1
|
Evolutionarily conserved function of the even-skipped ortholog in insects revealed by gene knock-out analyses in Gryllus bimaculatus. Dev Biol 2022; 485:1-8. [DOI: 10.1016/j.ydbio.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022]
|
2
|
Setton EVW, Sharma PP. A conserved role for arrow in posterior axis patterning across Arthropoda. Dev Biol 2021; 475:91-105. [PMID: 33607111 DOI: 10.1016/j.ydbio.2021.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Segmentation is a key characteristic of Arthropoda that is linked to the evolutionary success of this lineage. It has previously been shown in both vertebrates and short germ insects that posterior segmentation requires canonical Wnt (cWnt) signaling, which maintains the expression of Caudal and the posterior growth zone; disruption of cWnt signaling incurs posterior truncations in these lineages due to the loss of the tail bud. However, comparable datasets for Wnt signaling are limited outside of holometabolous insects, due to incomparable phenotypic spectra and inefficacy of gene misexpression methods in certain model species. We applied RNA interference (RNAi) against the Wnt co-receptor arrow (arr), a key member of the cWnt signaling pathway in holometabolous insects and vertebrates, to examine posterior axis elongation of the cobweb spider Parasteatoda tepidariorum (short germ embryogenesis; one Wnt8 homolog), the cricket Gryllus bimaculatus (intermediate germ; one Wnt8 homolog), and the milkweed bug Oncopeltus fasciatus (short germ; two Wnt8 homologs). Knockdown of arr in insects resulted in posterior truncations affecting the gnathos through the abdomen in O. fasciatus, whereas posterior truncations only affected the T3 segment through the abdomen in G. bimaculatus. Spider embryos with disrupted arr expression exhibited defects along the entire axis, including segmentation defects throughout the germband. RNA-Seq-based differential gene expression analysis of severe Ptep-arr loss-of-function phenotypes at two developmental stages was used to confirm that knockdown of Ptep-arr results in systemic disruption of the Wnt pathway. Intriguingly, we found that knockdown of arr did not abrogate Wnt8 expression in any of the three species, with cad expression additionally retained in severe loss-of-function phenotypes in the cricket and the spider. Together with data from a holometabolous insect, our results suggest that cWnt signaling is not required for maintenance of Wnt8 expression across Arthropoda. These outcomes underscore the diagnostic power of differential gene expression analyses in characterizing catastrophic phenotypes in emerging model species.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| |
Collapse
|
3
|
Jeon H, Gim S, Na H, Choe CP. A pair-rule function of odd-skipped in germband stages of Tribolium development. Dev Biol 2020; 465:58-65. [PMID: 32687895 DOI: 10.1016/j.ydbio.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
While pair-rule patterning has been observed in most insects examined, the orthologs of Drosophila pair-rule genes have shown divergent roles in insect segmentation. In the beetle Tribolium castaneum, while odd-skipped (Tc-odd) was expressed as a series of pair-rule stripes, RNAi-mediated knockdown of Tc-odd (Tc-oddRNAi) resulted in severely truncated, almost asegmental phenotypes rather than the classical pair-rule phenotypes observed in germbands and larval cuticles. However, considering that most segments arise later in germband stages of Tribolium development, the roles of Tc-odd in segmentation of growing germbands could not be analyzed properly in the truncated Tc-oddRNAi germbands. Here, we investigated the segmentation function of Tc-odd in germband stages of Tribolium development by analyzing Tc-oddRNAi embryos that resumed germband extension. In the larval cuticles of Tc-oddRNAi embryos, normal mandibular and maxillary and loss of the labial segments were consistent in the head, whereas a broad range of segmentation defects including loss or fusion of thoracic and/or abdominal segments was observed in the trunk. Interestingly, a group of Tc-oddRNAi germbands showed pair-rule-like defects in the segmental stripes of the segment-polarity genes, engrailed, hedgehog, or wingless, in the abdominal regions. While the pair-rule genes even-skipped, runt, odd, and paired were misregulated in the growing Tc-oddRNAi germbands, paired expression required for odd-numbered segment formation was largely abolished, which might cause the pair-rule-like defects. Taken together, these findings suggest that Tc-odd can function as a pair-rule gene in the germband stages of Tribolium development.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sujeong Gim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyejee Na
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
4
|
O J, Choe CP. even-skipped acts as a pair-rule gene in germ band stages of Tribolium development. Dev Biol 2020; 462:1-6. [PMID: 32179089 DOI: 10.1016/j.ydbio.2020.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 01/04/2023]
Abstract
The pair-rule gene even-skipped (eve) is essential for insect segmentation, yet its function varies among insect clades. While loss of eve results in typical pair-rule phenotypes in Drosophila, knock-down of eve orthologs shows segmental, gap-like, or asegmental phenotypes in non-Drosophila insects. In Tribolium, knock-down of the eve ortholog (Tc-eve) resulted in a graded phenotypic series ranging from strong to weak, the most informative of which was intermediate phenotypes. The strong knock-down embryos displayed asegmental phenotypes and severely disorganized germ bands which have prevented determination of Tc-eve function in later stages. In order to understand the segmentation function of Tc-eve during later germ band elongation stages, we analyzed intermediate Tc-eveRNAi embryos in which germ band elongation was less affected. Most intermediate Tc-eveRNAi germ bands displayed segmentation defects with a double segmental periodicity in the abdomen. In these intermediate embryos, Tc-engrailed (Tc-en) stripes were ectopically expanded into large bands with a double segmental periodicity, while the remaining Tc-en stripes between the expanded Tc-en stripes were absent or barely formed. The expanded Tc-en stripes seemed to be activated by primary Tc-eve stripes and Tc-paired, both of which failed to resolve into secondary segmental stripes. The absence of Tc-en stripes appeared to be a consequence of the absence of the secondary stripes of Tc-runt that were required for the activation of Tc-en stripes. These results suggest that Tc-eve functions as a pair-rule gene at least in the germ band stages of Tribolium development.
