1
|
Sandoval EYH, Gómez ZJD. Irisin and neuroinflammation: Challenges and opportunities. Exp Mol Pathol 2024; 140:104941. [PMID: 39467426 DOI: 10.1016/j.yexmp.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Irisin is a myokine that is cleaved from 5-domain type III fibronectin (FNDC5), and is known for its metabolic functions as it stimulates browning of white adipose tissue; similarly, effects on the central nervous system have been described, specifically in neurodevelopmental and neuroprotection processes. The purpose of this review is to describe recent information on the effects of irisin on neuroinflammation to contribute to the knowledge about the mechanisms by which irisin and exercise could generate benefits for some neurological diseases. The review conducted found several studies describing the effect of irisin on pathways such as STAT3, p38, cAMP/PKA/CREB, as well as effects on GFAP protein expression or apoptosis processes in both in vitro and in vivo models; likewise, these pathways are associated with better BDNF expression. Despite increasing information on this topic, it is still necessary to clarify the mechanisms by which irisin has effects on neuroinflammation and this could represent an opportunity to generate more treatments for diseases such as Alzheimer's, Parkinson's or Diabetes Mellitus.
Collapse
Affiliation(s)
| | - Zulma Janeth Dueñas Gómez
- Department of Physiological Sciences, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Davis-Anderson K, Micheva-Viteva S, Solomon E, Hovde B, Cirigliano E, Harris J, Twary S, Iyer R. CRISPR/Cas9 Directed Reprogramming of iPSC for Accelerated Motor Neuron Differentiation Leads to Dysregulation of Neuronal Fate Patterning and Function. Int J Mol Sci 2023; 24:16161. [PMID: 38003351 PMCID: PMC10671572 DOI: 10.3390/ijms242216161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Neurodegeneration causes a significant disease burden and there are few therapeutic interventions available for reversing or slowing the disease progression. Induced pluripotent stem cells (iPSCs) hold significant potential since they are sourced from adult tissue and have the capacity to be differentiated into numerous cell lineages, including motor neurons. This differentiation process traditionally relies on cell lineage patterning factors to be supplied in the differentiation media. Genetic engineering of iPSC with the introduction of recombinant master regulators of motor neuron (MN) differentiation has the potential to shorten and streamline cell developmental programs. We have established stable iPSC cell lines with transient induction of exogenous LHX3 and ISL1 from the Tet-activator regulatory region and have demonstrated that induction of the transgenes is not sufficient for the development of mature MNs in the absence of neuron patterning factors. Comparative global transcriptome analysis of MN development from native and Lhx-ISL1 modified iPSC cultures demonstrated that the genetic manipulation helped to streamline the neuronal patterning process. However, leaky gene expression of the exogenous MN master regulators in iPSC resulted in the premature activation of genetic pathways characteristic of the mature MN function. Dysregulation of metabolic and regulatory pathways within the developmental process affected the MN electrophysiological responses.
Collapse
Affiliation(s)
- Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Sofiya Micheva-Viteva
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Emilia Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Blake Hovde
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Elisa Cirigliano
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer Harris
- Information Systems and Modeling Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Rashi Iyer
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| |
Collapse
|
3
|
Suppinger S, Zinner M, Aizarani N, Lukonin I, Ortiz R, Azzi C, Stadler MB, Vianello S, Palla G, Kohler H, Mayran A, Lutolf MP, Liberali P. Multimodal characterization of murine gastruloid development. Cell Stem Cell 2023; 30:867-884.e11. [PMID: 37209681 PMCID: PMC10241222 DOI: 10.1016/j.stem.2023.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development and compare them with the in vivo embryo. We developed a high-throughput handling and imaging pipeline to spatially monitor symmetry breaking during gastruloid development and report an early spatial variability in pluripotency determining a binary response to Wnt activation. Although cells in the gastruloid-core revert to pluripotency, peripheral cells become primitive streak-like. These two populations subsequently break radial symmetry and initiate axial elongation. By performing a compound screen, perturbing thousands of gastruloids, we derive a phenotypic landscape and infer networks of genetic interactions. Finally, using a dual Wnt modulation, we improve the formation of anterior structures in the existing gastruloid model. This work provides a resource to understand how gastruloids develop and generate complex patterns in vitro.
Collapse
Affiliation(s)
- Simon Suppinger
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Marietta Zinner
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Nadim Aizarani
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Roche Institute of Human Biology, 4058 Basel, Switzerland
| | - Raphael Ortiz
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Babraham Institute, Cambridge CB22 3AT, UK
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Stefano Vianello
- School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Palla
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Munich, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, 80333 Munich, Germany
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Alexandre Mayran
- School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Matthias P Lutolf
- Roche Institute of Human Biology, 4058 Basel, Switzerland; School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
4
|
Pan Q, Lu K, Luo J, Jiang Y, Xia B, Chen L, Wang M, Dai R, Chen T. Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct Integr Genomics 2023; 23:168. [PMID: 37204625 DOI: 10.1007/s10142-023-01090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
pax6 is a canonic master gene for eye formation. Knockout of pax6 affects the development of craniofacial skeleton and eye in mice. Whether pax6 affects the development of spinal bone has not been reported yet. In the present study, we used CRISPR/Cas9 system to generate Olpax6.1 mutant in Japanese medaka. Phenotype analysis showed that ocular mutation caused by the Olpax6.1 mutation occurred in the homozygous mutant. The phenotype of heterozygotes is not significantly different from that of wild-type. In addition, knockout Olpax6.1 resulted in severe curvature of the spine in the homozygous F2 generation. Comparative transcriptome analysis and qRT-PCR revealed that the defective Olpax6.1 protein caused a decrease in the expression level of sp7, col10a1a, and bglap, while the expression level of xylt2 did not change significantly. The functional enrichment of differentially expressed genes (DEGs) using the Kyoto Encyclopedia of Genes and Genomes database showed that the DEGs between Olpax6.1 mutation and wild-type were enriched in p53 signaling pathway, extracellular matrix (ECM) -receptor interaction, et al. Our results indicated that the defective Olpax6.1 protein results in the reduction of sp7 expression level and the activation of p53 signaling pathway, which leads to a decrease in the expression of genes encoding ECM protein, such as collagen protein family and bone gamma-carboxyglutamate protein, which further inhibits bone development. Based on the phenotype and molecular mechanism of ocular mutation and spinal curvature induced by Olpax6.1 knockout, we believe that the Olpax6.1-/- mutant could be a potential model for the study of spondylo-ocular syndrome.
Collapse
Affiliation(s)
- Qihua Pan
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ke Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junzhi Luo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuewen Jiang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bilin Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Mengyang Wang
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Ronggui Dai
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Tiansheng Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China.
