1
|
Jensen N, Weiland-Bräuer N, Joel S, Chibani CM, Schmitz RA. The Life Cycle of Aurelia aurita Depends on the Presence of a Microbiome in Polyps Prior to Onset of Strobilation. Microbiol Spectr 2023; 11:e0026223. [PMID: 37378516 PMCID: PMC10433978 DOI: 10.1128/spectrum.00262-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Aurelia aurita's intricate life cycle alternates between benthic polyp and pelagic medusa stages. The strobilation process, a critical asexual reproduction mechanism in this jellyfish, is severely compromised in the absence of the natural polyp microbiome, with limited production and release of ephyrae. Yet, the recolonization of sterile polyps with a native polyp microbiome can correct this defect. Here, we investigated the precise timing necessary for recolonization as well as the host-associated molecular processes involved. We deciphered that a natural microbiota had to be present in polyps prior to the onset of strobilation to ensure normal asexual reproduction and a successful polyp-to-medusa transition. Providing the native microbiota to sterile polyps after the onset of strobilation failed to restore the normal strobilation process. The absence of a microbiome was associated with decreased transcription of developmental and strobilation genes as monitored by reverse transcription-quantitative PCR. Transcription of these genes was exclusively observed for native polyps and sterile polyps that were recolonized before the initiation of strobilation. We further propose that direct cell contact between the host and its associated bacteria is required for the normal production of offspring. Overall, our findings indicate that the presence of a native microbiome at the polyp stage prior to the onset of strobilation is essential to ensure a normal polyp-to-medusa transition. IMPORTANCE All multicellular organisms are associated with microorganisms that play fundamental roles in the health and fitness of the host. Notably, the native microbiome of the Cnidarian Aurelia aurita is crucial for the asexual reproduction by strobilation. Sterile polyps display malformed strobilae and a halt of ephyrae release, which is restored by recolonizing sterile polyps with a native microbiota. Despite that, little is known about the microbial impact on the strobilation process's timing and molecular consequences. The present study shows that A. aurita's life cycle depends on the presence of the native microbiome at the polyp stage prior to the onset of strobilation to ensure the polyp-to-medusa transition. Moreover, sterile individuals correlate with reduced transcription levels of developmental and strobilation genes, evidencing the microbiome's impact on strobilation on the molecular level. Transcription of strobilation genes was exclusively detected in native polyps and those recolonized before initiating strobilation, suggesting microbiota-dependent gene regulation.
Collapse
Affiliation(s)
- Nadin Jensen
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Nancy Weiland-Bräuer
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Shindhuja Joel
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Cynthia Maria Chibani
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Ruth Anne Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
2
|
Salinas-Saavedra M, Krasovec G, Horkan HR, Baxevanis AD, Frank U. Senescence-induced cellular reprogramming drives cnidarian whole-body regeneration. Cell Rep 2023:112687. [PMID: 37392741 DOI: 10.1016/j.celrep.2023.112687] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023] Open
Abstract
Cell fate stability is essential to maintaining "law and order" in complex animals. However, high stability comes at the cost of reduced plasticity and, by extension, poor regenerative ability. This evolutionary trade-off has resulted in most modern animals being rather simple and regenerative or complex and non-regenerative. The mechanisms mediating cellular plasticity and allowing for regeneration remain unknown. We show that signals emitted by senescent cells can destabilize the differentiated state of neighboring somatic cells, reprogramming them into stem cells that are capable of driving whole-body regeneration in the cnidarian Hydractinia symbiolongicarpus. Pharmacological or genetic inhibition of senescence prevents reprogramming and regeneration. Conversely, induction of transient ectopic senescence in a regenerative context results in supernumerary stem cells and faster regeneration. We propose that senescence signaling is an ancient mechanism mediating cellular plasticity. Understanding the senescence environment that promotes cellular reprogramming could provide an avenue to enhance regeneration.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Gabriel Krasovec
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Helen R Horkan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
siRNA-mediated gene knockdown via electroporation in hydrozoan jellyfish embryos. Sci Rep 2022; 12:16049. [PMID: 36180523 PMCID: PMC9525680 DOI: 10.1038/s41598-022-20476-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
As the sister group to bilaterians, cnidarians stand in a unique phylogenetic position that provides insight into evolutionary aspects of animal development, physiology, and behavior. While cnidarians are classified into two types, sessile polyps and free-swimming medusae, most studies at the cellular and molecular levels have been conducted on representative polyp-type cnidarians and have focused on establishing techniques of genetic manipulation. Recently, gene knockdown by delivery of short hairpin RNAs into eggs via electroporation has been introduced in two polyp-type cnidarians, Nematostella vectensis and Hydractinia symbiolongicarpus, enabling systematic loss-of-function experiments. By contrast, current methods of genetic manipulation for most medusa-type cnidarians, or jellyfish, are quite limited, except for Clytia hemisphaerica, and reliable techniques are required to interrogate function of specific genes in different jellyfish species. Here, we present a method to knock down target genes by delivering small interfering RNA (siRNA) into fertilized eggs via electroporation, using the hydrozoan jellyfish, Clytia hemisphaerica and Cladonema paciificum. We show that siRNAs targeting endogenous GFP1 and Wnt3 in Clytia efficiently knock down gene expression and result in known planula phenotypes: loss of green fluorescence and defects in axial patterning, respectively. We also successfully knock down endogenous Wnt3 in Cladonema by siRNA electroporation, which circumvents the technical difficulty of microinjecting small eggs. Wnt3 knockdown in Cladonema causes gene expression changes in axial markers, suggesting a conserved Wnt/β-catenin-mediated pathway that controls axial polarity during embryogenesis. Our gene-targeting siRNA electroporation method is applicable to other animals, including and beyond jellyfish species, and will facilitate the investigation and understanding of myriad aspects of animal development.