Collapse
Affiliation(s)
- Jiyun O
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
5
|
Janssen R. The embryonic expression pattern of a second, hitherto unrecognized, paralog of the pair-rule gene sloppy-paired in the beetle Tribolium castaneum. Dev Genes Evol 2020; 230:247-256. [PMID: 32430691 PMCID: PMC7260273 DOI: 10.1007/s00427-020-00660-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
In the fly Drosophila melanogaster, a hierarchic segmentation gene cascade patterns the anterior-posterior body axis of the developing embryo. Within this cascade, the pair-rule genes (PRGs) transform the more uniform patterning of the higher-level genes into a metameric pattern that first represents double-segmental units, and then, in a second step, represents a true segmental pattern. Within the PRG network, primary PRGs regulate secondary PRGs that are directly involved in the regulation of the next lower level, the segment-polarity genes (SPGs). While the complement of primary PRGs is different in Drosophila and the beetle Tribolium, another arthropod model organism, both paired (prd) and sloppy-paired (slp), acts as secondary PRGs. In earlier studies, the interaction of PRGs and the role of the single slp ortholog in Tribolium have been investigated in some detail revealing conserved and diverged aspects of PRG function. In this study, I present the identification and the analysis of embryonic expression patterns of a second slp gene (called slp2) in Tribolium. While the previously identified gene, slp, is expressed in a typical PRG pattern, expression of slp2 is more similar to that of the downstream-acting SPGs, and shows expression similarities to slp2 in Drosophila. The previously reported differences between the function of slp in Drosophila and Tribolium may partially account for the function of the newly identified second slp paralog in Tribolium, and it may therefore be advised to conduct further studies on PRG function in the beetle.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
6
|
Lim J, Choe CP. Functional analysis of engrailed in Tribolium segmentation. Mech Dev 2019; 161:103594. [PMID: 31778794 DOI: 10.1016/j.mod.2019.103594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
The segment-polarity gene engrailed is required for segmentation in the early Drosophila embryo. Loss of Engrailed function results in segmentation defects that vary in severity from pair-rule phenotypes to a lawn phenotype lacking in obvious of segmentation. During segmentation, Engrailed is expressed in stripes with a single segmental periodicity in Drosophila, which is conserved in all arthropods examined so far. To define segments, the segmental stripes of Engrailed induce the segmental stripes of wingless at each parasegmental boundary. However, segmentation functions of orthologs of engrailed in non-Drosophila arthropods have yet to be reported. Here, we analyzed functions of the Tribolium ortholog of engrailed (Tc-engrailed) during embryonic segmentation. Larval cuticles with Tc-engrailed being knocked down had segmentation phenotypes including incomplete segment formation and loss of a group of segments. In agreement with the cuticle segmentation defects, segments developed incompletely and irregularly or did not form in Tribolium germbands where Tc-engrailed was knocked down. Furthermore, knock-down of Tc-engrailed did not properly express the segmental stripes of wingless in Tribolium germbands. Taken together with the conserved expression patterns of Engrailed in arthropod segmentation, our data suggest that Tc-engrailed is required for embryonic segmentation in Tribolium, and the genetic mechanism of Engrailed inducing wingless expression is conserved at least between Drosophila and Tribolium.
Collapse
Affiliation(s)
- Jinsung Lim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
7
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
8
|
Reding K, Chen M, Lu Y, Cheatle Jarvela AM, Pick L. Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Development 2019; 146:dev181453. [PMID: 31444220 PMCID: PMC6765130 DOI: 10.1242/dev.181453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
The discovery of pair-rule genes (PRGs) in Drosophila revealed the existence of an underlying two-segment-wide prepattern directing embryogenesis. The milkweed bug Oncopeltus fasciatus, a hemimetabolous insect, is a more representative arthropod: most of its segments form sequentially after gastrulation. Here, we report the expression and function of orthologs of the complete set of nine Drosophila PRGs in Oncopeltus Seven Of-PRG-orthologs are expressed in stripes in the primordia of every segment, rather than every other segment; Of-runt is PR-like and several orthologs are also expressed in the segment addition zone. RNAi-mediated knockdown of Of-odd-skipped, paired and sloppy-paired impacted all segments, with no indication of PR-like register. We confirm that Of-E75A is expressed in PR-like stripes, although it is not expressed in this way in Drosophila, demonstrating the existence of an underlying PR-like prepattern in Oncopeltus These findings reveal that a switch occurred in regulatory circuits, leading to segment formation: while several holometabolous insects are 'Drosophila-like', using PRG orthologs for PR patterning, most Of-PRGs are expressed segmentally in Oncopeltus, a more basally branching insect. Thus, an evolutionarily stable phenotype - segment formation - is directed by alternate regulatory pathways in diverse species.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Mengyao Chen
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Yong Lu
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Alys M Cheatle Jarvela
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Ventos-Alfonso A, Ylla G, Belles X. Zelda and the maternal-to-zygotic transition in cockroaches. FEBS J 2019; 286:3206-3221. [PMID: 30993896 DOI: 10.1111/febs.14856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
In the endopterygote Drosophila melanogaster, Zelda is an activator of the zygotic genome during the maternal-to-zygotic transition (MZT). Zelda binds cis-regulatory elements (TAGteam heptamers), making chromatin accessible for gene transcription. Zelda has been studied in other endopterygotes: Apis mellifera and Tribolium castaneum, and the paraneopteran Rhodnius prolixus. We studied Zelda in the cockroach Blattella germanica, a hemimetabolan, short germ-band, and polyneopteran species. B. germanica Zelda has the complete set of functional domains, which is typical of species displaying ancestral features concerning embryogenesis. Interestingly, we found D. melanogaster TAGteam heptamers in the B. germanica genome. The canonical one, CAGGTAG, is present at a similar proportion in the genome of these two species and in the genome of other insects, suggesting that the genome admits as many CAGGTAG motifs as its length allows. Zelda-depleted embryos of B. germanica show defects involving blastoderm formation and abdomen development, and genes contributing to these processes are down-regulated. We conclude that in B. germanica, Zelda strictly activates the zygotic genome, within the MZT, a role conserved in more derived endopterygote insects. In B. germanica, zelda is expressed during MZT, whereas in D. melanogaster and T. castaneum it is expressed beyond this transition. In these species and A. mellifera, Zelda has functions even in postembryonic development. The expansion of zelda expression beyond the MZT in endopterygotes might be related with the evolutionary innovation of holometabolan metamorphosis. DATABASES: The RNA-seq datasets of B. germanica, D. melanogaster, and T. castaneum are accessible at the GEO databases GSE99785, GSE18068, GSE63770, and GSE84253. In addition, the RNA-seq library from T. castaneum adult females is available at SRA: SRX021963. The B. germanica reference genome is available as BioProject PRJNA203136.
Collapse
Affiliation(s)
- Alba Ventos-Alfonso
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
10
|
Auman T, Chipman AD. Growth zone segmentation in the milkweed bug Oncopeltus fasciatus sheds light on the evolution of insect segmentation. BMC Evol Biol 2018; 18:178. [PMID: 30486779 PMCID: PMC6262967 DOI: 10.1186/s12862-018-1293-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/12/2018] [Indexed: 11/12/2022] Open
Abstract
Background One of the best studied developmental processes is the Drosophila segmentation cascade. However, this cascade is generally considered to be highly derived and unusual, with segments being patterned simultaneously, rather than the ancestral sequential segmentation mode. We present a detailed analysis of the segmentation cascade of the milkweed bug Oncopletus fasciatus, an insect with a more primitive segmentation mode, as a comparison to Drosophila, with the aim of reconstructing the evolution of insect segmentation modes. Results We document the expression of 12 genes, representing different phases in the segmentation process. Using double staining we reconstruct the spatio-temporal relationships among these genes. We then show knock-down phenotypes of representative genes in order to uncover their roles and position in the cascade. Conclusions We conclude that sequential segmentation in the Oncopeltus germband includes three slightly overlapping phases: Primary pair-rule genes generate the first segmental gene expression in the anterior growth zone. This pattern is carried anteriorly by a series of secondary pair-rule genes, expressed in the transition between the growth zone and the segmented germband. Segment polarity genes are expressed in the segmented germband with conserved relationships. Unlike most holometabolous insects, this process generates a single-segment periodicity, and does not have a double-segment pattern at any stage. We suggest that the evolutionary transition to double-segment patterning lies in mutually exclusive expression patterns of secondary pair-rule genes. The fact that many aspects of the putative Oncopeltus segmentation network are similar to those of Drosophila, is consistent with a simple transition between sequential and simultaneous segmentation. Electronic supplementary material The online version of this article (10.1186/s12862-018-1293-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tzach Auman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.
