1
|
Drewell RA, Klonaros D, Dresch JM. Transcription factor expression landscape in Drosophila embryonic cell lines. BMC Genomics 2024; 25:307. [PMID: 38521929 PMCID: PMC10960990 DOI: 10.1186/s12864-024-10241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Transcription factor (TF) proteins are a key component of the gene regulatory networks that control cellular fates and function. TFs bind DNA regulatory elements in a sequence-specific manner and modulate target gene expression through combinatorial interactions with each other, cofactors, and chromatin-modifying proteins. Large-scale studies over the last two decades have helped shed light on the complex network of TFs that regulate development in Drosophila melanogaster. RESULTS Here, we present a detailed characterization of expression of all known and predicted Drosophila TFs in two well-established embryonic cell lines, Kc167 and S2 cells. Using deep coverage RNA sequencing approaches we investigate the transcriptional profile of all 707 TF coding genes in both cell types. Only 103 TFs have no detectable expression in either cell line and 493 TFs have a read count of 5 or greater in at least one of the cell lines. The 493 TFs belong to 54 different DNA-binding domain families, with significant enrichment of those in the zf-C2H2 family. We identified 123 differentially expressed genes, with 57 expressed at significantly higher levels in Kc167 cells than S2 cells, and 66 expressed at significantly lower levels in Kc167 cells than S2 cells. Network mapping reveals that many of these TFs are crucial components of regulatory networks involved in cell proliferation, cell-cell signaling pathways, and eye development. CONCLUSIONS We produced a reference TF coding gene expression dataset in the extensively studied Drosophila Kc167 and S2 embryonic cell lines, and gained insight into the TF regulatory networks that control the activity of these cells.
Collapse
Affiliation(s)
- Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| | - Daniel Klonaros
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| |
Collapse
|
2
|
Sollazzo G, Nikolouli K, Gouvi G, Aumann RA, Schetelig MF, Bourtzis K. Deep orange gene editing triggers temperature-sensitive lethal phenotypes in Ceratitis capitata. BMC Biotechnol 2024; 24:7. [PMID: 38302991 PMCID: PMC10835909 DOI: 10.1186/s12896-024-00832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The Mediterranean fruit fly, Ceratitis capitata, is a significant agricultural pest managed through area-wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only releases increase the efficiency and cost-effectiveness of SIT programs, which can be achieved through the development of genetic sexing strains (GSS). The most successful GSS developed to date is the C. capitata VIENNA 8 GSS, constructed using classical genetic approaches and an irradiation-induced translocation with two selectable markers: the white pupae (wp) and temperature-sensitive lethal (tsl) genes. However, currently used methods for selecting suitable markers and inducing translocations are stochastic and non-specific, resulting in a laborious and time-consuming process. Recent efforts have focused on identifying the gene(s) and the causal mutation(s) for suitable phenotypes, such as wp and tsl, which could be used as selectable markers for developing a generic approach for constructing GSS. The wp gene was recently identified, and efforts have been initiated to identify the tsl gene. This study investigates Ceratitis capitata deep orange (Ccdor) as a tsl candidate gene and its potential to induce tsl phenotypes. RESULTS An integrated approach based on cytogenetics, genomics, bioinformatics, and gene editing was used to characterize the Ccdor. Its location was confirmed on the right arm of chromosome 5 in the putative tsl genomic region. Knock-out of Ccdor using CRISPR/Cas9-NHEJ and targeting the fourth exon resulted in lethality at mid- and late-pupal stage, while the successful application of CRISPR HDR introducing a point mutation on the sixth exon resulted in the establishment of the desired strain and two additional strains (dor 12del and dor 51dup), all of them expressing tsl phenotypes and presenting no (or minimal) fitness cost when reared at 25 °C. One of the strains exhibited complete lethality when embryos were exposed at 36 °C. CONCLUSIONS Gene editing of the deep orange gene in Ceratitis capitata resulted in the establishment of temperature-sensitive lethal mutant strains. The induced mutations did not significantly affect the rearing efficiency of the strains. As deep orange is a highly conserved gene, these data suggest that it can be considered a target for the development of tsl mutations which could potentially be used to develop novel genetic sexing strains in insect pests and disease vectors.