Collapse
|
4
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
5
|
Ishii Y, Hatta M, Deguchi R, Kawata M, Maruyama S. Gene expression alterations from reversible to irreversible stages during coral metamorphosis. ZOOLOGICAL LETTERS 2022; 8:4. [PMID: 35078542 PMCID: PMC8787945 DOI: 10.1186/s40851-022-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
For corals, metamorphosis from planktonic larvae to sedentary polyps is an important life event, as it determines the environment in which they live for a lifetime. Although previous studies on the reef-building coral Acropora have clarified a critical time point during metamorphosis when cells are committed to their fates, as defined by an inability to revert back to their previous states as swimming larvae (here referred to as the "point of no return"), the molecular mechanisms of this commitment to a fate remain unclear. To address this issue, we analyzed the transcriptomic changes before and after the point of no return by inducing metamorphosis of Acropora tenuis with Hym-248, a metamorphosis-inducing neuropeptide. Gene Ontology and pathway enrichment analysis of the 5893 differentially expressed genes revealed that G protein-coupled receptors (GPCRs) were enriched, including GABA receptor and Frizzled gene subfamilies, which showed characteristic temporal expression patterns. The GPCRs were then classified by comparison with those of Homo sapiens, Nematostella vectensis and Platynereis dumerilii. Classification of the differentially expressed genes into modules based on expression patterns showed that some modules with large fluctuations after the point of no return were biased toward functions such as protein metabolism and transport. This result suggests that in precommitted larvae, different types of GPCR genes function to ensure a proper environment, whereas in committed larvae, intracellular protein transport and proteolysis may cause a loss of the reversibility of metamorphosis as a result of cell differentiation.
Collapse
Affiliation(s)
- Yuu Ishii
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
| | - Masakado Kawata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Shinichiro Maruyama
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| |
Collapse
|
6
|
Vetrova AA, Lebedeva TS, Saidova AA, Kupaeva DM, Kraus YA, Kremnyov SV. From apolar gastrula to polarized larva: Embryonic development of a marine hydroid, Dynamena pumila. Dev Dyn 2021; 251:795-825. [PMID: 34787911 DOI: 10.1002/dvdy.439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In almost all metazoans examined to this respect, the axial patterning system based on canonical Wnt (cWnt) signaling operates throughout the course of development. In most metazoans, gastrulation is polar, and embryos develop morphological landmarks of axial polarity, such as blastopore under control/regulation from cWnt signaling. However, in many cnidarian species, gastrulation is morphologically apolar. The question remains whether сWnt signaling providing the establishment of a body axis controls morphogenetic processes involved in apolar gastrulation. RESULTS In this study, we focused on the embryonic development of Dynamena pumila, a cnidarian species with apolar gastrulation. We thoroughly described cell behavior, proliferation, and ultrastructure and examined axial patterning in the embryos of this species. We revealed that the first signs of morphological polarity appear only after the end of gastrulation, while molecular prepatterning of the embryo does exist during gastrulation. We have shown experimentally that in D. pumila, the direction of the oral-aboral axis is highly robust against perturbations in cWnt activity. CONCLUSIONS Our results suggest that morphogenetic processes are uncoupled from molecular axial patterning during gastrulation in D. pumila. Investigation of D. pumila might significantly expand our understanding of the ways in which morphological polarization and axial molecular patterning are linked in Metazoa.
Collapse
Affiliation(s)
- Alexandra A Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Tatiana S Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Aleena A Saidova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria M Kupaeva
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Yulia A Kraus
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia.,Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stanislav V Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia.,Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Scheel A, Stevens A, Tenbrock C. Signaling gradients in surface dynamics as basis for planarian regeneration. J Math Biol 2021; 83:6. [PMID: 34173885 DOI: 10.1007/s00285-021-01627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Based on experimental data, we introduce and analyze a system of reaction-diffusion equations for the regeneration of planarian flatworms. We model dynamics of head and tail cells expressing positional control genes that translate into localized signals which in turn guide stem cell differentiation. Tissue orientation and positional information are encoded in a long range wnt-related signaling gradient. Our system correctly reproduces typical cut and graft experiments, and improves on previous models by preserving polarity in regeneration over orders of magnitude in body size during growth phases. Key to polarity preservation in our model flatworm is the sensitivity of cell differentiation to gradients of wnt-related signals relative to the tissue surface. This process is particularly relevant in small tissue layers close to cuts during their healing, and modeled in a robust fashion through dynamic boundary conditions.
Collapse
Affiliation(s)
- Arnd Scheel
- School of Mathematics, University of Minnesota, 206 Church St. S.E., Minneapolis, MN, 55455, USA.
| | - Angela Stevens
- Applied Mathematics, University of Münster (WWU), Einsteinstr. 62, D-48149, Münster, Germany
| | - Christoph Tenbrock
- Applied Mathematics, University of Münster (WWU), Einsteinstr. 62, D-48149, Münster, Germany
| |
Collapse
|
8
|
Reddy PC, Gungi A, Ubhe S, Galande S. Epigenomic landscape of enhancer elements during Hydra head organizer formation. Epigenetics Chromatin 2020; 13:43. [PMID: 33046126 PMCID: PMC7552563 DOI: 10.1186/s13072-020-00364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. RESULTS To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. CONCLUSIONS The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
9
|
Cartwright P, Travert MK, Sanders SM. The evolution and development of coloniality in hydrozoans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:293-299. [PMID: 32798274 DOI: 10.1002/jez.b.22996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Hydrozoan colonies display a variety of shapes and sizes including encrusting, upright, and pelagic forms. Phylogenetic patterns reveal a complex evolutionary history of these distinct colony forms, as well as colony loss. Within a species, phenotypic variation in colonies as a response to changing environmental cues and resources has been documented. The patterns of branching of colony specific tissue, called stolons in encrusting colonies and stalks in upright colonies, are likely under the control of signaling mechanisms whose changing expression in evolution and development are responsible for the diversity of hydrozoan colony forms. Although mechanisms of polyp development have been well studied, little research has focused on colony development and patterning. In the few studies that investigated mechanisms governing colony patterning, the Wnt signaling pathway has been implicated. The diversity of colony form, evolutionary patterns, and mechanisms of colony variation in Hydrozoa are reviewed here.
Collapse
Affiliation(s)
- Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas, USA
| | - Matthew K Travert
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas, USA
| | - Steven M Sanders
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Vonica A, Bhat N, Phan K, Guo J, Iancu L, Weber JA, Karger A, Cain JW, Wang ECE, DeStefano GM, O'Donnell-Luria AH, Christiano AM, Riley B, Butler SJ, Luria V. Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Dev Biol 2020; 464:71-87. [PMID: 32320685 PMCID: PMC7307705 DOI: 10.1016/j.ydbio.2020.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease.
Collapse
Affiliation(s)
- Alin Vonica
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Biology, The Nazareth College, Rochester, NY, 14618, USA
| | - Neha Bhat
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Keith Phan
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Jinbai Guo
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA
| | - Lăcrimioara Iancu
- Institut für Algebra und Zahlentheorie, Universität Stuttgart, D-70569, Stuttgart, Germany; Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Jessica A Weber
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, 02115, USA
| | - John W Cain
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA
| | - Etienne C E Wang
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gina M DeStefano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Angela M Christiano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Bruce Riley
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA.