| |
Collapse
|
11
|
Clark E, Peel AD. Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors. Development 2018; 145:dev.155580. [PMID: 29724758 PMCID: PMC6001374 DOI: 10.1242/dev.155580] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/25/2018] [Indexed: 01/20/2023]
Abstract
Long-germ insects, such as the fruit fly Drosophila melanogaster, pattern their segments simultaneously, whereas short-germ insects, such as the beetle Tribolium castaneum, pattern their segments sequentially, from anterior to posterior. While the two modes of segmentation at first appear quite distinct, much of this difference might simply reflect developmental heterochrony. We now show here that, in both Drosophila and Tribolium, segment patterning occurs within a common framework of sequential Caudal, Dichaete, and Odd-paired expression. In Drosophila these transcription factors are expressed like simple timers within the blastoderm, while in Tribolium they form wavefronts that sweep from anterior to posterior across the germband. In Drosophila, all three are known to regulate pair-rule gene expression and influence the temporal progression of segmentation. We propose that these regulatory roles are conserved in short-germ embryos, and that therefore the changing expression profiles of these genes across insects provide a mechanistic explanation for observed differences in the timing of segmentation. In support of this hypothesis we demonstrate that Odd-paired is essential for segmentation in Tribolium, contrary to previous reports.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, UK
| | - Andrew D Peel
- Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
12
|
Xiang J, Reding K, Heffer A, Pick L. Conservation and variation in pair-rule gene expression and function in the intermediate-germ beetle Dermestes maculatus. Development 2017; 144:4625-4636. [PMID: 29084804 DOI: 10.1242/dev.154039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023]
Abstract
A set of pair-rule (PR) segmentation genes (PRGs) promotes the formation of alternate body segments in Drosophila melanogaster Whereas Drosophila embryos are long-germ, with segments specified more or less simultaneously, most insects add segments sequentially as the germband elongates. The hide beetle Dermestes maculatus represents an intermediate between short- and long-germ development, ideal for comparative study of PRGs. We show that eight of nine Drosophila PRG orthologs are expressed in stripes in Dermestes Functional results parse these genes into three groups: Dmac-eve, -odd and -run play roles in both germband elongation and PR patterning; Dmac-slp and -prd function exclusively as complementary, classic PRGs, supporting functional decoupling of elongation and segment formation; and orthologs of ftz, ftz-f1, h and opa show more variable function in Dermestes and other species. While extensive cell death generally prefigured Dermestes PRG RNAi-mediated cuticle defects, an organized region with high mitotic activity near the margin of the segment addition zone is likely to have contributed to truncation of eveRNAi embryos. Our results suggest general conservation of clock-like regulation of PR stripe addition in sequentially segmenting species while highlighting regulatory rewiring involving a subset of PRG orthologs.
Collapse
Affiliation(s)
- Jie Xiang
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| | - Katie Reding
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Alison Heffer
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA .,Department of Entomology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Liao BK, Oates AC. Delta-Notch signalling in segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:429-447. [PMID: 27888167 PMCID: PMC5446262 DOI: 10.1016/j.asd.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Andrew C Oates
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Williams TA, Nagy LM. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:380-394. [PMID: 27720841 DOI: 10.1016/j.asd.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation.
Collapse
Affiliation(s)
| | - Lisa M Nagy
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
15
|
Janssen R. A molecular view of onychophoran segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:341-353. [PMID: 27725255 DOI: 10.1016/j.asd.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
16
|
Auman T, Vreede BMI, Weiss A, Hester SD, Williams TA, Nagy LM, Chipman AD. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus. Development 2017; 144:1896-1905. [PMID: 28432218 PMCID: PMC5450833 DOI: 10.1242/dev.142091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/10/2017] [Indexed: 01/19/2023]
Abstract
We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus. We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. Summary: A detailed analysis of posterior segment addition in an insect reveals that the growth zone is divided into two functional domains responsible for growth and differentiation.
Collapse
Affiliation(s)
- Tzach Auman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Aryeh Weiss
- Faculty of Engineering and The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat Gan 52900, Israel.,Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Susan D Hester
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | | | - Lisa M Nagy
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| |
Collapse
|
17
|
Xiang J, Reding K, Pick L. Rearing and Double-stranded RNA-mediated Gene Knockdown in the Hide Beetle, Dermestes maculatus. J Vis Exp 2016. [PMID: 28060304 DOI: 10.3791/54976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Advances in genomics have raised the possibility of probing biodiversity at an unprecedented scale. However, sequence alone will not be informative without tools to study gene function. The development and sharing of detailed protocols for the establishment of new model systems in laboratories, and for tools to carry out functional studies, is thus crucial for leveraging the power of genomics. Coleoptera (beetles) are the largest clade of insects and occupy virtually all types of habitats on the planet. In addition to providing ideal models for fundamental research, studies of beetles can have impacts on pest control as they are often pests of households, agriculture, and food industries. Detailed protocols for rearing and maintenance of D. maculatus laboratory colonies and for carrying out dsRNA-mediated interference in D. maculatus are presented. Both embryonic and parental RNAi procedures-including apparatus set up, preparation, injection, and post-injection recovery-are described. Methods are also presented for analyzing embryonic phenotypes, including viability, patterning defects in hatched larvae, and cuticle preparations for unhatched larvae. These assays, together with in situ hybridization and immunostaining for molecular markers, make D. maculatus an accessible model system for basic and applied research. They further provide useful information for establishing procedures in other emerging insect model systems.
Collapse
Affiliation(s)
- Jie Xiang
- Entomology Department, University of Maryland; Program in Molecular and Cell Biology, University of Maryland
| | | | - Leslie Pick
- Entomology Department, University of Maryland; Program in Molecular and Cell Biology, University of Maryland;
| |
Collapse
|
18
|
Clark E, Akam M. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network. eLife 2016; 5:e18215. [PMID: 27525481 PMCID: PMC5035143 DOI: 10.7554/elife.18215] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023] Open
Abstract
The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Toll Genes Have an Ancestral Role in Axis Elongation. Curr Biol 2016; 26:1609-1615. [DOI: 10.1016/j.cub.2016.04.055] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
|
20
|
Schönauer A, Paese CLB, Hilbrant M, Leite DJ, Schwager EE, Feitosa NM, Eibner C, Damen WGM, McGregor AP. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum. Development 2016; 143:2455-63. [DOI: 10.1242/dev.131656] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022]
Abstract
In short germ arthropods, posterior segments are added sequentially from a growth zone or segment addition zone (SAZ) during embryogenesis. Studies in spiders such as the common house spider, Parasteatoda tepidariorum, have provided insights into the gene regulatory network (GRN) that underlies the development of the SAZ, and revealed the involvement of two important signalling pathways. It was shown that Wnt8 maintains a pool of undifferentiated cells in the SAZ, but this ligand is also required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and subsequently regulate segment addition. Here we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of the segmentation genes even-skipped (eve) and runt-1 (run-1), at least in part via the transcription factor encoded by caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium. Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but not sufficient to regulate the expression of the pair-rule genes eve and run-1. Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods including insects.