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
5
|
Kaokaen P, Sorraksa N, Phonchai R, Chaicharoenaudomrung N, Kunhorm P, Noisa P. Enhancing Neurological Competence of Nanoencapsulated Cordyceps/Turmeric Extracts in Human Neuroblastoma SH-SY5Y Cells. Cell Mol Bioeng 2022; 16:81-93. [PMID: 36660588 PMCID: PMC9842810 DOI: 10.1007/s12195-022-00752-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Neurological diseases, including Alzheimer's, Parkinson's diseases, and brain cancers, are reportedly caused by genetic aberration and cellular malfunction. Herbs with bioactive compounds that have anti-oxidant effects such as cordyceps and turmeric, are of interest to clinical applications due to their minimal adverse effects. The aim of study is to develop the nanoencapsulated cordyceps and turmeric extracts and investigate their capability to enhance the biological activity and improve neuronal function. Methods Human neuroblastoma SH-SY5Y cells were utilized as a neuronal model to investigate the properties of nanoencapsulated cordyceps or turmeric extracts, called CMP and TEP, respectively. SH-SY5Y cells were treated with either CMP or TEP and examined the biological consequences, including neuronal maturation and neuronal function. Results The results showed that both CMP and TEP improved cellular uptake efficiency within 6 h by 2.3 and 2.8 times, respectively. Besides, they were able to inhibit cellular proliferation of SH-SY5Y cells up to 153- and 218-fold changes, and increase the expression of mature neuronal markers (TUJ1, PAX6, and NESTIN). Upon the treatment of CMP and TEP, the expression of dopaminergic-specific genes (LMX1B, FOXA2, EN1, and NURR1), and the secretion level of dopamine were significantly improved up to 3.3-fold and 3.0-fold, respectively, while the expression of Alzheimer genes (PSEN1, PSEN2, and APP), and the secretion of amyloid precursor protein were significantly reduced by 32-fold and 108-fold, respectively. Importantly, the autophagy activity was upregulated by CMP and TEP at 6.3- and 5.5-fold changes, respectively. Conclusions This finding suggested that the nanoencapsulated cordyceps and turmeric extracts accelerated neuronal maturation and alleviated neuronal pathology in human neural cells. This paves the way for nanotechnology-driven drug delivery systems that could potentially be used as an alternative medicine in the future for neurological diseases.
Collapse
Affiliation(s)
- Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Natchadaporn Sorraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Ruchee Phonchai
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
6
|
The Efficiency of Direct Maturation: the Comparison of Two hiPSC Differentiation Approaches into Motor Neurons. Stem Cells Int 2022; 2022:1320950. [DOI: 10.1155/2022/1320950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Motor neurons (MNs) derived from human-induced pluripotent stem cells (hiPSC) hold great potential for the treatment of various motor neurodegenerative diseases as transplantations with a low-risk of rejection are made possible. There are many hiPSC differentiation protocols that pursue to imitate the multistep process of motor neurogenesis in vivo. However, these often apply viral vectors, feeder cells, or antibiotics to generate hiPSC and MNs, limiting their translational potential. In this study, a virus-, feeder-, and antibiotic-free method was used for reprogramming hiPSC, which were maintained in culture medium produced under clinical good manufacturing practice. Differentiation into MNs was performed with standardized, chemically defined, and antibiotic-free culture media. The identity of hiPSC, neuronal progenitors, and mature MNs was continuously verified by the detection of specific markers at the genetic and protein level via qRT-PCR, flow cytometry, Western Blot, and immunofluorescence. MNX1- and ChAT-positive motoneuronal progenitor cells were formed after neural induction via dual-SMAD inhibition and expansion. For maturation, an approach aiming to directly mature these progenitors was compared to an approach that included an additional differentiation step for further specification. Although both approaches generated mature MNs expressing characteristic postmitotic markers, the direct maturation approach appeared to be more efficient. These results provide new insights into the suitability of two standardized differentiation approaches for generating mature MNs, which might pave the way for future clinical applications.
Collapse
|
7
|
Reis L, Raciti M, Rodriguez PG, Joseph B, Al Rayyes I, Uhlén P, Falk A, da Cunha Lima ST, Ceccatelli S. Glyphosate-based herbicide induces long-lasting impairment in neuronal and glial differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2044-2057. [PMID: 35485992 PMCID: PMC9541419 DOI: 10.1002/tox.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 05/09/2023]
Abstract
Glyphosate-based herbicides (GBH) are among the most sold pesticides in the world. There are several formulations based on the active ingredient glyphosate (GLY) used along with other chemicals to improve the absorption and penetration in plants. The final composition of commercial GBH may modify GLY toxicological profile, potentially enhancing its neurotoxic properties. The developing nervous system is particularly susceptible to insults occurring during the early phases of development, and exposure to chemicals in this period may lead to persistent impairments on neurogenesis and differentiation. The aim of this study was to evaluate the long-lasting effects of a sub-cytotoxic concentration, 2.5 parts per million of GBH and GLY, on the differentiation of human neuroepithelial stem cells (NES) derived from induced pluripotent stem cells (iPSC). We treated NES cells with each compound and evaluated the effects on key cellular processes, such as proliferation and differentiation in daughter cells never directly exposed to the toxicants. We found that GBH induced a more immature neuronal profile associated to increased PAX6, NESTIN and DCX expression, and a shift in the differentiation process toward glial cell fate at the expense of mature neurons, as shown by an increase in the glial markers GFAP, GLT1, GLAST and a decrease in MAP2. Such alterations were associated to dysregulation of key genes critically involved in neurogenesis, including PAX6, HES1, HES5, and DDK1. Altogether, the data indicate that subtoxic concentrations of GBH, but not of GLY, induce long-lasting impairments on the differentiation potential of NES cells.
Collapse
Affiliation(s)
- Luã Reis
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Marilena Raciti
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Bertrand Joseph
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Per Uhlén
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Anna Falk
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Suzana Telles da Cunha Lima
- Laboratório de Bioprospecção e Biotecnologia, Instituto de BiologiaUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | | |
Collapse
|
8
|
Derkus B, Isik M, Eylem CC, Ergin I, Camci CB, Bilgin S, Elbuken C, Arslan YE, Akkulak M, Adali O, Kiran F, Okesola BO, Nemutlu E, Emregul E. Xenogenic Neural Stem Cell-Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure. Adv Biol (Weinh) 2022; 6:e2101317. [PMID: 35347890 DOI: 10.1002/adbi.202101317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration.