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA.
| | - Victor Luria
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Sanders SM, Travert MK, Cartwright P. Frizzled3 expression and colony development in hydractiniid hydrozoans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:311-317. [PMID: 32638544 DOI: 10.1002/jez.b.22980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/11/2022]
Abstract
Hydractiniid hydrozoan colonies are comprised of individual polyps connected by tube-like stolons or a sheet-like mat. Mat and stolons function to integrate the colony through continuous epithelia and shared gastrovascular cavity. Although mechanisms of hydrozoan polyp development have been well studied, little is known about the signaling processes governing the patterning of colonies. Here we investigate the Wnt receptor family Frizzled. Phylogenetic analysis reveals that hydrozoans possess four Frizzled orthologs. We find that one of these genes, Frizzled3, shows a spatially restricted expression pattern in colony-specific tissue in two hydractiniid hydrozoans, Hydractinia symbiolongicarpus and Podocoryna carnea, in a manner that corresponds to their distinct colony forms (stolonal mat in Hydractinia and free stolons in Podocoryna). Interestingly, Frizzled3 was lost in the genome of Hydra, which is a solitary polyp and thus lacks colony-specific tissue. Current evidence suggests that the Wnt signaling pathway plays a key role in the evolution of colony diversity and colony loss in Hydrozoa.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas.,Thomas E. Starzl Transplantation Institute and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew K Travert
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas
| |
Collapse
|
12
|
DuBuc TQ, Schnitzler CE, Chrysostomou E, McMahon ET, Febrimarsa, Gahan JM, Buggie T, Gornik SG, Hanley S, Barreira SN, Gonzalez P, Baxevanis AD, Frank U. Transcription factor AP2 controls cnidarian germ cell induction. Science 2020; 367:757-762. [PMID: 32054756 PMCID: PMC7025884 DOI: 10.1126/science.aay6782] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022]
Abstract
Clonal animals do not sequester a germ line during embryogenesis. Instead, they have adult stem cells that contribute to somatic tissues or gametes. How germ fate is induced in these animals, and whether this process is related to bilaterian embryonic germline induction, is unknown. We show that transcription factor AP2 (Tfap2), a regulator of mammalian germ lines, acts to commit adult stem cells, known as i-cells, to the germ cell fate in the clonal cnidarian Hydractinia symbiolongicarpus Tfap2 mutants lacked germ cells and gonads. Transplanted wild-type cells rescued gonad development but not germ cell induction in Tfap2 mutants. Forced expression of Tfap2 in i-cells converted them to germ cells. Therefore, Tfap2 is a regulator of germ cell commitment across germ line-sequestering and germ line-nonsequestering animals.
Collapse
Affiliation(s)
- Timothy Q DuBuc
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eleni Chrysostomou
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Emma T McMahon
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Febrimarsa
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - James M Gahan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tara Buggie
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Shirley Hanley
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Sofia N Barreira
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Gonzalez
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uri Frank
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
13
|
Condamine T, Jager M, Leclère L, Blugeon C, Lemoine S, Copley RR, Manuel M. Molecular characterisation of a cellular conveyor belt in Clytia medusae. Dev Biol 2019; 456:212-225. [PMID: 31509769 DOI: 10.1016/j.ydbio.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/29/2019] [Accepted: 09/07/2019] [Indexed: 11/25/2022]
Abstract
The tentacular system of Clytia hemisphaerica medusa (Cnidaria, Hydrozoa) has recently emerged as a promising experimental model to tackle the developmental mechanisms that regulate cell lineage progression in an early-diverging animal phylum. From a population of proximal stem cells, the successive steps of tentacle stinging cell (nematocyte) elaboration, are spatially ordered along a "cellular conveyor belt". Furthermore, the C. hemisphaerica tentacular system exhibits bilateral organisation, with two perpendicular polarity axes (proximo-distal and oral-aboral). We aimed to improve our knowledge of this cellular system by combining RNAseq-based differential gene expression analyses and expression studies of Wnt signalling genes. RNAseq comparisons of gene expression levels were performed (i) between the tentacular system and a control medusa deprived of all tentacles, nematogenic sites and gonads, and (ii) between three samples staggered along the cellular conveyor belt. The behaviour in these differential expression analyses of two reference gene sets (stem cell genes; nematocyte genes), as well as the relative representations of selected gene ontology categories, support the validity of the cellular conveyor belt model. Expression patterns obtained by in situ hybridisation for selected highly differentially expressed genes and for Wnt signalling genes are largely consistent with the results from RNAseq. Wnt signalling genes exhibit complex spatial deployment along both polarity axes of the tentacular system, with the Wnt/β-catenin pathway probably acting along the oral-aboral axis rather than the proximo-distal axis. These findings reinforce the idea that, despite overall radial symmetry, cnidarians have a full potential for elaboration of bilateral structures based on finely orchestrated deployment of an ancient developmental gene toolkit.
Collapse
Affiliation(s)
- Thomas Condamine
- Sorbonne Université, MNHN, CNRS, EPHE, Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Paris, France
| | - Muriel Jager
- Sorbonne Université, MNHN, CNRS, EPHE, Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Paris, France
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, 181 chemin du Lazaret, 06230, Villefranche-sur-mer, France
| | - Corinne Blugeon
- Genomic Paris Centre, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Sophie Lemoine
- Genomic Paris Centre, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, 181 chemin du Lazaret, 06230, Villefranche-sur-mer, France
| | - Michaël Manuel
- Sorbonne Université, MNHN, CNRS, EPHE, Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Paris, France.