Collapse
Affiliation(s)
- Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Christian L. B. Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Daniel J. Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Evelyn E. Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside St., Lowell, MA 01854, USA
| | - Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Universidade Federal do Rio de Janeiro- UFRJ/NUPEM-Campus Macaé
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Wim G. M. Damen
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
21
|
Xiang J, Forrest IS, Pick L. Dermestes maculatus: an intermediate-germ beetle model system for evo-devo. EvoDevo 2015; 6:32. [PMID: 26478804 PMCID: PMC4609124 DOI: 10.1186/s13227-015-0028-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding how genes change during evolution to direct the development of diverse body plans is a major goal of the evo-devo field. Achieving this will require the establishment of new model systems that represent key points in phylogeny. These new model systems must be amenable to laboratory culture, and molecular and functional approaches should be feasible. To date, studies of insects have been best represented by the model system Drosophila melanogaster. Given the enormous diversity represented by insect taxa, comparative studies within this clade will provide a wealth of information about the evolutionary potential and trajectories of alternative developmental strategies. RESULTS Here we established the beetle Dermestes maculatus, a member of the speciose clade Coleoptera, as a new insect model system. We have maintained a continuously breeding culture in the lab and documented Dermestes maculatus embryogenesis using nuclear and phalloidin staining. Anterior segments are specified during the blastoderm stage before gastrulation, and posterior segments are added sequentially during germ band elongation. We isolated and studied the expression and function of the pair-rule segmentation gene paired in Dermestes maculatus. In this species, paired is expressed in stripes during both blastoderm and germ band stages: four primary stripes arise prior to gastrulation, confirming an intermediate-germ mode of development for this species. As in other insects, these primary stripes then split into secondary stripes. To study gene function, we established both embryonic and parental RNAi. Knockdown of Dmac-paired with either method resulted in pair-rule-like segmentation defects, including loss of Engrailed expression in alternate stripes. CONCLUSIONS These studies establish basic approaches necessary to use Dermestes maculatus as a model system. Methods are now available for use of this intermediate-germ insect for future studies of the evolution of regulatory networks controlling insect segmentation, as well as of other processes in development and homeostasis. Consistent with the role of paired in long-germ Drosophila and shorter-germ Tribolium, paired functions as a pair-rule segmentation gene in Dermestes maculatus. Thus, paired retains pair-rule function in insects with different modes of segment addition.
Collapse
Affiliation(s)
- Jie Xiang
- />Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
- />Program in Molecular and Cell Biology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
| | - Iain S. Forrest
- />Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
| | - Leslie Pick
- />Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
- />Program in Molecular and Cell Biology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 USA
| |
Collapse
|
22
|
Matsuoka Y, Bando T, Watanabe T, Ishimaru Y, Noji S, Popadić A, Mito T. Short germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes. Biol Open 2015; 4:702-9. [PMID: 25948756 PMCID: PMC4467190 DOI: 10.1242/bio.201411064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes.
Collapse
Affiliation(s)
- Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Tetsuya Bando
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan Present address: Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Takahito Watanabe
- Center for Collaboration among Agriculture, Industry and Commerce, The University of Tokushima, 2-24 Shinkura-cho, Tokushima City, Tokushima 770-8501, Japan
| | - Yoshiyasu Ishimaru
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Sumihare Noji
- Center for Collaboration among Agriculture, Industry and Commerce, The University of Tokushima, 2-24 Shinkura-cho, Tokushima City, Tokushima 770-8501, Japan
| | - Aleksandar Popadić
- Biological Sciences Department, Wayne State University, Detroit, MI 48202, USA
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| |
Collapse
|
23
|
Donoughe S, Extavour CG. Embryonic development of the cricket Gryllus bimaculatus. Dev Biol 2015; 411:140-56. [PMID: 25907229 DOI: 10.1016/j.ydbio.2015.04.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Extensive research into Drosophila melanogaster embryogenesis has improved our understanding of insect developmental mechanisms. However, Drosophila development is thought to be highly divergent from that of the ancestral insect and arthropod in many respects. We therefore need alternative models for arthopod development that are likely to be more representative of basally-branching clades. The cricket Gryllus bimaculatus is such a model, and currently has the most sophisticated functional genetic toolkit of any hemimetabolous insect. The existing cricket embryonic staging system is fragmentary, and it is based on morphological landmarks that are not easily visible on a live, undissected egg. To address this problem, here we present a complementary set of "egg stages" that serve as a guide for identifying the developmental progress of a cricket embryo from fertilization to hatching, based solely on the external appearance of the egg. These stages were characterized using a combination of brightfield timelapse microscopy, timed brightfield micrographs, confocal microscopy, and measurements of egg dimensions. These egg stages are particularly useful in experiments that involve egg injection (including RNA interference, targeted genome modification, and transgenesis), as injection can alter the speed of development, even in control treatments. We also use 3D reconstructions of fixed embryo preparations to provide a comprehensive description of the morphogenesis and anatomy of the cricket embryo during embryonic rudiment assembly, germ band formation, elongation, segmentation, and appendage formation. Finally, we aggregate and schematize a variety of published developmental gene expression patterns. This work will facilitate further studies on G. bimaculatus development, and serve as a useful point of reference for other studies of wild type and experimentally manipulated insect development in fields from evo-devo to disease vector and pest management.
Collapse
Affiliation(s)
- Seth Donoughe
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States
| | - Cassandra G Extavour
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States; Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States.
| |
Collapse
|
24
|
Sucena É, Vanderberghe K, Zhurov V, Grbić M. Reversion of developmental mode in insects: evolution from long germband to short germband in the polyembrionic wasp Macrocentrus cingulum Brischke. Evol Dev 2014; 16:233-46. [PMID: 24981069 DOI: 10.1111/ede.12086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Germband size in insects has played a central role in our understanding of insect patterning mechanisms and their evolution. The polarity of evolutionary change in insect patterning has been viewed so far as the unidirectional shift from the ancestral short germband patterning of basal hemimetabolous insects to the long germband patterning observed in most modern Holometabola. However, some orders of holometabolic insects display both short and long germband development, though the absence of a clear phylogenetic context does not permit definite conclusions on the polarity of change. Derived hymenoptera, that is, bees and wasps, represent a classical textbook example of long germband development. Yet, in some wasps putative short germband development has been described correlating with lifestyle changes, namely with evolution of endoparasitism and polyembryony. To address the potential reversion from long to short germband, we focused on the family Braconidae, which displays ancestral long germband development, and examined the derived polyembryonic braconid Macrocentrus cingulum. Using SEM analysis of M. cingulum embryogenesis coupled with analyses of embryonic patterning markers, we show that this wasp evolved short germband embryogenesis secondarily, in a way that is reminiscent of embryogenesis in the beetle Tribolium castaneum. This work shows that the evolution of germband size in insects is a reversible process that may correlate with other life-history traits and suggests broader implications on the mechanisms and evolvability of insect development.