Collapse
Affiliation(s)
- Burak Derkus
- Stem Cell Research Lab, Department of ChemistryFaculty of Science, Ankara University, Ankara, 06560, Turkey.,Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Melis Isik
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Irem Ergin
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Turkey
| | - Can Berk Camci
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Sila Bilgin
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Caglar Elbuken
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey.,Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Fadime Kiran
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Babatunde O Okesola
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Medicine, University of Liverpool, Liverpool, L7 8TX, UK
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey.,Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Emel Emregul
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| |
Collapse
|
9
|
Enzymatic Degradation of Cortical Perineuronal Nets Reverses GABAergic Interneuron Maturation. Mol Neurobiol 2022; 59:2874-2893. [PMID: 35233718 PMCID: PMC9016038 DOI: 10.1007/s12035-022-02772-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/16/2022] [Indexed: 12/03/2022]
Abstract
Perineuronal nets (PNNs) are specialised extracellular matrix structures which preferentially enwrap fast-spiking (FS) parvalbumin interneurons and have diverse roles in the cortex. PNN maturation coincides with closure of the critical period of cortical plasticity. We have previously demonstrated that BDNF accelerates interneuron development in a c-Jun-NH2-terminal kinase (JNK)–dependent manner, which may involve upstream thousand-and-one amino acid kinase 2 (TAOK2). Chondroitinase-ABC (ChABC) enzymatic digestion of PNNs reportedly reactivates ‘juvenile-like’ plasticity in the adult CNS. However, the mechanisms involved are unclear. We show that ChABC produces an immature molecular phenotype in cultured cortical neurons, corresponding to the phenotype prior to critical period closure. ChABC produced different patterns of PNN-related, GABAergic and immediate early (IE) gene expression than well-characterised modulators of mature plasticity and network activity (GABAA-R antagonist, bicuculline, and sodium-channel blocker, tetrodotoxin (TTX)). ChABC downregulated JNK activity, while this was upregulated by bicuculline. Bicuculline, but not ChABC, upregulated Bdnf expression and ERK activity. Furthermore, we found that BDNF upregulation of semaphorin-3A and IE genes was TAOK mediated. Our data suggest that ChABC heightens structural flexibility and network disinhibition, potentially contributing to ‘juvenile-like’ plasticity. The molecular phenotype appears to be distinct from heightened mature synaptic plasticity and could relate to JNK signalling. Finally, we highlight that BDNF regulation of plasticity and PNNs involves TAOK signalling.
Collapse
|
10
|
Suthapot P, Xiao T, Felsenfeld G, Hongeng S, Wongtrakoongate P. The RNA helicases DDX5 and DDX17 facilitate neural differentiation of human pluripotent stem cells NTERA2. Life Sci 2022; 291:120298. [PMID: 35007564 DOI: 10.1016/j.lfs.2021.120298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022]
Abstract
AIMS Understanding human neurogenesis is critical toward regenerative medicine for neurodegeneration. However, little is known how neural differentiation is regulated by DEAD box-containing RNA helicases, which comprise a diverse class of RNA remodeling enzymes. MATERIALS AND METHODS ChIP-seq was utilized to identify binding sites of DDX5 and DDX17 in both human pluripotent stem cell (hPSC) line NTERA2 and their retinoic acid-induced neural derivatives. RNA-seq was used to elucidate genes differentially expressed upon depletion of DDX5 and DDX17. Neurosphere assay, flow cytometry, and immunofluorescence staining were performed to test the effect of depletion of the two RNA helicases in neural differentiation. KEY FINDINGS We show here that expression of DDX5 and DDX17 is abundant throughout neural differentiation of NTERA2, and is mostly localized within the nucleus. The two RNA helicases occupy chromatin genome-wide at regions associated with neurogenesis-related genes in both hPSCs and their neural derivatives. Further, both DDX5 and DDX17 are mutually required for controlling transcriptional expression of these genes, but are not important for maintenance of stem cell state of hPSCs. In contrast, they facilitate early neural differentiation of hPSCs, generation of neurospheres from the stem cells, and transcriptional expression of key neurogenic transcription factors such as SOX1 and PAX6 during neural differentiation. Importantly, DDX5 and DDX17 are critical for differentiation of hPSCs toward NESTIN- and TUBB3-positive cells, which represent neural progenitors and mature neurons, respectively. SIGNIFICANCE Collectively, our findings suggest the role of DDX5 and DDX17 in transcriptional regulation of genes involved in neurogenesis, and hence in neural differentiation of hPSCs.
Collapse
Affiliation(s)
- Praewa Suthapot
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0540, MD, USA
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0540, MD, USA
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
11
|
Alaiz Noya M, Berti F, Dietrich S. Comprehensive expression analysis for the core cell cycle regulators in the chicken embryo reveals novel tissue-specific synexpression groups and similarities and differences with expression in mouse, frog and zebrafish. J Anat 2022; 241:42-66. [PMID: 35146756 PMCID: PMC9178385 DOI: 10.1111/joa.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
The core cell cycle machinery is conserved from yeast to humans, and hence it is assumed that all vertebrates share the same set of players. Yet during vertebrate evolution, the genome was duplicated twice, followed by a further genome duplication in teleost fish. Thereafter, distinct genes were retained in different vertebrate lineages; some individual gene duplications also occurred. To which extent these diversifying tendencies were compensated by retaining the same expression patterns across homologous genes is not known. This study for the first time undertook a comprehensive expression analysis for the core cell cycle regulators in the chicken, focusing in on early neurula and pharyngula stages of development, with the latter representing the vertebrate phylotypic stage. We also compared our data with published data for the mouse, Xenopus and zebrafish, the other established vertebrate models. Our work shows that, while many genes are expressed widely, some are upregulated or specifically expressed in defined tissues of the chicken embryo, forming novel synexpression groups with markers for distinct developmental pathways. Moreover, we found that in the neural tube and in the somite, mRNAs of some of the genes investigated accumulate in a specific subcellular localisation, pointing at a novel link between the site of mRNA translation, cell cycle control and interkinetic nuclear movements. Finally, we show that expression patterns of orthologous genes may differ in the four vertebrate models. Thus, for any study investigating cell proliferation, cell differentiation, tissue regeneration, stem cell behaviour and cancer/cancer therapy, it has to be carefully examined which of the observed effects are due to the specific model organism used, and which can be generalised.
Collapse
Affiliation(s)
- Marta Alaiz Noya
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Instituto de Neurociencias de Alicante, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Federica Berti
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Life Sciences Solutions, Thermo Fisher Scientific, Monza, Italy
| | - Susanne Dietrich
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
12
|
Hulme AJ, Maksour S, St-Clair Glover M, Miellet S, Dottori M. Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports 2021; 17:14-34. [PMID: 34971564 PMCID: PMC8758946 DOI: 10.1016/j.stemcr.2021.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a “one-glove-fits-all” approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mitchell St-Clair Glover
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
13
|
Introducing dorsoventral patterning in adult regenerating lizard tails with gene-edited embryonic neural stem cells. Nat Commun 2021; 12:6010. [PMID: 34650077 PMCID: PMC8516916 DOI: 10.1038/s41467-021-26321-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Lizards regenerate amputated tails but fail to recapitulate the dorsoventral patterning achieved during embryonic development. Regenerated lizard tails form ependymal tubes (ETs) that, like embryonic tail neural tubes (NTs), induce cartilage differentiation in surrounding cells via sonic hedgehog (Shh) signaling. However, adult ETs lack characteristically roof plate-associated structures and express Shh throughout their circumferences, resulting in the formation of unpatterned cartilage tubes. Both NTs and ETs contain neural stem cells (NSCs), but only embryonic NSC populations differentiate into roof plate identities when protected from endogenous Hedgehog signaling. NSCs were isolated from parthenogenetic lizard embryos, rendered unresponsive to Hedgehog signaling via CRISPR/Cas9 gene knockout of smoothened (Smo), and implanted back into clonally-identical adults to regulate tail regeneration. Here we report that Smo knockout embryonic NSCs oppose cartilage formation when engrafted to adult ETs, representing an important milestone in the creation of regenerated lizard tails with dorsoventrally patterned skeletal tissues. Organisms with regenerative capacity typically regrow organs with correct axial patterning, however, regrown lizard tails lack this feature. Here the authors used neural stem cells to induce patterning in regenerating lizard tails and rescued normal skeletal morphology.