| |
Collapse
|
14
|
Abstract
Bilaterality – the possession of two orthogonal body axes – is the name-giving trait of all bilaterian animals. These body axes are established during early embryogenesis and serve as a three-dimensional coordinate system that provides crucial spatial cues for developing cells, tissues, organs and appendages. The emergence of bilaterality was a major evolutionary transition, as it allowed animals to evolve more complex body plans. Therefore, how bilaterality evolved and whether it evolved once or several times independently is a fundamental issue in evolutionary developmental biology. Recent findings from non-bilaterian animals, in particular from Cnidaria, the sister group to Bilateria, have shed new light into the evolutionary origin of bilaterality. Here, we compare the molecular control of body axes in radially and bilaterally symmetric cnidarians and bilaterians, identify the minimal set of traits common for Bilateria, and evaluate whether bilaterality arose once or more than once during evolution.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
15
|
Kraus YA, Markov AV. Gastrulation in Cnidaria: The key to an understanding of phylogeny or the chaos of secondary modifications? ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079086417010029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Rentzsch F, Layden M, Manuel M. The cellular and molecular basis of cnidarian neurogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27882698 PMCID: PMC6680159 DOI: 10.1002/wdev.257] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete‐scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 This article is categorized under:
Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Organ System Comparisons Between Species
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Michaël Manuel
- Sorbonne Universités, UMPC Univ Paris 06, CNRS, Evolution Paris-Seine, Institut de Biologie Paris-Seine (IBPS), Paris, France
| |
Collapse
|
17
|
Leclère L, Bause M, Sinigaglia C, Steger J, Rentzsch F. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8. Development 2016; 143:1766-77. [PMID: 26989171 PMCID: PMC4874479 DOI: 10.1242/dev.120931] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/08/2016] [Indexed: 01/25/2023]
Abstract
The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella.
Collapse
Affiliation(s)
- Lucas Leclère
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 181 chemin du Lazaret, Villefranche-sur-mer 06230, France
| | - Markus Bause
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Chiara Sinigaglia
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Julia Steger
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| |
Collapse
|
18
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
19
|
Sanders SM, Cartwright P. Patterns of Wnt signaling in the life cycle of Podocoryna carnea and its implications for medusae evolution in Hydrozoa (Cnidaria). Evol Dev 2015; 17:325-36. [PMID: 26487183 DOI: 10.1111/ede.12165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrozoans are known for their complex life cycles, alternating between benthic, asexually reproducing polyps and pelagic, sexually reproducing medusae. Although patterning in hydrozoan polyps has been well studied, little is known about the signaling mechanisms governing medusa development. In order to investigate the role of Wnt signaling in medusa development, we use RNA-Seq data collected from three discrete life cycle stages of Podocoryna carnea to assemble, annotate, and assess enrichment and differential expression (DE) of Wnt pathway elements in P. carnea's transcriptome. Enrichment analyses revealed a statistically significant enrichment of DE Wnt signaling transcripts in the transcriptome of P. carnea, of which, the vast majority of these were significantly up-regulated in developing and adult medusae stages. Whole mount in situ hybridization (ISH) reveals co-expression of the Wnt ligand, Wnt3, and a membrane bound Wnt receptor, frizzled3, at the distal and oral ends of the developmental axes of medusae and polyps in P. carnea. DE and ISH results presented here reveal expression of Wnt signaling components consistent with it playing a role in medusa development. Specifically, Wnt ligand expression in the oral region suggests that the Wnt pathway may play a role in medusa patterning, similar to that of polyps. Previous Wnt expression studies in hydrozoan taxa with reduced medusa have failed to detect co-expression of Wnt3 and a frizzled receptor at their truncated developmental axes, suggesting that down regulation of Wnt pathway elements may play a key role in the loss of the medusa life cycle stage in hydrozoan evolution.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
20
|
Abstract
The non-bilaterian animals comprise organisms in the phyla Porifera, Cnidaria, Ctenophora and Placozoa. These early-diverging phyla are pivotal to understanding the evolution of bilaterian animals. After the exponential increase in research in evolutionary development (evo-devo) in the last two decades, these organisms are again in the spotlight of evolutionary biology. In this work, I briefly review some aspects of the developmental biology of nonbilaterians that contribute to understanding the evolution of development and of the metazoans. The evolution of the developmental genetic toolkit, embryonic polarization, the origin of gastrulation and mesodermal cells, and the origin of neural cells are discussed. The possibility that germline and stem cell lineages have the same origin is also examined. Although a considerable number of non-bilaterian species are already being investigated, the use of species belonging to different branches of non-bilaterian lineages and functional experimentation with gene manipulation in the majority of the non-bilaterian lineages will be necessary for further progress in this field.
Collapse
Affiliation(s)
- Emilio Lanna
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal da Bahia, Salvador, BA, Brazil
| |
Collapse
|
21
|
Sanders SM, Cartwright P. Interspecific Differential Expression Analysis of RNA-Seq Data Yields Insight into Life Cycle Variation in Hydractiniid Hydrozoans. Genome Biol Evol 2015; 7:2417-31. [PMID: 26251524 PMCID: PMC4558869 DOI: 10.1093/gbe/evv153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/25/2022] Open
Abstract
Hydrozoans are known for their complex life cycles, which can alternate between an asexually reproducing polyp stage and a sexually reproducing medusa stage. Most hydrozoan species, however, lack a free-living medusa stage and instead display a developmentally truncated form, called a medusoid or sporosac, which generally remains attached to the polyp. Although evolutionary transitions in medusa truncation and loss have been investigated phylogenetically, little is known about the genes involved in the development and loss of this life cycle stage. Here, we present a new workflow for evaluating differential expression (DE) between two species using short read Illumina RNA-seq data. Through interspecific DE analyses between two hydractiniid hydrozoans, Hydractinia symbiolongicarpus and Podocoryna carnea, we identified genes potentially involved in the developmental, functional, and morphological differences between the fully developed medusa of P. carnea and reduced sporosac of H. symbiolongicarpus. A total of 10,909 putative orthologs of H. symbiolongicarpus and P. carnea were identified from de novo assemblies of short read Illumina data. DE analysis revealed 938 of these are differentially expressed between P. carnea developing and adult medusa, when compared with H. symbiolongicarpus sporosacs, the majority of which have not been previously characterized in cnidarians. In addition, several genes with no corresponding ortholog in H. symbiolongicarpus were expressed in developing medusa of P. carnea. Results presented here show interspecific DE analyses of RNA-seq data to be a sensitive and reliable method for identifying genes and gene pathways potentially involved in morphological and life cycle differences between species.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas
| |
Collapse
|
22
|
Bradshaw B, Thompson K, Frank U. Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata. eLife 2015; 4:e05506. [PMID: 25884246 PMCID: PMC4421858 DOI: 10.7554/elife.05506] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/16/2015] [Indexed: 12/12/2022] Open