Collapse
Affiliation(s)
- Élio Sucena
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901, Oeiras, Portugal; Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, edifício C2, Campo Grande, 1749-016, Lisboa, Portugal
| | | | | | | |
Collapse
|
25
|
Rosenberg MI, Brent AE, Payre F, Desplan C. Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes. eLife 2014; 3:e01440. [PMID: 24599282 PMCID: PMC3941026 DOI: 10.7554/elife.01440] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Embryonic anterior-posterior patterning is well understood in Drosophila, which uses 'long germ' embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use 'short germ' embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001.
Collapse
Affiliation(s)
- Miriam I Rosenberg
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | | | | | | |
Collapse
|
26
|
Heffer A, Grubbs N, Mahaffey J, Pick L. The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene. Evol Dev 2014; 15:406-17. [PMID: 24261442 DOI: 10.1111/ede.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We propose that the dependence of Dm-Ftz-F1 on interaction with the homeodomain protein Ftz which is expressed in stripes in Drosophila, loosened constraints on Dm-ftz-f1 expression, allowing for ubiquitous expression of this pair-rule gene in Drosophila.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | | | | | | |
Collapse
|
27
|
Zeng V, Ewen-Campen B, Horch HW, Roth S, Mito T, Extavour CG. Developmental gene discovery in a hemimetabolous insect: de novo assembly and annotation of a transcriptome for the cricket Gryllus bimaculatus. PLoS One 2013; 8:e61479. [PMID: 23671567 PMCID: PMC3646015 DOI: 10.1371/journal.pone.0061479] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/12/2013] [Indexed: 12/31/2022] Open
Abstract
Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus.
Collapse
Affiliation(s)
- Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hadley W. Horch
- Departments of Biology and Neuroscience, Bowdoin College, Brunswick, Maine, United States of America
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Cologne Biocenter, Cologne, Germany
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima City, Japan
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
28
|
Ten Tusscher KHWJ. Mechanisms and constraints shaping the evolution of body plan segmentation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:54. [PMID: 23708840 DOI: 10.1140/epje/i2013-13054-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Segmentation of the major body axis into repeating units is arguably one of the major inventions in the evolution of animal body plan pattering. It is found in current day vertebrates, annelids and arthropods. Most segmented animals seem to use a clock-and-wavefront type mechanism in which oscillations emanating from a posterior growth zone become transformed into an anterior posterior sequence of segments. In contrast, few animals such as Drosophila use a complex gene regulatory hierarchy to simultaneously subdivide their entire body axis into segments. Here I discuss how in silico models simulating the evolution of developmental patterning can be used to investigate the forces and constraints that helped shape these two developmental modes. I perform an analysis of a series of previous simulation studies, exploiting the similarities and differences in their outcomes in relation to model characteristics to elucidate the circumstances and constraints likely to have been important for the evolution of sequential and simultaneous segmentation modes. The analysis suggests that constraints arising from the involved growth process and spatial patterning signal--posterior elongation producing a propagating wavefront versus a tissue wide morphogen gradient--and the evolutionary history--ancestral versus derived segmentation mode--strongly shaped both segmentation mechanisms. Furthermore, this implies that these patterning types are to be expected rather than random evolutionary outcomes and supports the likelihood of multiple parallel evolutionary origins.
Collapse
Affiliation(s)
- K H W J Ten Tusscher
- Theoretical Biology and Bioinformactics Group, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands.
| |
Collapse
|
29
|
Homeogenetic inductive mechanism of segmentation in polychaete tail regeneration. Dev Biol 2013; 381:460-70. [PMID: 23608458 DOI: 10.1016/j.ydbio.2013.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/24/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022]
Abstract
Segmentation is a body-patterning strategy in which new segments are specified from a segment-addition zone containing uncommitted cells. However, the cell-recruitment process is poorly understood. Here we investigated in detail the segmentation in a polychaete annelid, Perinereis nuntia (Lophotrochozoa), in which new segments emerge at the boundary between the posterior end of the segmented region and the terminal pygidium. Cells at this border synchronously remodel their chromatin, enter the cell cycle, and undergo oriented cell division, before being added to new segments. wingless is expressed at the posterior edge of the pre-existing segment, abutted by hedgehog in the first row of the new segment. Overstimulation of Wingless signaling caused excess cells to enter the cell cycle, prolonging segmentation and widening the new segment. Thus, segment addition may occur by a homeogenetic mechanism, in which Wingless expressed in the differentiated segment coordinates the stepwise recruitment of undifferentiated cells from the segment/pygidium boundary.
Collapse
|
30
|
Wilson MJ, Dearden PK. Pair-rule gene orthologues have unexpected maternal roles in the honeybee (Apis mellifera). PLoS One 2012; 7:e46490. [PMID: 23029534 PMCID: PMC3460886 DOI: 10.1371/journal.pone.0046490] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/04/2012] [Indexed: 02/04/2023] Open
Abstract
Pair-rule genes are a class of segmentation genes first identified in Drosophila melanogaster. In Drosophila, these genes act to translate non-periodic information produced by the overlapping patterns of gap gene expression into patterns of gene expression in every other segment. While pair-rule genes are, for the most part, conserved in metazoans, their function in pair-rule patterning is not. Many of these genes do, however, regulate segmentation in arthropods and do so with dual-segment periodicity. Here we examine the expression and function of honeybee orthologues of Drosophila pair-rule genes. Knockdown of the expression of these genes leads to extensive patterning defects, implying that they act in early patterning, as well as segmentation in honeybee embryos. We show that these pair-rule gene orthologues indeed regulate the expression of honeybee maternal and gap genes implying roles in maternal patterning of the honeybee embryo.
Collapse
Affiliation(s)
- Megan J. Wilson
- Laboratory for Evolution and Development, National Research Centre for Growth and Development and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand-Aotearoa
| | - Peter K. Dearden
- Laboratory for Evolution and Development, National Research Centre for Growth and Development and Genetics Otago, Biochemistry Department, University of Otago, Dunedin, New Zealand-Aotearoa
- * E-mail:
| |
Collapse
|
31
|
Liu W. Functional analyses in the silkworm, Bombyx mori, support a role for Notch signaling in appendage development but not the groucho-dependent pair-rule process. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:651-62. [PMID: 22907748 DOI: 10.1002/jez.b.22470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/26/2012] [Accepted: 07/23/2012] [Indexed: 11/12/2022]
Abstract
Pair-rule genes are crucial for generating dual segment periodicity for body plan patterning in Drosophila. Bombyx mori is an intermediate germband insect, in which the formation of posterior segments via sequential addition follows a different process from that in Drosophila, although it is somewhat comparable to the process that occurs in vertebrates. Notch signaling is involved in the segmentation of vertebrates, spiders, and basal insects. Groucho (Gro) participates in Notch signaling as a corepressor and plays an important role during segmentation by interacting with other pair-rule proteins. Here, we cloned a gro homolog in the silkworm and positioned it at chromosome 21 in the genetic linkage map. Functional analyses of Bmgro and Bmnotch during embryogenesis were conducted using RNA interference (RNAi). Depletion of Bmgro led to a loss of odd-numbered segments, a characteristic pair-rule phenotype. Bmnotch RNAi resulted in that paired appendages on each segment were symmetrically fused along the ventral midline. An individual segment seemed to possess only one segmental appendage when Notch signaling was compromised. Irregular segments were observed in the Bmnotch RNAi embryo. Our results show that the involvement of Bmgro during the pair-rule process is not mediated by Notch signaling in silkworm. Notch signaling remains in appendage segmentation and restriction of cell fate.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR, China.
| |
Collapse
|
32
|
Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms? BMC DEVELOPMENTAL BIOLOGY 2012; 12:15. [PMID: 22595029 PMCID: PMC3477074 DOI: 10.1186/1471-213x-12-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/11/2012] [Indexed: 01/14/2023]
Abstract
Background A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. Results Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 ( pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. Conclusions The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods.