Collapse
Affiliation(s)
- Germano Sollazzo
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Friedensstrasse 1, Seibersdorf, 2444, Austria
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchesterstr. 2, Gießen, 35394, Germany
- Present address: Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, Imperial College Road, London, SW7 2AZ, UK
| | - Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Friedensstrasse 1, Seibersdorf, 2444, Austria
| | - Georgia Gouvi
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Friedensstrasse 1, Seibersdorf, 2444, Austria
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 G. Seferi St., Agrinio, 30100, Greece
- Present address: Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, Imperial College Road, London, SW7 2AZ, UK
| | - Roswitha A Aumann
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchesterstr. 2, Gießen, 35394, Germany
| | - Marc F Schetelig
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchesterstr. 2, Gießen, 35394, Germany.
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Friedensstrasse 1, Seibersdorf, 2444, Austria.
| |
Collapse
|
3
|
Li P, Messina G, Lehner CF. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023; 19:e1010837. [PMID: 37428798 PMCID: PMC10359004 DOI: 10.1371/journal.pgen.1010837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Giovanni Messina
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Zhang S, Wang R, Huang C, Zhang L, Sun L. Modulation of Global Gene Expression by Aneuploidy and CNV of Dosage Sensitive Regulatory Genes. Genes (Basel) 2021; 12:genes12101606. [PMID: 34681000 PMCID: PMC8535535 DOI: 10.3390/genes12101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy, which disrupts the genetic balance due to partial genome dosage changes, is usually more detrimental than euploidy variation. To investigate the modulation of gene expression in aneuploidy, we analyzed the transcriptome sequencing data of autosomal and sex chromosome trisomy in Drosophila. The results showed that most genes on the varied chromosome (cis) present dosage compensation, while the remainder of the genome (trans) produce widespread inverse dosage effects. Some altered functions and pathways were identified as the common characteristics of aneuploidy, and several possible regulatory genes were screened for an inverse dosage effect. Furthermore, we demonstrated that dosage changes of inverse regulator Inr-a/pcf11 can produce a genome-wide inverse dosage effect. All these findings suggest that the mechanism of genomic imbalance is related to the changes in the stoichiometric relationships of macromolecular complex members that affect the overall function. These studies may deepen the understanding of gene expression regulatory mechanisms.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
| | - Cheng Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100193, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
- Correspondence:
| |
Collapse
|
5
|
Abstract
Animal models of cancer have been instrumental in advancing our understanding of the biology of tumor initiation and progression, in studying gene function and in performing preclinical studies aimed at testing novel therapies. Several animal models of the MEN1 syndrome have been generated in different organisms by introducing loss-of-function mutations in the orthologues of the human MEN1 gene. In this review, we will discuss MEN1 and MEN1-like models in Drosophila, mice and rats. These model systems with their specific advantages and limitations have contributed to elucidate the function of Menin in tumorigenesis, which turned out to be remarkably conserved from flies to mammals, as well as the biology of the disease. Mouse models of MEN1 closely resemble the human disease in terms of tumor spectrum and associated hormonal changes, although individual tumor frequencies are variable. Rats affected by the MENX (MEN1-like) syndrome share some features with MEN1 patients albeit they bear a germline mutation in Cdkn1b (p27) and not in Men1 Both Men1-knockout mice and MENX rats have been exploited for therapy-response studies testing novel drugs for efficacy against neuroendocrine tumors (NETs) and have provided promising leads for novel therapies. In addition to presenting well-established models of MEN1, we also discuss potential models which, if implemented, might broaden even further our knowledge of neuroendocrine tumorigenesis. In the future, patient-derived xenografts in zebrafish or mice might allow us to expand the tool-box currently available for preclinical studies of MEN1-associated tumors.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
6
|