Abstract
Cnidarians possess remarkable powers of regeneration, but the cellular and molecular mechanisms underlying this capability are unclear. Studying the hydrozoan Hydractinia echinata we show that a burst of stem cell proliferation occurs following decapitation, forming a blastema at the oral pole within 24 hr. This process is necessary for head regeneration. Knocking down Piwi1, Vasa, Pl10 or Ncol1 expressed by blastema cells inhibited regeneration but not blastema formation. EdU pulse-chase experiments and in vivo tracking of individual transgenic Piwi1+ stem cells showed that the cellular source for blastema formation is migration of stem cells from a remote area. Surprisingly, no blastema developed at the aboral pole after stolon removal. Instead, polyps transformed into stolons and then budded polyps. Hence, distinct mechanisms act to regenerate different body parts in Hydractinia. This model, where stem cell behavior can be monitored in vivo at single cell resolution, offers new insights for regenerative biology. DOI:http://dx.doi.org/10.7554/eLife.05506.001 Although all animals are capable of regenerating damaged tissue to some extent, a few—including jellyfish, coral, and their relatives—are able to regenerate entire lost body parts. Closely related species may have very different regeneration capabilities. This has led some researchers to propose that higher animals, such as mammals, still possess the ancient genes that allow entire body parts to regenerate, but that somehow the genes have been disabled during their evolution. Studying animals that can regenerate large parts of their bodies may therefore help scientists understand what prevents others, including humans, from doing so. An animal that is particularly useful for studies into regeneration is called Hydractinia echinata. These tiny marine animals make their homes on the shells of hermit crabs. They are small, transparent and stay fixed to one spot, making it easy for scientists to grow them in the laboratory and closely observe what is going on when they regenerate. Bradshaw et al. genetically engineered Hydractinia individuals to produce a fluorescent protein in their stem cells; these cells have the ability to become one of several kinds of mature cell, and often help to repair and grow tissues. This allowed the stem cells to be tracked using a microscope. When the head of Hydractinia was cut off, stem cells in the animals' mid body section migrated to the end where the head used to be and multiplied. These stem cells then created a bud (known as a blastema) that developed into a new, fully functional head within two days, allowing the animals to capture prey. Reducing the activity of certain stem cell genes prevented the new head from growing, but the bud still formed. Next, Bradshaw et al. removed a structure from the opposite end of the animal, called the stolon, which normally helps Hydractinia attach to hermit crabs shells. Stolons regenerated in a completely different way to heads. No bud formed. Instead, the remainder of the animal's body, which included the head and the body column, gradually transformed into a stolon rather than regenerating this structure, and only then grew a new body column and head. Therefore, different tissues in the same animal can regenerate in different ways. Understanding the ‘tricks’ used by animals like Hydractinia to regenerate may help translate these abilities to regenerative medicine. DOI:http://dx.doi.org/10.7554/eLife.05506.002
Collapse
Affiliation(s)
- Brian Bradshaw
- School of Natural Sciences and Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
| | - Uri Frank
- School of Natural Sciences and Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Organizer regions in marine colonial hydrozoans. ZOOLOGY 2015; 118:89-101. [DOI: 10.1016/j.zool.2014.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/20/2014] [Accepted: 12/21/2014] [Indexed: 01/08/2023]
|
24
|
Hemond EM, Kaluziak ST, Vollmer SV. The genetics of colony form and function in Caribbean Acropora corals. BMC Genomics 2014; 15:1133. [PMID: 25519925 PMCID: PMC4320547 DOI: 10.1186/1471-2164-15-1133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Results Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct “staghorn” versus “elkhorn” morphologies of these two sister species. Conclusions The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1133) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
|
26
|
Kraus Y, Flici H, Hensel K, Plickert G, Leitz T, Frank U. The embryonic development of the cnidarianHydractinia echinata. Evol Dev 2014; 16:323-38. [DOI: 10.1111/ede.12100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yulia Kraus
- Faculty of Biology; Lomonosov Moscow State University; Moscow Russia
| | - Hakima Flici
- School of Natural Sciences and Regenerative Medicine Institute; National University of Ireland; Galway Ireland
| | - Katrin Hensel
- School of Natural Sciences and Regenerative Medicine Institute; National University of Ireland; Galway Ireland
| | | | - Thomas Leitz
- Developmental Biology; University of Kaiserslautern; Kaiserslautern Germany
| | - Uri Frank
- School of Natural Sciences and Regenerative Medicine Institute; National University of Ireland; Galway Ireland
| |
Collapse
|
27
|
Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. Sci Rep 2014; 4:6534. [PMID: 25300304 PMCID: PMC4192642 DOI: 10.1038/srep06534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/06/2014] [Indexed: 11/08/2022] Open
Abstract
The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids.
Collapse
|
28
|
Lapébie P, Ruggiero A, Barreau C, Chevalier S, Chang P, Dru P, Houliston E, Momose T. Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidarian. PLoS Genet 2014; 10:e1004590. [PMID: 25233086 PMCID: PMC4169000 DOI: 10.1371/journal.pgen.1004590] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at "oral" and "aboral" poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes.
Collapse
Affiliation(s)
- Pascal Lapébie
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Antonella Ruggiero
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Carine Barreau
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Sandra Chevalier
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Patrick Chang
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Philippe Dru
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Tsuyoshi Momose
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| |
Collapse
|
29
|
Hensel K, Lotan T, Sanders SM, Cartwright P, Frank U. Lineage-specific evolution of cnidarian Wnt ligands. Evol Dev 2014; 16:259-69. [PMID: 25123972 DOI: 10.1111/ede.12089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have studied the evolution of Wnt genes in cnidarians and the expression pattern of all Wnt ligands in the hydrozoan Hydractinia echinata. Current views favor a scenario in which 12 Wnt sub-families were jointly inherited by cnidarians and bilaterians from their last common ancestor. Our phylogenetic analyses clustered all medusozoan genes in distinct, well-supported clades, but many orthologous relationships between medusozoan Wnts and anthozoan and bilaterian Wnt genes were poorly supported. Only seven anthozoan genes, Wnt2, Wnt4, Wnt5, Wnt6, Wnt 10, Wnt11, and Wnt16 were recovered with strong support with bilaterian genes and of those, only the Wnt2, Wnt5, Wnt11, and Wnt16 clades also included medusozoan genes. Although medusozoan Wnt8 genes clustered with anthozoan and bilaterian genes, this was not well supported. In situ hybridization studies revealed poor conservation of expression patterns of putative Wnt orthologs within Cnidaria. In polyps, only Wnt1, Wnt3, and Wnt7 were expressed at the same position in the studied cnidarian models Hydra, Hydractinia, and Nematostella. Different expression patterns are consistent with divergent functions. Our data do not fully support previous assertions regarding Wnt gene homology, and suggest a more complex history of Wnt family genes than previously suggested. This includes high rates of sequence divergence and lineage-specific duplications of Wnt genes within medusozoans, followed by functional divergence over evolutionary time scales.