Collapse
|
33
|
Andrioli LP. Toward new Drosophila paradigms. Genesis 2012; 50:585-98. [DOI: 10.1002/dvg.22019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/07/2022]
|
34
|
Kainz F, Ewen-Campen B, Akam M, Extavour CG. Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 2011; 138:5015-26. [PMID: 22028033 DOI: 10.1242/dev.073395] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arthropods and vertebrates display a segmental body organisation along all or part of the anterior-posterior axis. Whether this reflects a shared, ancestral developmental genetic mechanism for segmentation is uncertain. In vertebrates, segments are formed sequentially by a segmentation 'clock' of oscillating gene expression involving Notch pathway components. Recent studies in spiders and basal insects have suggested that segmentation in these arthropods also involves Notch-based signalling. These observations have been interpreted as evidence for a shared, ancestral gene network for insect, arthropod and bilaterian segmentation. However, because this pathway can play multiple roles in development, elucidating the specific requirements for Notch signalling is important for understanding the ancestry of segmentation. Here we show that Delta, a ligand of the Notch pathway, is not required for segment formation in the cricket Gryllus bimaculatus, which retains ancestral characteristics of arthropod embryogenesis. Segment patterning genes are expressed before Delta in abdominal segments, and Delta expression does not oscillate in the pre-segmental region or in formed segments. Instead, Delta is required for neuroectoderm and mesectoderm formation; embryos missing these tissues are developmentally delayed and show defects in segment morphology but normal segment number. Thus, what initially appear to be 'segmentation phenotypes' can in fact be due to developmental delays and cell specification errors. Our data do not support an essential or ancestral role of Notch signalling in segment generation across the arthropods, and show that the pleiotropy of the Notch pathway can confound speculation on possible segmentation mechanisms in the last common bilaterian ancestor.
Collapse
Affiliation(s)
- Franz Kainz
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
35
|
Mito T, Shinmyo Y, Kurita K, Nakamura T, Ohuchi H, Noji S. Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 2011; 138:3823-33. [DOI: 10.1242/dev.060681] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Delta/Notch signaling controls a wide spectrum of developmental processes, including body and leg segmentation in arthropods. The various functions of Delta/Notch signaling vary among species. For instance, in Cupiennius spiders, Delta/Notch signaling is essential for body and leg segmentation, whereas in Drosophila fruit flies it is involved in leg segmentation but not body segmentation. Therefore, to gain further insight into the functional evolution of Delta/Notch signaling in arthropod body and leg segmentation, we analyzed the function of the Delta (Gb′Delta) and Notch (Gb′Notch) genes in the hemimetabolous, intermediate-germ cricket Gryllus bimaculatus. We found that Gb′Delta and Gb′Notch were expressed in developing legs, and that RNAi silencing of Gb′Notch resulted in a marked reduction in leg length with a loss of joints. Our results suggest that the role of Notch signaling in leg segmentation is conserved in hemimetabolous insects. Furthermore, we found that Gb′Delta was expressed transiently in the posterior growth zone of the germband and in segmental stripes earlier than the appearance of wingless segmental stripes, whereas Gb′Notch was uniformly expressed in early germbands. RNAi knockdown of Gb′Delta or Gb′Notch expression resulted in malformation in body segments and a loss of posterior segments, the latter probably due to a defect in posterior growth. Therefore, in the cricket, Delta/Notch signaling might be required for proper morphogenesis of body segments and posterior elongation, but not for specification of segment boundaries.
Collapse
Affiliation(s)
- Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Yohei Shinmyo
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Kazuki Kurita
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Taro Nakamura
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Hideyo Ohuchi
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| |
Collapse
|
36
|
Dabour N, Bando T, Nakamura T, Miyawaki K, Mito T, Ohuchi H, Noji S. Cricket body size is altered by systemic RNAi against insulin signaling components and epidermal growth factor receptor. Dev Growth Differ 2011; 53:857-69. [PMID: 21777227 DOI: 10.1111/j.1440-169x.2011.01291.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A long-standing problem of developmental biology is how body size is determined. In Drosophila melanogaster, the insulin/insulin-like growth factor (I/IGF) and target of rapamycin (TOR) signaling pathways play important roles in this process. However, the detailed mechanisms by which insect body growth is regulated are not known. Therefore, we have attempted to utilize systemic nymphal RNA interference (nyRNAi) to knockdown expression of insulin signaling components including Insulin receptor (InR), Insulin receptor substrate (chico), Phosphatase and tensin homologue (Pten), Target of rapamycin (Tor), RPS6-p70-protein kinase (S6k), Forkhead box O (FoxO) and Epidermal growth factor receptor (Egfr) and observed the effects on body size in the Gryllus bimaculatus cricket. We found that crickets treated with double-stranded RNA (dsRNA) against Gryllus InR, chico, Tor, S6k and Egfr displayed smaller body sizes, while Gryllus FoxO nyRNAi-ed crickets exhibited larger than normal body sizes. Furthermore, RNAi against Gryllus chico and Tor displayed slow growth and RNAi against Gryllus chico displayed longer lifespan than control crickets. Since no significant difference in ability of food uptake was observed between the Gryllus chico(nyRNAi) nymphs and controls, we conclude that the adult cricket body size can be altered by knockdown of expressions of Gryllus InR, chico, Tor, S6k, FoxO and Egfr by systemic RNAi. Our results suggest that the cricket is a promising model to study mechanisms underlying controls of body size and life span with RNAi methods.