Collapse
|
14
|
Choi WY, Hwang JH, Cho AN, Lee AJ, Jung I, Cho SW, Kim LK, Kim YJ. NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells. Mol Cells 2020; 43:1011-1022. [PMID: 33293480 PMCID: PMC7772509 DOI: 10.14348/molcells.2020.0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATACseq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.
Collapse
Affiliation(s)
- Won-Young Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
| | - Ji-Hyun Hwang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
| | - Ann-Na Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Andrew J. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
15
|
Joshi P, Skromne I. A theoretical model of neural maturation in the developing chick spinal cord. PLoS One 2020; 15:e0244219. [PMID: 33338079 PMCID: PMC7748286 DOI: 10.1371/journal.pone.0244219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cellular differentiation is a tightly regulated process under the control of intricate signaling and transcription factors interaction network working in coordination. These interactions make the systems dynamic, robust and stable but also difficult to dissect. In the spinal cord, recent work has shown that a network of FGF, WNT and Retinoic Acid (RA) signaling factors regulate neural maturation by directing the activity of a transcription factor network that contains CDX at its core. Here we have used partial and ordinary (Hill) differential equation based models to understand the spatiotemporal dynamics of the FGF/WNT/RA and the CDX/transcription factor networks, alone and in combination. We show that in both networks, the strength of interaction among network partners impacts the dynamics, behavior and output of the system. In the signaling network, interaction strength determine the position and size of discrete regions of cell differentiation and small changes in the strength of the interactions among networking partners can result in a signal overriding, balancing or oscillating with another signal. We also show that the spatiotemporal information generated by the signaling network can be conveyed to the CDX/transcription network to produces a transition zone that separates regions of high cell potency from regions of cell differentiation, in agreement with most in vivo observations. Importantly, one emerging property of the networks is their robustness to extrinsic disturbances, which allows the system to retain or canalize NP cells in developmental trajectories. This analysis provides a model for the interaction conditions underlying spinal cord cell maturation during embryonic axial elongation.
Collapse
Affiliation(s)
- Piyush Joshi
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isaac Skromne
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| |
Collapse
|
16
|
Gonzalez Curto G, Der Vartanian A, Frarma YEM, Manceau L, Baldi L, Prisco S, Elarouci N, Causeret F, Korenkov D, Rigolet M, Aurade F, De Reynies A, Contremoulins V, Relaix F, Faklaris O, Briscoe J, Gilardi-Hebenstreit P, Ribes V. The PAX-FOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition. PLoS Genet 2020; 16:e1009164. [PMID: 33175861 PMCID: PMC7682867 DOI: 10.1371/journal.pgen.1009164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/23/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.
Collapse
Affiliation(s)
| | | | | | - Line Manceau
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Lorenzo Baldi
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Selene Prisco
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nabila Elarouci
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Daniil Korenkov
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Muriel Rigolet
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
| | - Frédéric Aurade
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
- Sorbonne Université, INSERM, UMRS974, Center for Research in Myology, Paris, France
| | - Aurélien De Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Vincent Contremoulins
- ImagoSeine core facility of Institut Jacques Monod and member of France-BioImaging, France
| | - Frédéric Relaix
- Univ Paris Est Créteil, INSERM, EnVA, EFS, IMRB, Créteil, France
| | - Orestis Faklaris
- ImagoSeine core facility of Institut Jacques Monod and member of France-BioImaging, France
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London, United Kingdom
| | | | - Vanessa Ribes
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
17
|
Choi WY, Hwang JH, Cho AN, Lee AJ, Lee J, Jung I, Cho SW, Kim LK, Kim YJ. DNA Methylation of Intragenic CpG Islands are Required for Differentiation from iPSC to NPC. Stem Cell Rev Rep 2020; 16:1316-1327. [PMID: 32975781 DOI: 10.1007/s12015-020-10041-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/30/2022]
Abstract
The effects of gene body DNA methylation on gene regulation still remains highly controversial. In this study, we generated whole genome bisulfite sequencing (WGBS) data with high sequencing depth in induced pluripotent stem cell (iPSC) and neuronal progentior cell (NPC), and investigated the relationship between DNA methylation changes in CpG islands (CGIs) and corresponding gene expression during NPC differentiation. Interestingly, differentially methylated CGIs were more abundant in intragenic regions compared to promoters and these methylated intragenic CGIs (iCGIs) were associated with neuronal development-related genes. When we compared gene expression level of methylated and unmethylated CGIs in intragenic regions, DNA methylation of iCGI was positively correlated with gene expression in contrast with promoter CGIs (pCGIs). To gain insight into regulatory mechanism mediated by iCGI DNA methylation, we executed motif searching in hypermethylated iCGIs and found NEUROD1 as a hypermethylated iCGI binding transcription factor. This study highlights give rise to possibility of activating role of hypermethylation in iCGIs and involvement of neuronal development related TFs. Graphical Abstract The relationship between iCGI DNA methylation and expression of associated genes in neuronal developmental process. During iPSC to NPCdifferentiation, iCGI containing neural developmental genes show iCGI's DNA hypermethylation which is accompanied by gene activation and NEUROD1which is one of the core neuronal TFs interacts with hypermethylated iCGI regions.
Collapse
Affiliation(s)
- Won-Young Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Hyun Hwang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Andrew J Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Jungwoo Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea.
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea. .,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
HOTAIRM1 regulates neuronal differentiation by modulating NEUROGENIN 2 and the downstream neurogenic cascade. Cell Death Dis 2020; 11:527. [PMID: 32661334 PMCID: PMC7359305 DOI: 10.1038/s41419-020-02738-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Neuronal differentiation is a timely and spatially regulated process, relying on precisely orchestrated gene expression control. The sequential activation/repression of genes driving cell fate specification is achieved by complex regulatory networks, where transcription factors and noncoding RNAs work in a coordinated manner. Herein, we identify the long noncoding RNA HOTAIRM1 (HOXA Transcript Antisense RNA, Myeloid-Specific 1) as a new player in neuronal differentiation. We demonstrate that the neuronal-enriched HOTAIRM1 isoform epigenetically controls the expression of the proneural transcription factor NEUROGENIN 2 that is key to neuronal fate commitment and critical for brain development. We also show that HOTAIRM1 activity impacts on NEUROGENIN 2 downstream regulatory cascade, thus contributing to the achievement of proper neuronal differentiation timing. Finally, we identify the RNA-binding proteins HNRNPK and FUS as regulators of HOTAIRM1 biogenesis and metabolism. Our findings uncover a new regulatory layer underlying NEUROGENIN 2 transitory expression in neuronal differentiation and reveal a previously unidentified function for the neuronal-induced long noncoding RNA HOTAIRM1.