Collapse
Affiliation(s)
- Katrin Hensel
- School of Natural Sciences and Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
30
|
Sanders SM, Shcheglovitova M, Cartwright P. Differential gene expression between functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus (Phylum Cnidaria). BMC Genomics 2014; 15:406. [PMID: 24884766 PMCID: PMC4072882 DOI: 10.1186/1471-2164-15-406] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023] Open
Abstract
Background A colony of the hydrozoan Hydractinia symbiolongicarpus comprises genetically identical yet morphologically distinct and functionally specialized polyp types. The main labor divisions are between feeding, reproduction and defense. In H. symbiolongicarpus, the feeding polyp (called a gastrozooid) has elongated tentacles and a mouth, which are absent in the reproductive polyp (gonozooid) and defensive polyp (dactylozooid). Instead, the dactylozooid has an extended body column with an abundance of stinging cells (nematocysts) and the gonozooid bears gonophores on its body column. Morphological differences between polyp types can be attributed to simple changes in their axial patterning during development, and it has long been hypothesized that these specialized polyps arose through evolutionary alterations in oral-aboral patterning of the ancestral gastrozooid. Results An assembly of 66,508 transcripts (>200 bp) were generated using short-read Illumina RNA-Seq libraries constructed from feeding, reproductive, and defensive polyps of H. symbiolongicarpus. Using several different annotation methods, approximately 54% of the transcripts were annotated. Differential expression analyses were conducted between these three polyp types to isolate genes that may be involved in functional, histological, and pattering differences between polyp types. Nearly 7 K transcripts were differentially expressed in a polyp-specific manner, including members of the homeodomain, myosin, toxin and BMP gene families. We report the spatial expression of a subset of these polyp-specific transcripts to validate our differential expression analyses. Conclusions While potentially originating through simple changes in patterning, polymorphic polyps in Hydractinia are the result of differentially expressed functional, structural, and patterning genes. The differentially expressed genes identified in our study provide a starting point for future investigations of the developmental patterning and functional differences that are displayed in the different polyp types that confer a division of labor within a colony of H. symbiolongicarpus. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-406) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | |
Collapse
|
31
|
Jager M, Dayraud C, Mialot A, Quéinnec E, le Guyader H, Manuel M. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS One 2013; 8:e84363. [PMID: 24391946 PMCID: PMC3877318 DOI: 10.1371/journal.pone.0084363] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Signalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/β-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular β-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures.
Collapse
Affiliation(s)
- Muriel Jager
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Cyrielle Dayraud
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Antoine Mialot
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Eric Quéinnec
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Hervé le Guyader
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| | - Michaël Manuel
- Systématique, Adaptation, Evolution, Unité Mixte de Recherche (UMR) 7138 CNRS (Centre National de la Recherche Scientifique), Université Pierre et Marie Curie – Paris 6, Paris, France
| |
Collapse
|
32
|
Nawrocki AM, Cartwright P. Expression of Wnt pathway genes in polyps and medusa-like structures ofEctopleura larynx(Cnidaria: Hydrozoa). Evol Dev 2013; 15:373-84. [DOI: 10.1111/ede.12045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Paulyn Cartwright
- The University of Kansas; 1200 Sunnyside Avenue; Lawrence KS 66045 USA
| |
Collapse
|
33
|
Marlow H, Matus DQ, Martindale MQ. Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis. Dev Biol 2013; 380:324-34. [PMID: 23722001 PMCID: PMC4792810 DOI: 10.1016/j.ydbio.2013.05.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/22/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
The primary axis of cnidarians runs from the oral pole to the apical tuft and defines the major body axis of both the planula larva and adult polyp. In the anthozoan cnidarian Nematostella vectensis, the primary oral-aboral (O-Ab) axis first develops during the early embryonic stage. Here, we present evidence that pharmaceutical activators of canonical wnt signaling affect molecular patterning along the primary axis of Nematostella. Although not overtly morphologically complex, molecular investigations in Nematostella reveal that the O-Ab axis is demarcated by the expression of differentially localized signaling molecules and transcription factors that may serve roles in establishing distinct ectodermal domains. We have further characterized the larval epithelium by determining the position of a nested set of molecular boundaries, utilizing several newly characterized as well as previously reported epithelial markers along the primary axis. We have assayed shifts in their position in control embryos and in embryos treated with the pharmacological agents alsterpaullone and azakenpaullone, Gsk3β inhibitors that act as canonical wnt agonists, and the Wnt antagonist iCRT14, following gastrulation. Agonist drug treatments result in an absence of aboral markers, a shift in the expression boundaries of oral markers toward the aboral pole, and changes in the position of differentially localized populations of neurons in a dose-dependent manner, while antagonist treatment had the opposite effect. These experiments are consistent with canonical wnt signaling playing a role in an orally localized wnt signaling center. These findings suggest that in Nematostella, wnt signaling mediates O-Ab ectodermal patterning across a surprisingly complex epithelium in planula stages following gastrulation in addition to previously described roles for the wnt signaling pathway in endomesoderm specification during gastrulation and overall animal-vegetal patterning at earlier stages of anthozoan development.
Collapse
|
34
|
Kanska J, Frank U. New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian. J Cell Sci 2013; 126:3192-203. [PMID: 23659997 DOI: 10.1242/jcs.127233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nanos is a pan-metazoan germline marker, important for germ cell development and maintenance. In flies, Nanos also acts in posterior and neural development, but these functions have not been demonstrated experimentally in other animals. Using the cnidarian Hydractinia we have uncovered novel roles for Nanos in neural cell fate determination. Ectopic expression of Nanos2 increased the numbers of embryonic stinging cell progenitors, but decreased the numbers of neurons. Downregulation of Nanos2 had the opposite effect. Furthermore, Nanos2 blocked maturation of committed, post-mitotic nematoblasts. Hence, Nanos2 acts as a switch between two differentiation pathways, increasing the numbers of nematoblasts at the expense of neuroblasts, but preventing nematocyte maturation. Nanos2 ectopic expression also caused patterning defects, but these were not associated with deregulation of Wnt signaling, showing that the basic anterior-posterior polarity remained intact, and suggesting that numerical imbalance between nematocytes and neurons might have caused these defects, affecting axial patterning only indirectly. We propose that the functions of Nanos in germ cells and in neural development are evolutionarily conserved, but its role in posterior patterning is an insect or arthropod innovation.