Collapse
Affiliation(s)
- Noha Dabour
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Janssen R, Budd GE, Prpic NM, Damen WG. Expression of myriapod pair rule gene orthologs. EvoDevo 2011; 2:5. [PMID: 21352542 PMCID: PMC3058060 DOI: 10.1186/2041-9139-2-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/25/2011] [Indexed: 11/18/2022] Open
Abstract
Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-752 36 Uppsala, Sweden.
| | | | | | | |
Collapse
|
38
|
Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus. Dev Biol 2010; 346:140-9. [DOI: 10.1016/j.ydbio.2010.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 02/07/2023]
|
39
|
Nakao H. Characterization of Bombyx embryo segmentation process: expression profiles of engrailed, even-skipped, caudal, and wnt1/wingless homologues. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:224-31. [PMID: 19885916 DOI: 10.1002/jez.b.21328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To gain insight into segmentation processes, the expression at embryonic stages of the silkmoth Bombyx mori homologues of even-skipped (eve), engrailed (en), caudal (cad), and wnt1/wingless (wg) transcripts were examined by whole mount in situ hybridization. Pair-rule eve stripes and segmental en and wnt1/wg stripes were generated sequentially from anterior to posterior, confirming the previous results that showed that Bombyx belongs to short-germ insects. However, unlike in previously described short germ insects, the segmentation of Bombyx occurred without marked germ band elongation: the putative growth zone was expanded compared with previously described short germ insects. This may indicate that Bombyx represents an evolutionarily intermediate state in a transition from short to long germ type. The expressions of cad and wnt1/wg, which are known to be present in the growth zone in short germ insects, initially showed a large median expression domain that, as segmentation proceeded, later retracted to the posterior pole. This is also unique to this insect. Detailed analysis of their relative expressions indicated that wnt1/wg domain retracted faster than the cad domain, and double stain in situ hybridization suggested that the eve stripe appears from cells that have ceased to express wnt1/wg. Another unique aspect of Bombyx embryogenesis is that gastrulation began at later embryonic stage compared with other insects and proceeded slowly from anterior to posterior. On the basis of these results, conserved and divergent aspects of the evolution of insect segmentation mechanisms and germ cell formation are discussed.
Collapse
Affiliation(s)
- Hajime Nakao
- Invertebrate Gene Function Research Unit, Division of Insect Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
40
|
Evolution of insect development: to the hemimetabolous paradigm. Curr Opin Genet Dev 2010; 20:355-61. [PMID: 20462751 DOI: 10.1016/j.gde.2010.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 11/23/2022]
Abstract
Mechanisms of insect development have been extensively studied in Drosophila melanogaster, a holometabolous insect. However, recent studies on other insects have gradually revealed that there exist new developmental paradigms. In this review, we focus on the new hemimetabolous paradigm. We highlight how hemimetabolous short-germ or intermediate-germ embryos establish the anterior/posterior (A/P) pattern and the importance of dynamic cell movement during germband formation. In hemimetabolous insects, orthodenticle, encoding a homeodomain-containing transcription factor, and wingless/Wnt signaling could play crucial roles in the A/P pattern formation. We also discuss recent evidence suggesting that insect developmental modes may have evolved by heterochronic shifts, while retaining certain universal metazoan features.
Collapse
|
41
|
Chipman AD. Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 2010; 32:60-70. [PMID: 20020480 DOI: 10.1002/bies.200900130] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Different sources of data on the evolution of segmentation lead to very different conclusions. Molecular similarities in the developmental pathways generating a segmented body plan tend to suggest a segmented common ancestor for all bilaterally symmetrical animals. Data from paleontology and comparative morphology suggest that this is unlikely. A possible solution to this conundrum is that throughout evolution there was a parallel co-option of gene regulatory networks that had conserved ancestral roles in determining body axes and in elongating the anterior-posterior axis. Inherent properties in some of these networks made them easily recruitable for generating repeated patterns and for determining segmental boundaries. Phyla where this process happened are among the most successful in the animal kingdom, as the modular nature of the segmental body organization allowed them to diverge and radiate into a bewildering array of variations on a common theme.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Evolution, Systematics and Ecology, The Hebrew University of Jerusalem, Givat Ram, Israel.
| |
Collapse
|
42
|
Hamada A, Miyawaki K, Honda-sumi E, Tomioka K, Mito T, Ohuchi H, Noji S. Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus. Dev Dyn 2009; 238:2025-33. [PMID: 19618465 DOI: 10.1002/dvdy.22029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In order to explore a possibility that the cricket Gryllus bimaculatus would be a useful model to unveil molecular mechanisms of human diseases, we performed loss-of-function analyses of Gryllus genes homologous to human genes that are responsible for human disorders, fragile X mental retardation 1 (fmr1) and Dopamine receptor (DopR). We cloned cDNAs of their Gryllus homologues, Gb'fmr1, Gb'DopRI, and Gb'DopRII, and analyzed their functions with use of nymphal RNA interference (RNAi). For Gb'fmr1, three major phenotypes were observed: (1) abnormal wing postures, (2) abnormal calling song, and (3) loss of the circadian locomotor rhythm, while for Gb'DopRI, defects of wing posture and morphology were found. These results indicate that the cricket has the potential to become a novel model system to explore human neuronal pathogenic mechanisms and to screen therapeutic drugs by RNAi.
Collapse
Affiliation(s)
- Aska Hamada
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 2009; 4:e6225. [PMID: 19593438 PMCID: PMC2704864 DOI: 10.1371/journal.pone.0006225] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/15/2009] [Indexed: 11/18/2022] Open
Abstract
Background RNA interference (RNAi) induced through double stranded RNA (dsRNA) has been used widely to study gene function in insects. Recently, it has been reported that gene knockdown in several insects can be induced successfully through feeding with dsRNA. However, it is still unknown whether phenotypic silencing of genes not expressed in the midgut occurs after ingestion of insect dsRNA. Principal Findings Using chitin synthase gene A (SeCHSA) as the target gene, which is expressed in the cuticle and tracheae of the lepidopteran pest Spodoptera exigua, we showed that the growth and development of S. exigua larvae fed Escherichia coli expressing dsRNA of SeCHSA was disturbed, resulting in lethality. In the 4th and 5th larval instars, prepupae, and pupae, the mean survival rates of insects fed the dsRNA-containing diet were 88.64%, 74.24%, 68.43% and 62.63% respectively. The survival rates in the 5th instar larvae, prepupae and pupae stages were significantly lower than those of all controls, and significant lethality differences were also found between dsSeCHSA treatment and dsControl or ddH2O control in the 4th instar larvae. The effects of ingesting bacterially expressed dsRNA on transcription of the target gene, tissue structure, and survival rates of insects were dose-dependent. Conclusions Our results suggest that SeCHSA dsRNA may be useful as a means of insect pest control.
Collapse
Affiliation(s)
- Honggang Tian
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Han Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiong Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongxin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bin Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
44
|
Erezyilmaz DF, Kelstrup HC, Riddiford LM. The nuclear receptor E75A has a novel pair-rule-like function in patterning the milkweed bug, Oncopeltus fasciatus. Dev Biol 2009; 334:300-10. [PMID: 19580803 DOI: 10.1016/j.ydbio.2009.06.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/17/2009] [Accepted: 06/27/2009] [Indexed: 12/16/2022]
Abstract
Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer-scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of'E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of'E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of'E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of'E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of'E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity.