Collapse
|
19
|
Kakebeen AD, Chitsazan AD, Williams MC, Saunders LM, Wills AE. Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors. eLife 2020; 9:e52648. [PMID: 32338593 PMCID: PMC7250574 DOI: 10.7554/elife.52648] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/25/2020] [Indexed: 12/24/2022] Open
Abstract
Vertebrate appendage regeneration requires precisely coordinated remodeling of the transcriptional landscape to enable the growth and differentiation of new tissue, a process executed over multiple days and across dozens of cell types. The heterogeneity of tissues and temporally-sensitive fate decisions involved has made it difficult to articulate the gene regulatory programs enabling regeneration of individual cell types. To better understand how a regenerative program is fulfilled by neural progenitor cells (NPCs) of the spinal cord, we analyzed pax6-expressing NPCs isolated from regenerating Xenopus tropicalis tails. By intersecting chromatin accessibility data with single-cell transcriptomics, we find that NPCs place an early priority on neuronal differentiation. Late in regeneration, the priority returns to proliferation. Our analyses identify Pbx3 and Meis1 as critical regulators of tail regeneration and axon organization. Overall, we use transcriptional regulatory dynamics to present a new model for cell fate decisions and their regulators in NPCs during regeneration.
Collapse
Affiliation(s)
| | | | | | - Lauren M Saunders
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | | |
Collapse
|
20
|
Singh Y, Leinonen H, Fazaludeen F, Jaronen M, Guest D, Buckley N, Byts N, Oksa P, Jalkanen K, Iqbal I, Huuskonen M, Savchenko E, Keksa-Goldsteine V, Chew S, Myllyharju J, Tanila H, Ooi L, Koistinaho J, Kanninen KM, Malm T. Loss of Cln5 leads to altered Gad1 expression and deficits in interneuron development in mice. Hum Mol Genet 2019; 28:3309-3322. [PMID: 31294445 DOI: 10.1093/hmg/ddz165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/06/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
The Finnish-variant late infantile neuronal ceroid lipofuscinosis, also known as CLN5 disease, is caused by mutations in the CLN5 gene. Cln5 is strongly expressed in the developing brain and expression continues into adulthood. CLN5, a protein of unknown function, is implicated in neurodevelopment but detailed investigation is lacking. Using Cln5-/- embryos of various ages and cells harvested from Cln5-/- brains we investigated the hitherto unknown role of Cln5 in the developing brain. Loss of Cln5 results in neuronal differentiation deficits and delays in interneuron development during in utero period. Specifically, the radial thickness of dorsal telencephalon was significantly decreased in Cln5-/- mouse embryos at embryonic day 14.5 (E14.5), and expression of Tuj1, an important neuronal marker during development, was down-regulated. An interneuron marker calbindin and a mitosis marker p-H3 showed down-regulation in ganglionic eminences. Neurite outgrowth was compromised in primary cortical neuronal cultures derived from E16 Cln5-/- embryos compared with WT embryos. We show that the developmental deficits of interneurons may be linked to increased levels of the repressor element 1-silencing transcription factor, which we report to bind to glutamate decarboxylase (Gad1), which encodes GAD67, a rate-limiting enzyme in the production of gamma-aminobutyric acid (GABA). Indeed, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons. Furthermore, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons and showed age-independent cortical hyper excitability as measured by electroencephalogram and auditory-evoked potentials. This study highlights the importance of Cln5 in neurodevelopment and suggests that in contrast to earlier reports, CLN5 disease is likely to develop during embryonic stages.
Collapse
Affiliation(s)
- Yajuvinder Singh
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Leinonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Feroze Fazaludeen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Merja Jaronen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Debbie Guest
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Noel Buckley
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Nadiya Byts
- Oulu Centre for Cell Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Petra Oksa
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kari Jalkanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Imran Iqbal
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Huuskonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Savchenko
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Velta Keksa-Goldsteine
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Myllyharju
- Oulu Centre for Cell Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
21
|
Klann M, Seaver EC. Functional role of pax6 during eye and nervous system development in the annelid Capitella teleta. Dev Biol 2019; 456:86-103. [PMID: 31445008 DOI: 10.1016/j.ydbio.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
The transcription factor Pax6 is an important regulator of early animal development. Loss of function mutations of pax6 in a range of animals result in a reduction or complete loss of the eye, a reduction of a subset of neurons, and defects in axon growth. There are no studies focusing on the role of pax6 during development of any lophotrochozoan representative, however, expression of pax6 in the developing eye and nervous system in a number of species suggest that pax6 plays a highly conserved role in eye and nervous system formation. We investigated the functional role of pax6 during development of the marine annelid Capitella teleta. Expression of pax6 transcripts in C. teleta larvae is similar to patterns found in other animals, with distinct subdomains in the brain and ventral nerve cord as well as in the larval and juvenile eye. To perturb pax6 function, two different splice-blocking morpholinos and a translation-blocking morpholino were used. Larvae resulting from microinjections with either splice-blocking morpholino show a reduction of the pax6 transcript. Development of both the larval eyes and the central nervous system architecture are highly disrupted following microinjection of each of the three morpholinos. The less severe phenotype observed when only the homeodomain is disrupted suggests that presence of the paired domain is sufficient for partial function of the Pax6 protein. Preliminary downstream target analysis confirms disruption in expression of some components of the retinal gene regulatory network, as well as disruption of genes involved in nervous system development. Results from this study, taken together with studies from other species, reveal an evolutionarily conserved role for pax6 in eye and neural specification and development.
Collapse
Affiliation(s)
- Marleen Klann
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA.
| |
Collapse
|
22
|
Joshi P, Darr AJ, Skromne I. CDX4 regulates the progression of neural maturation in the spinal cord. Dev Biol 2019; 449:132-142. [PMID: 30825428 DOI: 10.1016/j.ydbio.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
The progression of cells down different lineage pathways is a collaborative effort between networks of extracellular signals and intracellular transcription factors. In the vertebrate spinal cord, FGF, Wnt and Retinoic Acid signaling pathways regulate the progressive caudal-to-rostral maturation of neural progenitors by regulating a poorly understood gene regulatory network of transcription factors. We have mapped out this gene regulatory network in the chicken pre-neural tube, identifying CDX4 as a dual-function core component that simultaneously regulates gradual loss of cell potency and acquisition of differentiation states: in a caudal-to-rostral direction, CDX4 represses the early neural differentiation marker Nkx1.2 and promotes the late neural differentiation marker Pax6. Significantly, CDX4 prevents premature PAX6-dependent neural differentiation by blocking Ngn2 activation. This regulation of CDX4 over Pax6 is restricted to the rostral pre-neural tube by Retinoic Acid signaling. Together, our results show that in the spinal cord, CDX4 is part of the gene regulatory network controlling the sequential and progressive transition of states from high to low potency during neural progenitor maturation. Given CDX well-known involvement in Hox gene regulation, we propose that CDX factors coordinate the maturation and axial specification of neural progenitor cells during spinal cord development.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, 600 5th St S, St. Petersburg, FL 33701, United States
| | - Andrew J Darr
- Department of Health Sciences Education, University of Illinois College of Medicine, 1 Illini Drive, Peoria, IL 61605, United States
| | - Isaac Skromne
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Department of Biology, University of Richmond, 138 UR Drive B322, Richmond, VA, 23173, United States.