Collapse
Affiliation(s)
- Justyna Kanska
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | | |
Collapse
|
35
|
The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 2013; 11:e1001488. [PMID: 23483856 PMCID: PMC3586664 DOI: 10.1371/journal.pbio.1001488] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022] Open
Abstract
The origin of the bilaterian head is a fundamental question for the evolution of animal body plans. The head of bilaterians develops at the anterior end of their primary body axis and is the site where the brain is located. Cnidarians, the sister group to bilaterians, lack brain-like structures and it is not clear whether the oral, the aboral, or none of the ends of the cnidarian primary body axis corresponds to the anterior domain of bilaterians. In order to understand the evolutionary origin of head development, we analysed the function of conserved genetic regulators of bilaterian anterior development in the sea anemone Nematostella vectensis. We show that orthologs of the bilaterian anterior developmental genes six3/6, foxQ2, and irx have dynamic expression patterns in the aboral region of Nematostella. Functional analyses reveal that NvSix3/6 acts upstream of NvFoxQ2a as a key regulator of the development of a broad aboral territory in Nematostella. NvSix3/6 initiates an autoregulatory feedback loop involving positive and negative regulators of FGF signalling, which subsequently results in the downregulation of NvSix3/6 and NvFoxQ2a in a small domain at the aboral pole, from which the apical organ develops. We show that signalling by NvFGFa1 is specifically required for the development of the apical organ, whereas NvSix3/6 has an earlier and broader function in the specification of the aboral territory. Our functional and gene expression data suggest that the head-forming region of bilaterians is derived from the aboral domain of the cnidarian-bilaterian ancestor.
Collapse
|
36
|
Duffy DJ. Instructive reconstruction: a new role for apoptosis in pattern formation. Instructive apoptotic patterning establishes de novo tissue generation via the apoptosis linked production of morphogenic signals. Bioessays 2012; 34:561-4. [PMID: 22488101 DOI: 10.1002/bies.201200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apoptosis is not only involved in patterning by removal of tissue (destructive apoptotic patterning), but it can also function in signalling the site of de novo tissue generation via morphogenic signals (instructive apoptotic patterning).
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
37
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
38
|
A heat shock protein and Wnt signaling crosstalk during axial patterning and stem cell proliferation. Dev Biol 2011; 362:271-81. [PMID: 22155526 DOI: 10.1016/j.ydbio.2011.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/16/2011] [Accepted: 11/22/2011] [Indexed: 01/22/2023]
Abstract
Both Wnt signaling and heat shock proteins play important roles in development and disease. As such, they have been widely, though separately, studied. Here we show a link between a heat shock protein and Wnt signaling in a member of the basal phylum, Cnidaria. A heat shock at late gastrulation in the clonal marine hydrozoan, Hydractinia, interferes with axis development, specifically inhibiting head development, while aboral structures remain unaffected. The heat treatment upregulated Hsc71, a constitutive Hsp70 related gene, followed by a transient upregulation, and long-term downregulation, of Wnt signaling components. Downregulating Hsc71 by RNAi in heat-shocked animals rescued these defects, resulting in normal head development. Transgenic animals, ectopically expressing Hsc71, had similar developmental abnormalities as heat-shocked animals in terms of both morphology and Wnt3 expression. We also found that Hsc71 is upregulated in response to ectopic Wnt activation, but only in the context of stem cell proliferation and not in head development. Hsc71's normal expression is consistent with a conserved role in mitosis and apoptosis inhibition. Our results demonstrate a hitherto unknown crosstalk between heat shock proteins and Wnt/β-catenin signaling. This link likely has important implications in understanding normal development, congenital defects and cancer biology.
Collapse
|
39
|
Trevino M, Stefanik DJ, Rodriguez R, Harmon S, Burton PM. Induction of canonical Wnt signaling by alsterpaullone is sufficient for oral tissue fate during regeneration and embryogenesis in Nematostella vectensis. Dev Dyn 2011; 240:2673-9. [PMID: 22052821 DOI: 10.1002/dvdy.22774] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2011] [Indexed: 01/23/2023] Open
Abstract
Although regeneration is widespread among metazoa, the molecular mechanisms have been studied in only a handful of taxa. Of these taxa, fewer still are amenable to studies of embryogenesis. Our understanding of the evolution of regeneration, and its relation to embryogenesis, therefore remains limited. Using β-catenin as a marker, we investigated the role of canonical Wnt signaling during both regeneration and embryogenesis in the cnidarian Nematostella vectensis. The canonical Wnt signaling pathway is known to play a conserved role in primary axis patterning in triploblasts. Induction of Wnt signaling with alsterpaullone results in ectopic oral tissue during both regeneration and embryogenesis by specifically upregulating β-catenin expression, as measured by qRTPCR. Our data indicate that canonical Wnt signaling is sufficient for oral patterning during Nematostella regeneration and embryogenesis. These data also contribute to a growing body of literature indicating a conserved role for patterning mechanisms across various developmental modes of metazoans.
Collapse
Affiliation(s)
- Michael Trevino
- Biology Department, Wabash College, Crawfordsville, IN 47933, USA
| | | | | | | | | |
Collapse
|
40
|
Duffy DJ. Modulation of Wnt signaling: A route to speciation? Commun Integr Biol 2011; 4:59-61. [PMID: 21509180 DOI: 10.4161/cib.4.1.13712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
The Phylum Cnidaria diverged from the line leading to the Bilateria approximately 630 million years ago, making them well positioned to provide insights into the diversification of eumetazoan body plans and the molecular mechanisms by which body patterning is controlled.1,2 Our recent paper3 focused on Wnt-mediated axis formation during both metamorphosis and regeneration in the cnidarian Hydractinia echinata. We showed functionally that Wnt promotes oral and inhibits aboral development, as well as repressing the formation of additional Wnt-mediated oral organisers. It is possible to relate the role of Wnt in axial patterning to the broader question of how such a wide variety of body plans evolved from the eumetazoan ancestor, given the remarkably conserved genetic toolkit among metazoans. Our results demonstrate how even a slight initial change in a single gene's expression (temporal or spatial) could provide a radical body plan alteration on which natural selection may act and could eventually lead to the establishment of a new species.