Lindberg BG, Oldenvi S, Steiner H. Medium from γ-irradiated Escherichia coli bacteria stimulates a unique immune response in Drosophila cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:392-400. [PMID: 24892816 DOI: 10.1016/j.dci.2014.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
It is well known that γ-irradiated, non-dividing bacteria can elicit potent immune responses in mammals. Compared to traditional heat or chemical inactivation of microbes, γ-irradiation likely preserves metabolic activity and antigenic features to a larger extent. We have previously shown that antimicrobial peptides are induced in Drosophila by peptidoglycan fragments secreted into the medium of exponentially growing bacterial cultures. In this study, we γ-irradiated Escherichiacoli cells at a dose that halted cell division. The temporal synthesis and release of peptidoglycan fragments were followed as well as the potential of bacterial supernatants to induce immune responses in Drosophila S2 cells. We demonstrate that peptidoglycan synthesis continues for several days post irradiation and that monomeric peptidoglycan is shed into the medium. Whole transcriptome analysis revealed a strong immune response against the bacterial medium. The response to medium taken directly post irradiation shows a large overlap to that of peptidoglycan. Medium from prolonged bacterial incubation does, however, stimulate a selective set of immune genes. A shift towards a stress response was instead observed with a striking induction of several heat shock proteins. Our findings suggest that γ-irradiated bacteria release elicitors that stimulate a novel response in Drosophila.
Collapse
Affiliation(s)
- Bo G Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden
| | - Sandra Oldenvi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden
| | - Håkan Steiner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal-dominant tumor syndrome characterized by the occurrence of tumors in multiple endocrine tissues and nonendocrine tissues. The three main endocrine tissues most frequently affected by tumors are parathyroid (95%), enteropancreatic neuroendocrine (50%) and anterior pituitary (40%). Tumors are caused by a heterozygous germline-inactivating mutation in the MEN1 gene (1st hit) followed by somatic inactivating mutation or loss of the normal copy of the gene (2nd hit), leading to complete loss of function of the encoded protein menin. Most of the disease features and tumors are recapitulated in mouse models with heterozygous germline loss of the Men1 gene. Also, tissue-specific tumors are observed in mouse models with homozygous somatic loss of the Men1 gene specifically in MEN1-associated endocrine tissues. Hence, mouse models could serve as possible surrogates for studying MEN1 and related states. To gain insights into MEN1 pathophysiology, menin-interacting partners and pathways have been identified to investigate its tumor suppressor and other functions. Also, the 3D crystal structure of menin has been deciphered which could be useful to reveal the relevance of MEN1 gene mutations and menin's interactions. This chapter covers clinical, genetic and basic findings about the MEN1 syndrome, MEN1 gene and its product protein menin.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA. SunitaA @ mail.nih.gov
| |
Collapse
|
8
|
Saadi I, Alkuraya FS, Gisselbrecht SS, Goessling W, Cavallesco R, Turbe-Doan A, Petrin AL, Harris J, Siddiqui U, Grix AW, Hove HD, Leboulch P, Glover TW, Morton CC, Richieri-Costa A, Murray JC, Erickson RP, Maas RL. Deficiency of the cytoskeletal protein SPECC1L leads to oblique facial clefting. Am J Hum Genet 2011; 89:44-55. [PMID: 21703590 PMCID: PMC3135813 DOI: 10.1016/j.ajhg.2011.05.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/29/2011] [Accepted: 05/24/2011] [Indexed: 11/27/2022] Open
Abstract
Genetic mutations responsible for oblique facial clefts (ObFC), a unique class of facial malformations, are largely unknown. We show that loss-of-function mutations in SPECC1L are pathogenic for this human developmental disorder and that SPECC1L is a critical organizer of vertebrate facial morphogenesis. During murine embryogenesis, Specc1l is expressed in cell populations of the developing facial primordial, which proliferate and fuse to form the face. In zebrafish, knockdown of a SPECC1L homolog produces a faceless phenotype with loss of jaw and facial structures, and knockdown in Drosophila phenocopies mutants in the integrin signaling pathway that exhibit cell-migration and -adhesion defects. Furthermore, in mammalian cells, SPECC1L colocalizes with both tubulin and actin, and its deficiency results in defective actin-cytoskeleton reorganization, as well as abnormal cell adhesion and migration. Collectively, these data demonstrate that SPECC1L functions in actin-cytoskeleton reorganization and is required for proper facial morphogenesis.