| |
Collapse
|
23
|
Ryan BC, Lowe K, Hanson L, Gil T, Braun L, Howard PL, Chow RL. Mapping the Pax6 3' untranslated region microRNA regulatory landscape. BMC Genomics 2018; 19:820. [PMID: 30442116 PMCID: PMC6238409 DOI: 10.1186/s12864-018-5212-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PAX6 is a homeodomain transcription factor that acts in a highly dosage-sensitive manner to regulate the development and function of the eyes, nose, central nervous system, gut, and endocrine pancreas. Several individual microRNAs (miRNA) have been implicated in regulating PAX6 in different cellular contexts, but a more general view of how they contribute to the fine-tuning and homeostasis of PAX6 is poorly understood. RESULTS Here, a comprehensive analysis of the Pax6 3' untranslated region was performed to map potential miRNA recognition elements and served as a backdrop for miRNA expression profiling experiments to identify potential cell/tissue-specific miRNA codes. Pax6 3'UTR pull-down studies identified a cohort of miRNA interactors in pancreatic αTC1-6 cells that, based on the spacing of their recognition sites in the Pax6 3'UTR, revealed 3 clusters where cooperative miRNA regulation may occur. Some of these interacting miRNAs have been implicated in α cell function but have not previously been linked to Pax6 function and may therefore represent novel PAX6 regulators. CONCLUSIONS These findings reveal a regulatory landscape upon which miRNAs may participate in the developmental control, fine-tuning and/or homeostasis of PAX6 levels.
Collapse
Affiliation(s)
- Bridget C. Ryan
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Kieran Lowe
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Laura Hanson
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Talveen Gil
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Lauren Braun
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Perry L. Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2 Canada
| | - Robert L. Chow
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| |
Collapse
|
24
|
Verrier L, Davidson L, Gierliński M, Dady A, Storey KG. Neural differentiation, selection and transcriptomic profiling of human neuromesodermal progenitor-like cells in vitro. Development 2018; 145:dev166215. [PMID: 29899136 PMCID: PMC6124542 DOI: 10.1242/dev.166215] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/30/2018] [Indexed: 01/06/2023]
Abstract
Robust protocols for directed differentiation of human pluripotent cells are required to determine whether mechanisms operating in model organisms are relevant to our own development. Recent work in vertebrate embryos has identified neuromesodermal progenitors as a bipotent cell population that contributes to paraxial mesoderm and spinal cord. However, precise protocols for in vitro differentiation of human spinal cord progenitors are lacking. Informed by signalling in amniote embryos, we show here that transient dual-SMAD inhibition, together with retinoic acid (dSMADi-RA), provides rapid and reproducible induction of human spinal cord progenitors from neuromesodermal progenitor-like cells. Using CRISPR-Cas9 to engineer human embryonic stem cells with a GFP-reporter for neuromesodermal progenitor-associated gene Nkx1.2 we facilitate selection of this cell population. RNA-sequencing was then used to identify human and conserved neuromesodermal progenitor transcriptional signatures, to validate this differentiation protocol and to reveal new pathways/processes in human neural differentiation. This optimised protocol, novel reporter line and transcriptomic data are useful resources with which to dissect molecular mechanisms regulating human spinal cord generation and allow the scaling-up of distinct cell populations for global analyses, including proteomic, biochemical and chromatin interrogation.
Collapse
Affiliation(s)
- Laure Verrier
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lindsay Davidson
- Human Pluripotent Cell Facility, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Marek Gierliński
- Data analysis group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alwyn Dady
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
25
|
Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:55-79. [PMID: 29204829 DOI: 10.1007/978-3-319-69194-7_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ependyma of the spinal cord is currently proposed as a latent neural stem cell niche. This chapter discusses recent knowledge on the developmental origin and nature of the heterogeneous population of cells that compose this stem cell microenviroment, their diverse physiological properties and regulation. The chapter also reviews relevant data on the ependymal cells as a source of plasticity for spinal cord repair.
Collapse
|
26
|
Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination. PLoS Biol 2018; 16:e2004162. [PMID: 29708962 PMCID: PMC5945229 DOI: 10.1371/journal.pbio.2004162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/10/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.
Collapse
|
27
|
Joshi R, Fuller B, Li J, Tavana H. Statistical analysis of multi-dimensional, temporal gene expression of stem cells to elucidate colony size-dependent neural differentiation. Mol Omics 2018; 14:109-120. [PMID: 29659650 DOI: 10.1039/c8mo00011e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High throughput gene expression analysis using qPCR is commonly used to identify molecular markers of complex cellular processes. However, statistical analysis of multi-dimensional, temporal gene expression data is complicated by limited biological replicates and large number of measurements. Moreover, many available statistical tools for analysis of time series data assume that the data sequence is static and does not evolve over time. With this assumption, the parameters used to model the time series are fixed and thus, can be estimated by pooling data together. However, in many cases, dynamic processes of biological systems involve abrupt changes at unknown time points, making the assumption of stationary time series break down. We addressed this problem using a combination of statistical methods including hierarchical clustering, change point detection, and multiple testing. We applied this multi-step method to multi-dimensional, temporal gene expression data that resulted from our study of colony size-dependent neural cell differentiation of stem cells. The gene expression data were time series as the observations were recorded sequentially over time. Hierarchical clustering segregated the genes into three distinct clusters based on their temporal expression profiles; change point detection identified specific time points at which the entire dataset was divided into several homogenous subsets to allow a separate analysis of each subset; and multiple testing procedure identified the differentially expressed genes in each cluster within each subset of data. We established that our multi-step approach pinpoints specific sets of genes that underlie colony size-mediated neural differentiation of stem cells and demonstrated its advantages over conventional parametric and non-parametric tests that do not take into account temporal dynamics of the data. Importantly, our proposed approach is broadly applicable to any multivariate data sets of limited sample size from high throughput and high content screening such as in drug and biomarker discovery studies.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, 260 S. Forge St., Akron, Ohio 44325, USA.