Collapse
Affiliation(s)
- David J Duffy
- School of Natural Sciences and Martin Ryan Marine Science Institute; National University of Ireland; Galway, Ireland
| |
Collapse
|
41
|
Aranda M, Banaszak AT, Bayer T, Luyten JR, Medina M, Voolstra CR. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol Ecol 2011; 20:2955-72. [PMID: 21689186 DOI: 10.1111/j.1365-294x.2011.05153.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
42
|
Duffy DJ, Frank U. Modulation of COUP-TF expression in a cnidarian by ectopic Wnt signalling and allorecognition. PLoS One 2011; 6:e19443. [PMID: 21552541 PMCID: PMC3084292 DOI: 10.1371/journal.pone.0019443] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/29/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND COUP transcription factors are required for the regulation of gene expression underlying development, differentiation, and homeostasis. They have an evolutionarily conserved function, being a known marker for neurogenesis from cnidarians to vertebrates. A homologue of this gene was shown previously to be a neuronal and nematocyte differentiation marker in Hydra. However, COUP-TFs had not previously been studied in a colonial cnidarian. METHODOLOGY/PRINCIPAL FINDINGS We cloned a COUP-TF homologue from the colonial marine cnidarian Hydractinia echinata. Expression of the gene was analysed during normal development, allorecognition events and ectopic Wnt activation, using in situ hybridisation and quantitative PCR. During normal Hydractinia development, the gene was first expressed in post-gastrula stages. It was undetectable in larvae, and its mRNA was present again in putative differentiating neurons and nematocytes in post-metamorphic stages. Global activation of canonical Wnt signalling in adult animals resulted in the upregulation of COUP-TF. We also monitored a strong COUP-TF upregulation in stolons undergoing allogeneic interactions. COUP-TF mRNA was most concentrated in the tissues that contacted allogeneic, non-self tissues, and decreased in a gradient away from the contact area. Interestingly, the gene was transiently upregulated during initial contact of self stolons, but dissipated rapidly following self recognition, while in non-self contacts high expression levels were maintained. CONCLUSIONS/SIGNIFICANCE We conclude that COUP-TF is likely involved in neuronal/nematocyte differentiation in a variety of contexts. This has now been shown to include allorecognition, where COUP-TF is thought to have been co-opted to mediate allorejection by recruiting stinging cells that are the effectors of cytotoxic rejection of allogeneic tissue. Our findings that Wnt activation upregulates COUP-TF expression suggests that Wnts' role in neuronal differentiation could be mediated through COUP-TF.
Collapse
Affiliation(s)
- David J. Duffy
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Uri Frank
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
43
|
Kraus YA. Inductive activity of the posterior tip of planula in the marine hydroid Dynamena pumila. Russ J Dev Biol 2011. [DOI: 10.1134/s106236041102010x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Abstract
There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation.
Collapse
Affiliation(s)
- Ulrich Technau
- Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, Austria.
| | | |
Collapse
|
45
|
|
46
|
Duffy DJ, Plickert G, Kuenzel T, Tilmann W, Frank U. Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration. Development 2010; 137:3057-66. [DOI: 10.1242/dev.046631] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the role of Wnt signaling in axis formation during metamorphosis and regeneration in the cnidarian Hydractinia. Activation of Wnt downstream events during metamorphosis resulted in a complete oralization of the animals and repression of aboral structures (i.e. stolons). The expression of Wnt3, Tcf and Brachyury was upregulated and became ubiquitous. Rescue experiments using Tcf RNAi resulted in normal metamorphosis and quantitatively normal Wnt3 and Brachyury expression. Isolated, decapitated polyps regenerated only heads but no stolons. Activation of Wnt downstream targets in regenerating animals resulted in oralization of the polyps. Knocking down Tcf or Wnt3 by RNAi inhibited head regeneration and resulted in complex phenotypes that included ectopic aboral structures. Multiple heads then grew when the RNAi effect had dissipated. Our results provide functional evidence that Wnt promotes head formation but represses the formation of stolons, whereas downregulation of Wnt promotes stolons and represses head formation.
Collapse
Affiliation(s)
- David J. Duffy
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland, Galway, Galway, Ireland
| | - Günter Plickert
- Biozentrum Köln, University of Köln, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Timo Kuenzel
- Biozentrum Köln, University of Köln, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Wido Tilmann
- Biozentrum Köln, University of Köln, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Uri Frank
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
47
|
Houliston E, Momose T, Manuel M. Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet 2010; 26:159-67. [DOI: 10.1016/j.tig.2010.01.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 01/24/2010] [Accepted: 01/25/2010] [Indexed: 11/29/2022]
|
48
|
Freeman G. Is the remodeling of the polyp prepattern in a hydrozoan planula a function of larval age or size and is it of “adaptive” significance? ZOOLOGY 2009; 112:169-84. [DOI: 10.1016/j.zool.2008.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/16/2008] [Accepted: 07/16/2008] [Indexed: 11/28/2022]
|
49
|
Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc Natl Acad Sci U S A 2009; 106:4290-5. [PMID: 19237582 DOI: 10.1073/pnas.0812847106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In and evaginations of 2D cell sheets are major shape generating processes in animal development. They result from directed movement and intercalation of polarized cells associated with cell shape changes. Work on several bilaterian model organisms has emphasized the role of noncanonical Wnt signaling in cell polarization and movement. However, the molecular processes responsible for generating tissue and body shape in ancestral, prebilaterian animals are unknown. We show that noncanonical Wnt signaling acts in mass tissue movements during bud and tentacle evagination and regeneration in the cnidarian polyp Hydra. The wnt5, wnt8, frizzled2 (fz2), and dishevelled-expressing cell clusters define the positions, where bud and tentacle evaginations are initiated; wnt8, fz2, and dishevelled remain up-regulated in those epithelial cells, undergoing cell shape changes during the entire evagination process. Downstream of wnt and dsh expression, JNK activity is required for the evagination process. Multiple ectopic wnt5, wnt8, fz2, and dishevelled-expressing centers and the subsequent evagination of ectopic tentacles are induced throughout the body column by activation of Wnt/beta-Catenin signaling. Our results indicate that integration of axial patterning and tissue morphogenesis by the coordinated action of canonical and noncanonical Wnt pathways was crucial for the evolution of eumetazoan body plans.
Collapse
|
50
|
Manuel M. Early evolution of symmetry and polarity in metazoan body plans. C R Biol 2009; 332:184-209. [DOI: 10.1016/j.crvi.2008.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|