Collapse
Affiliation(s)
- Irfan Saadi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Singh N, Lorbeck MT, Zervos A, Zimmerman J, Elefant F. The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 2010; 115:493-504. [PMID: 20626565 DOI: 10.1111/j.1471-4159.2010.06892.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The histone acetyltransferase Elp3 (Elongator Protein 3) is the catalytic subunit of the highly conserved Elongator complex. Elp3 is essential for the complex functions of Elongator in both the nucleus and cytoplasm of neurons, including the epigenetic control of neuronal motility genes and the acetylation of α-tubulin that affects axonal branching and cortical neuron migration. Accordingly, misregulation of Elp3 has been implicated in human disorders that specifically affect neuronal function, including familial dysautonomia, a disease characterized by degeneration of the sensory and autonomic nervous system, and the motor neuron degenerative disorder amyotrophic lateral sclerosis. These studies underscore the importance of Elp3 in neurodevelopment and disease, and the need to further characterize the multiple nuclear and cytoplasmic based roles of ELP3 required for neurogenesis in animal models, in vivo. In this report, we investigate the behavioral and morphological consequences that result from targeted reduction of ELP3 specifically in the developing Drosophila nervous system. We demonstrate that loss of Elp3 during neurodevelopment leads to a hyperactive phenotype and sleep loss in the adult flies, a significant expansion in synaptic bouton number and axonal length and branching in the larval neuromuscular junction as well as the misregulation of certain genes known to be involved in these processes. Our results uncover a novel role for Elp3 in the regulation of synaptic bouton expansion during neurogenesis that may be linked with a requirement for sleep.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
10
|
Freeman A, Bowers M, Mortimer AV, Timmerman C, Roux S, Ramaswami M, Sanyal S. A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Res 2010; 1326:15-29. [PMID: 20193670 DOI: 10.1016/j.brainres.2010.02.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
Techniques to induce activity-dependent neuronal plasticity in vivo allow the underlying signaling pathways to be studied in their biological context. Here, we demonstrate activity-induced plasticity at neuromuscular synapses of Drosophila double mutant for comatose (an NSF mutant) and Kum (a SERCA mutant), and present an analysis of the underlying signaling pathways. comt; Kum (CK) double mutants exhibit increased locomotor activity under normal culture conditions, concomitant with a larger neuromuscular junction synapse and stably elevated evoked transmitter release. The observed enhancements of synaptic size and transmitter release in CK mutants are completely abrogated by: a) reduced activity of motor neurons; b) attenuation of the Ras/ERK signaling cascade; or c) inhibition of the transcription factors Fos and CREB. All of which restrict synaptic properties to near wild type levels. Together, these results document neural activity-dependent plasticity of motor synapses in CK animals that requires Ras/ERK signaling and normal transcriptional activity of Fos and CREB. Further, novel in vivo reporters of neuronal Ras activation and Fos transcription also confirm increased signaling through a Ras/AP-1 pathway in motor neurons of CK animals, consistent with results from our genetic experiments. Thus, this study: a) provides a robust system in which to study activity-induced synaptic plasticity in vivo; b) establishes a causal link between neural activity, Ras signaling, transcriptional regulation and pre-synaptic plasticity in glutamatergic motor neurons of Drosophila larvae; and c) presents novel, genetically encoded reporters for Ras and AP-1 dependent signaling pathways in Drosophila.