| | | | | | | |
Collapse
|
28
|
Lacomme M, Medevielle F, Bourbon HM, Thierion E, Kleinjan DJ, Roussat M, Pituello F, Bel-Vialar S. A long range distal enhancer controls temporal fine-tuning of PAX6 expression in neuronal precursors. Dev Biol 2018; 436:94-107. [PMID: 29486153 DOI: 10.1016/j.ydbio.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Proper embryonic development relies on a tight control of spatial and temporal gene expression profiles in a highly regulated manner. One good example is the ON/OFF switching of the transcription factor PAX6 that governs important steps of neurogenesis. In the neural tube PAX6 expression is initiated in neural progenitors through the positive action of retinoic acid signaling and downregulated in neuronal precursors by the bHLH transcription factor NEUROG2. How these two regulatory inputs are integrated at the molecular level to properly fine tune temporal PAX6 expression is not known. In this study we identified and characterized a 940-bp long distal cis-regulatory module (CRM), located far away from the PAX6 transcription unit and which conveys positive input from RA signaling pathway and indirect repressive signal(s) from NEUROG2. These opposing regulatory signals are integrated through HOMZ, a 94 bp core region within E940 which is evolutionarily conserved in distant organisms such as the zebrafish. We show that within HOMZ, NEUROG2 and RA exert their opposite temporal activities through a short 60 bp region containing a functional RA-responsive element (RARE). We propose a model in which retinoic acid receptors (RARs) and NEUROG2 repressive target(s) compete on the same DNA motif to fine tune temporal PAX6 expression during the course of spinal neurogenesis.
Collapse
Affiliation(s)
- Marine Lacomme
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France; Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, Québec, Canada
| | - François Medevielle
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Elodie Thierion
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dirk-Jan Kleinjan
- 1UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mélanie Roussat
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
29
|
Marichal N, Reali C, Rehermann MI, Trujillo-Cenóz O, Russo RE. Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:241-264. [DOI: 10.1007/978-3-319-62817-2_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
30
|
Kim KC, Choi CS, Gonzales ELT, Mabunga DFN, Lee SH, Jeon SJ, Hwangbo R, Hong M, Ryu JH, Han SH, Bahn GH, Shin CY. Valproic Acid Induces Telomerase Reverse Transcriptase Expression during Cortical Development. Exp Neurobiol 2017; 26:252-265. [PMID: 29093634 PMCID: PMC5661058 DOI: 10.5607/en.2017.26.5.252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 01/11/2023] Open
Abstract
The valproic acid (VPA)-induced animal model is one of the most widely utilized environmental risk factor models of autism. Autism spectrum disorder (ASD) remains an insurmountable challenge among neurodevelopmental disorders due to its heterogeneity, unresolved pathological pathways and lack of treatment. We previously reported that VPA-exposed rats and cultured rat primary neurons have increased Pax6 expression during post-midterm embryonic development which led to the sequential upregulation of glutamatergic neuronal markers. In this study, we provide experimental evidence that telomerase reverse transcriptase (TERT), a protein component of ribonucleoproteins complex of telomerase, is involved in the abnormal components caused by VPA in addition to Pax6 and its downstream signals. In embryonic rat brains and cultured rat primary neural progenitor cells (NPCs), VPA induced the increased expression of TERT as revealed by Western blot, RT-PCR, and immunostainings. The HDAC inhibitor property of VPA is responsible for the TERT upregulation. Chromatin immunoprecipitation revealed that VPA increased the histone acetylation but blocked the HDAC1 binding to both Pax6 and Tert genes. Interestingly, the VPA-induced TERT overexpression resulted to sequential upregulations of glutamatergic markers such as Ngn2 and NeuroD1, and inter-synaptic markers such as PSD-95, α-CaMKII, vGluT1 and synaptophysin. Transfection of Tert siRNA reversed the effects of VPA in cultured NPCs confirming the direct involvement of TERT in the expression of those markers. This study suggests the involvement of TERT in the VPA-induced autistic phenotypes and has important implications for the role of TERT as a modulator of balanced neuronal development and transmission in the brain.
Collapse
Affiliation(s)
- Ki Chan Kim
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Chang Soon Choi
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Edson Luck T Gonzales
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Darine Froy N Mabunga
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang Univeristy, Seoul 06974, Korea
| | - Se Jin Jeon
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Ram Hwangbo
- Department of Psychiatry, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Minha Hong
- Department of Psychiatry, Seonam University, College of Medicine, Myongji Hospital, Goyang 10475, Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Seol-Heui Han
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
31
|
Abstract
During vertebrate embryonic development, the spinal cord is formed by the neural derivatives of a neuromesodermal population that is specified at early stages of development and which develops in concert with the caudal regression of the primitive streak. Several processes related to spinal cord specification and maturation are coupled to this caudal extension including neurogenesis, ventral patterning and neural crest specification and all of them seem to be crucially regulated by Fibroblast Growth Factor (FGF) signaling, which is prominently active in the neuromesodermal region and transiently in its derivatives. Here we review the role of FGF signaling in those processes, trying to separate its different functions and highlighting the interactions with other signaling pathways. Finally, these early functions of FGF signaling in spinal cord development may underlay partly its ability to promote regeneration in the lesioned spinal cord as well as its action promoting specific fates in neural stem cell cultures that may be used for therapeutical purposes.
Collapse
Affiliation(s)
- Ruth Diez Del Corral
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Champalimaud Research, Champalimaud Centre for the UnknownLisbon, Portugal
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
32
|
Kabayiza KU, Masgutova G, Harris A, Rucchin V, Jacob B, Clotman F. The Onecut Transcription Factors Regulate Differentiation and Distribution of Dorsal Interneurons during Spinal Cord Development. Front Mol Neurosci 2017; 10:157. [PMID: 28603487 PMCID: PMC5445119 DOI: 10.3389/fnmol.2017.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023] Open
Abstract
During embryonic development, the dorsal spinal cord generates numerous interneuron populations eventually involved in motor circuits or in sensory networks that integrate and transmit sensory inputs from the periphery. The molecular mechanisms that regulate the specification of these multiple dorsal neuronal populations have been extensively characterized. In contrast, the factors that contribute to their diversification into smaller specialized subsets and those that control the specific distribution of each population in the developing spinal cord remain unknown. Here, we demonstrate that the Onecut transcription factors, namely Hepatocyte Nuclear Factor-6 (HNF-6) (or OC-1), OC-2 and OC-3, regulate the diversification and the distribution of spinal dorsal interneuron (dINs). Onecut proteins are dynamically and differentially distributed in spinal dINs during differentiation and migration. Analyzes of mutant embryos devoid of Onecut factors in the developing spinal cord evidenced a requirement in Onecut proteins for proper production of a specific subset of dI5 interneurons. In addition, the distribution of dI3, dI5 and dI6 interneuron populations was altered. Hence, Onecut transcription factors control genetic programs that contribute to the regulation of spinal dIN diversification and distribution during embryonic development.