Collapse
Affiliation(s)
- Deniz F Erezyilmaz
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | | | |
Collapse
|
45
|
Choe CP, Brown SJ. Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 2009; 325:482-91. [DOI: 10.1016/j.ydbio.2008.10.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/18/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022]
|
46
|
Mito T, Noji S. The Two-Spotted Cricket Gryllus bimaculatus: An Emerging Model for Developmental and Regeneration Studies. ACTA ACUST UNITED AC 2008; 2008:pdb.emo110. [PMID: 21356736 DOI: 10.1101/pdb.emo110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONThe two-spotted cricket Gryllus bimaculatus De Geer (Orthoptera: Gryllidae), which is one of the most abundant cricket species, inhabits the tropical and subtropical regions of Asia, Africa, and Europe. G. bimaculatus can be easily bred in the laboratory and has been widely used to study insect physiology and neurobiology. Recently, this species has become established as a model animal for studies on molecular mechanisms of development and regeneration because its mode of development is more typical of arthropods than that of Drosophila melanogaster, and the cricket is probably ancestral for this phylum. Moreover, the cricket is a hemimetabolous insect, in which nymphs possess functional legs with a remarkable capacity for regeneration after damage. Because RNA interference (RNAi) works effectively in this species, the elucidation of mechanisms of development and regeneration has been expedited through loss-of-function analyses of genes. Furthermore, because RNAi-based techniques for analyzing gene functions can be combined with assay systems in other research areas (such as behavioral analyses), G. bimaculatus is expected to become a model organism in various fields of biology. Thus, it may be possible to establish the cricket as a simple model system for exploring more complex organisms such as humans.
Collapse
Affiliation(s)
- Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Tokushima 770-8506, Japan
| | | |
Collapse
|
47
|
Liu W, Yang F, Jia S, Miao X, Huang Y. Cloning and characterization of Bmrunt from the silkworm Bombyx mori during embryonic development. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:47-59. [PMID: 18615617 DOI: 10.1002/arch.20261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pair-rule genes (genes that are expressed only in alternate segments, odd or even) play an important role in translating the broad gradients of upstream genes into dual segment periodicity for body plan patterning in Drosophila. However, homologues of pair-rule genes show a remarkable diversity of expression patterns and functions in other insects. We cloned the homologue of runt in the silkworm Bombyx mori, an intermediate germband-type insect. Whole-mount in situ hybridization revealed three stripes arose one by one before gastrulation at the blastoderm stage. Five additional stripes were then generated sequentially as the growth zone elongated. Eight stripes appeared in a pair-rule manner with two-segment periodicity, each of which was confined to the posterior of an odd-numbered parasegment. The weaker segmental secondary stripes emerged de novo in even-numbered parasegments. The Bmrunt transcript vanished before blastokinesis and was then expressed again in the whole embryo. RNA interference for Bmrunt caused severely truncated, almost completely asegmental defects. This cadual-like phenotype suggests that Bmrunt does not function as a pair-rule gene in silkworm segmentation. Bmrunt is required for formation of most body segments and axis elongation in B. mori.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Abstract
One of the major goals in evolutionary developmental biology is to understand the relationship between gene regulatory networks and the diverse morphologies and their functionalities. Are the diversities solely triggered by random events, or are they inevitable outcomes of an interplay between evolving gene networks and natural selection? Segmentation in arthropod embryogenesis represents a well-known example of body plan diversity. Striped patterns of gene expression that lead to the future body segments appear simultaneously or sequentially in long and short germ-band development, respectively. Moreover, a combination of both is found in intermediate germ-band development. Regulatory genes relevant for stripe formation are evolutionarily conserved among arthropods, therefore the differences in the observed traits are thought to have originated from how the genes are wired. To reveal the basic differences in the network structure, we have numerically evolved hundreds of gene regulatory networks that produce striped patterns of gene expression. By analyzing the topologies of the generated networks, we show that the characteristics of stripe formation in long and short germ-band development are determined by Feed-Forward Loops (FFLs) and negative Feed-Back Loops (FBLs) respectively, and those of intermediate germ-band development are determined by the interconnections between FFL and negative FBL. Network architectures, gene expression patterns and knockout responses exhibited by the artificially evolved networks agree with those reported in the fly Drosophila melanogaster and the beetle Tribolium castaneum. For other arthropod species, principal network architectures that remain largely unknown are predicted. Our results suggest that the emergence of the three modes of body segmentation in arthropods is an inherent property of the evolving networks.
Collapse
Affiliation(s)
- Koichi Fujimoto
- ERATO Complex Systems Biology Project, Japan Science and Technology Agency, Tokyo, Japan.
| | | | | |
Collapse
|
49
|
Monteiro A. Alternative models for the evolution of eyespots and of serial homology on lepidopteran wings. Bioessays 2008; 30:358-66. [PMID: 18348192 DOI: 10.1002/bies.20733] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Serial homology is widespread in organismal design, but the origin and individuation of these repeated structures appears to differ with the different types of serial homologues, and remains an intriguing and exciting topic of research. Here I focus on the evolution of the serially repeated eyespots that decorate the margin of the wings of nymphalid butterflies. In this system, unresolved questions relate to the evolutionary steps that lead to the appearance of these serial homologues and how their separate identities evolved. I present and discuss two alternative hypotheses. The first proposes that eyespots first appeared as a row of undifferentiated repeated modules, one per wing compartment, that later become individuated. This individuation allowed eyespots to appear and disappear from specific wing compartments and also allowed eyespots to acquire different morphologies. The second hypothesis proposes that eyespots first appeared as individuated single units, or groups of units, that over evolutionary time were co-opted into new compartments on the wing. I discuss the merits of each of these alternate hypotheses by finding analogies to other systems and propose research avenues for addressing these issues in the future.
Collapse
Affiliation(s)
- Antónia Monteiro
- Department Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, Connecticut 06511, USA.
| |
Collapse
|
50
|
Chipman AD, Akam M. The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues. Dev Biol 2008; 319:160-9. [PMID: 18455712 DOI: 10.1016/j.ydbio.2008.02.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 02/19/2008] [Accepted: 02/19/2008] [Indexed: 01/22/2023]
Abstract
The centipede Strigamia maritima forms all of its segments during embryogenesis. Trunk segments form sequentially from an apparently undifferentiated disk of cells at the posterior of the germ band. We have previously described periodic patterns of gene expression in this posterior disc that precede overt differentiation of segments, and suggested that a segmentation oscillator may be operating in the posterior disc. We now show that genes of the Notch signalling pathway, including the ligand Delta, and homologues of the Drosophila pair-rule genes even-skipped and hairy, show periodic expression in the posterior disc, consistent with their involvement in, or regulation by, such an oscillator. These genes are expressed in a pattern of apparently expanding concentric rings around the proctodeum, which become stripes at the base of the germ band where segments are emerging. In this transition zone, these primary stripes define a double segment periodicity: segmental stripes of engrailed expression, which mark the posterior of each segment, arise at two different phases of the primary pattern. Delta and even-skipped are also activated in secondary stripes that intercalate between primary stripes in this region, further defining the single segment repeat. These data, together with observations that Notch mediated signalling is required for segment pattern formation in other arthropods, suggest that the ancestral arthropod segmentation cascade may have involved a segmentation oscillator that utilised Notch signalling.
Collapse
Affiliation(s)
- Ariel D Chipman
- University Museum of Zoology and Department of Zoology, Downing St., Cambridge CB2 3EJ, UK.
| | | |
Collapse
|