Collapse
Affiliation(s)
- Amanda Freeman
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30022, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Multiple endocrine neoplasia type 1 (MEN 1) is an autosomal-dominant inherited tumor syndrome characterized by hyperplasia and/or tumors in the parathyroid glands, the pancreatic islets, the anterior pituitary and adrenal glands, as well as neuroendocrine tumors in the thymus, lungs and stomach, and tumors in nonendocrine tissues. In 1997, the responsible MEN1 gene was identified as a tumor-suppressor gene and its product was named menin. In this review, guidelines for early diagnosis, including MEN1 gene mutation analysis, and treatment, including periodic clinical monitoring, have been formulated, enabling improvement of life expectancy and quality of life. Identification of menin-interacting proteins has provided new insights into the function of menin, notably involving regulation of gene transcription related to proliferation and apoptosis, genome stability and DNA repair, and endocrine/metabolic homeostasis. In the near future, target-directed intervention may prevent or delay the onset of MEN 1-related tumors.
Collapse
Affiliation(s)
- Cornelis Jm Lips
- a University Medical Center Utrecht, Department of Internal Medicine, Wassenaarseweg 109, 2596 CN The Hague, The Netherlands.
| | - Koen Dreijerink
- b University Medical Center Utrecht, Department of Internal Medicine, F02.126, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Thera P Links
- c University Medical Center Groningen, Department of Internal Medicine, PO Box 30001, 9700 RB Groningen, The Netherlands.
| | - Jo Wm Höppener
- d Department of Metabolic and Endocrine Diseases, PO Box 85090, 3508 AB Utrecht.
| |
Collapse
|
12
|
Menin: the protein behind the MEN1 syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 668:27-36. [PMID: 20175450 DOI: 10.1007/978-1-4419-1664-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cloning of the MEN1 gene in 1997 led to the characterization of menin, the protein behind the multiple endocrine neoplasia Type 1 syndrome. Menin, a novel nuclear protein with no homology to other gene products, is expressed ubiquitously. MEN1 missense mutations are dispersed along the coding region of the gene but are more common in the most conserved regions. Likewise, domains of protein interaction often correspond to the more conserved segments of menin. These protein interactions are generally facilitated by multiple domains or encompass a large portion of menin. The exception to this rule is a small stretch of amino acids mediating the interaction of menin with the mSin3A corepressor and histone deacetylase complexes. The C-terminal region of menin harbors several nuclear localization signals that play redundant functions in the localization of menin to the nuclear compartment. The nuclear localization signals are also important for the interaction of menin with the nuclear matrix. Menin is the target of several kinases and a candidate substrate of the ATM/ATR kinases, implying a role for this tumor suppressor in the DNA damage response. Menin is highly conserved from Drosophila to human but is absent in the nematode and in yeast.
Collapse
|
13
|
Overexpression screen in Drosophila identifies neuronal roles of GSK-3 beta/shaggy as a regulator of AP-1-dependent developmental plasticity. Genetics 2008; 180:2057-71. [PMID: 18832361 DOI: 10.1534/genetics.107.085555] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AP-1, an immediate-early transcription factor comprising heterodimers of the Fos and Jun proteins, has been shown in several animal models, including Drosophila, to control neuronal development and plasticity. In spite of this important role, very little is known about additional proteins that regulate, cooperate with, or are downstream targets of AP-1 in neurons. Here, we outline results from an overexpression/misexpression screen in Drosophila to identify potential regulators of AP-1 function at third instar larval neuromuscular junction (NMJ) synapses. First, we utilize >4000 enhancer and promoter (EP) and EPgy2 lines to screen a large subset of Drosophila genes for their ability to modify an AP-1-dependent eye-growth phenotype. Of 303 initially identified genes, we use a set of selection criteria to arrive at 25 prioritized genes from the resulting collection of putative interactors. Of these, perturbations in 13 genes result in synaptic phenotypes. Finally, we show that one candidate, the GSK-3beta-kinase homolog, shaggy, negatively influences AP-1-dependent synaptic growth, by modulating the Jun-N-terminal kinase pathway, and also regulates presynaptic neurotransmitter release at the larval neuromuscular junction. Other candidates identified in this screen provide a useful starting point to investigate genes that interact with AP-1 in vivo to regulate neuronal development and plasticity.
Collapse
|