duck host jaw muscles. Our results show that duck host jaw muscles acquire quail-like shape and attachment sites due to the presence of quail donor neural crest-derived skeletal and muscular connective tissues. Further, we find that these species-specific transformations are preceded by spatiotemporal changes in expression of genes within skeletal and muscular connective tissues including Sox9, Runx2, Scx, and Tcf4, but not by alterations to histogenic or molecular programs underlying muscle differentiation or specification. Thus, neural crest mesenchyme plays an essential role in generating species-specific jaw muscle pattern and in promoting structural and functional integration of the musculoskeletal system during evolution.
Collapse
|
23
|
Tozer S, Bonnin MA, Relaix F, Di Savino S, García-Villalba P, Coumailleau P, Duprez D. Involvement of vessels and PDGFB in muscle splitting during chick limb development. Development 2007; 134:2579-91. [PMID: 17553906 DOI: 10.1242/dev.02867] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle formation and vascular assembly during embryonic development are usually considered separately. In this paper, we investigate the relationship between the vasculature and muscles during limb bud development. We show that endothelial cells are detected in limb regions before muscle cells and can organize themselves in space in the absence of muscles. In chick limbs, endothelial cells are detected in the future zones of muscle cleavage, delineating the cleavage pattern of muscle masses. We therefore perturbed vascular assembly in chick limbs by overexpressing VEGFA and demonstrated that ectopic blood vessels inhibit muscle formation, while promoting connective tissue. Conversely, local inhibition of vessel formation using a soluble form of VEGFR1 leads to muscle fusion. The endogenous location of endothelial cells in the future muscle cleavage zones and the inverse correlation between blood vessels and muscle suggests that vessels are involved in the muscle splitting process. We also identify the secreted factor PDGFB (expressed in endothelial cells) as a putative molecular candidate mediating the muscle-inhibiting and connective tissue-promoting functions of blood vessels. Finally, we propose that PDGFB promotes the production of extracellular matrix and attracts connective tissue cells to the future splitting site, allowing separation of the muscle masses during the splitting process.
Collapse
Affiliation(s)
- Samuel Tozer
- Biologie du Développement, CNRS, UMR 7622, Université P. et M. Curie, 9 Quai Saint-Bernard, Bât. C, 6 E, Case 24, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Yusuf F, Brand-Saberi B. The eventful somite: patterning, fate determination and cell division in the somite. ACTA ACUST UNITED AC 2006; 211 Suppl 1:21-30. [PMID: 17024302 DOI: 10.1007/s00429-006-0119-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/18/2006] [Indexed: 11/29/2022]
Abstract
The segmental somites not only determine the vertebrate body plan, but also represent turntables of cell fates. The somite is initially naive in terms of its fate restriction as shown by grafting and rotation experiments whereby ectopically grafted or rotated tissue of newly formed somites yielded the same pattern of normal derivatives. Somitic derivatives are determined by local signalling between adjacent embryonic tissues, in particular the neural tube, notochord, surface ectoderm and the somitic compartments themselves. The correct spatio-temporal specification of the deriving tissues, skeletal muscle, cartilage, endothelia and connective tissue is achieved by a sequence of morphogenetic changes of the paraxial mesoderm, eventually leading to the three transitory somitic compartments: dermomyotome, myotome and sclerotome. These structures are specified along a double gradient from dorsal to ventral and from medial to lateral. The establishment and controlled disruption of the epithelial state of the somitic compartments are crucial for development. In this article, we give a synopsis of some of the most important signalling events involved in somite patterning and cell fate decisions. Particular emphasis has been laid on the issue of epithelio-mesenchymal transition and different types of cell division in the somite.
Collapse
Affiliation(s)
- Faisal Yusuf
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, 79104, Freiburg, Germany.
| | | |
Collapse
|