Collapse
Affiliation(s)
- Karolina U Kabayiza
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium.,Biology Department, School of Science, College of Science and Technology, University of RwandaButare, Rwanda
| | - Gauhar Masgutova
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium
| | - Audrey Harris
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium
| | - Vincent Rucchin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium
| | - Benvenuto Jacob
- Université catholique de Louvain, Institute of Neuroscience, System and Cognition DivisionBrussels, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural DifferentiationBrussels, Belgium
| |
Collapse
|
33
|
Hawley ZCE, Campos-Melo D, Droppelmann CA, Strong MJ. MotomiRs: miRNAs in Motor Neuron Function and Disease. Front Mol Neurosci 2017; 10:127. [PMID: 28522960 PMCID: PMC5415563 DOI: 10.3389/fnmol.2017.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
MiRNAs are key regulators of the mammalian transcriptome that have been increasingly linked to degenerative diseases of the motor neurons. Although many of the miRNAs currently incriminated as participants in the pathogenesis of these diseases are also important to the normal development and function of motor neurons, at present there is no knowledge of the complete miRNA profile of motor neurons. In this review, we examine the current understanding with respect to miRNAs that are specifically required for motor neuron development, function and viability, and provide evidence that these should be considered as a functional network of miRNAs which we have collectively termed MotomiRs. We will also summarize those MotomiRs currently known to be associated with both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), and discuss their potential use as biomarkers.
Collapse
Affiliation(s)
- Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| |
Collapse
|
34
|
Molina A, Pituello F. Playing with the cell cycle to build the spinal cord. Dev Biol 2016; 432:14-23. [PMID: 28034699 DOI: 10.1016/j.ydbio.2016.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions.
Collapse
Affiliation(s)
- Angie Molina
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
35
|
Intermediate Progenitor Cohorts Differentially Generate Cortical Layers and Require Tbr2 for Timely Acquisition of Neuronal Subtype Identity. Cell Rep 2016; 16:92-105. [PMID: 27320921 DOI: 10.1016/j.celrep.2016.05.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/28/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
Intermediate progenitors (IPs) amplify the production of pyramidal neurons, but their role in selective genesis of cortical layers or neuronal subtypes remains unclear. Using genetic lineage tracing in mice, we find that IPs destined to produce upper cortical layers first appear early in corticogenesis, by embryonic day 11.5. During later corticogenesis, IP laminar fates are progressively limited to upper layers. We examined the role of Tbr2, an IP-specific transcription factor, in laminar fate regulation using Tbr2 conditional mutant mice. Upon Tbr2 inactivation, fewer neurons were produced by immediate differentiation and laminar fates were shifted upward. Genesis of subventricular mitoses was, however, not reduced in the context of a Tbr2-null cortex. Instead, neuronal and laminar differentiation were disrupted and delayed. Our findings indicate that upper-layer genesis depends on IPs from many stages of corticogenesis and that Tbr2 regulates the tempo of laminar fate implementation for all cortical layers.
Collapse
|
36
|
Sox2 and Pax6 Play Counteracting Roles in Regulating Neurogenesis within the Murine Olfactory Epithelium. PLoS One 2016; 11:e0155167. [PMID: 27171428 PMCID: PMC4865097 DOI: 10.1371/journal.pone.0155167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
In the adult olfactory epithelium, the transcription factors Pax6 and Sox2 are co-expressed in sustentacular cells, horizontal basal cells (HBCs), and less-differentiated globose basal cells (GBCs)–both multipotent and transit amplifying categories—but are absent from immediate neuronal precursor GBCs and olfactory sensory neurons (OSNs). We used retroviral-vector transduction to over-express Pax6 and Sox2 individually and together during post-lesion recovery to determine how they regulate neuronal differentiation. Both Pax6 and Sox2, separately and together, can suppress the production of OSNs, as fewer clones contain neurons than with empty vector (EV), although this effect is not absolute. In this regard, Pax6 has the strongest effect when acting alone. In clones where neurons form, Pax6 reduces neuron numbers by comparison with EV, while Sox2 expands their numbers. Co-transduction with Pax6 and Sox2 produces an intermediate result. The increased production of OSNs driven by Sox2 is due to the expansion of neuronal progenitors, since proliferation and the numbers of Ascl1, Neurog1, and NeuroD1-expressing GBCs are increased. Conversely, Pax6 seems to accelerate neuronal differentiation, since Ascl1 labeling is reduced, while Neurog1- and NeuroD1-labeled GBCs are enriched. As a complement to the over-expression experiments, elimination of Sox2 in spared cells of floxed Sox2 mice, by retroviral Cre or by K5-driven CreERT2, reduces the production of OSNs and non-neuronal cells during OE regeneration. These data suggest that Pax6 and Sox2 have counteracting roles in regulating neurogenesis, in which Pax6 accelerates neuronal production, while Sox2 retards it and expands the pool of neuronal progenitors.
Collapse
|
37
|
Nervous system development in cephalopods: How egg yolk-richness modifies the topology of the mediolateral patterning system. Dev Biol 2016; 415:143-156. [PMID: 27151209 DOI: 10.1016/j.ydbio.2016.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 04/30/2016] [Accepted: 04/30/2016] [Indexed: 11/22/2022]
Abstract
Cephalopods possess the most complex centralized nervous system among molluscs and the molecular determinants of its development have only begun to be explored. To better understand how evolved their brain and body axes, we studied Sepia officinalis embryos and investigated the expression patterns of neural regionalization genes involved in the mediolateral patterning of the neuroectoderm in model species. SoxB1 expression reveals that the embryonic neuroectoderm is made of several distinct territories that constitute a large part of the animal pole disc. Concentric nkx2.1, pax6/gsx, and pax3/7/msx/pax2/5/8 positive domains subdivide this neuroectoderm. Looking from dorsal to ventral sides, the sequence of these expressions is reminiscent of the mediolateral subdivision in model species, which provides good evidence for "mediolateral patterning" conservation in cephalopods. A specific feature of cephalopod development, however, includes an unconventional orientation to this mediolateral sequence: median markers (like nkx2.1) are unexpectedly expressed at the periphery of the cuttlefish embryo and lateral markers (like Pax3/7) are expressed centrally. As the egg is rich with yolk, the lips of the blastopore (that classically organizes the neural midline) remain unclosed at the lateral side of the animal pole until late stages of organogenesis, therefore reversing the whole embryo topology. These findings confirm - by means of molecular tools - the location of both ventral and dorsal poles in cephalopod embryos.
Collapse
|
38
|
Bhinge A, Namboori SC, Bithell A, Soldati C, Buckley NJ, Stanton LW. MiR-375 is Essential for Human Spinal Motor Neuron Development and May Be Involved in Motor Neuron Degeneration. Stem Cells 2016; 34:124-134. [DOI: 10.1002/stem.2233] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress proneuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.
Collapse
Affiliation(s)
- Akshay Bhinge
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Seema C. Namboori
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Angela Bithell
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, London, UK
| | - Chiara Soldati
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, London, UK
| | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom
| | - Lawrence W. Stanton
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
39
|
Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells. Stem Cells Int 2015; 2016:4034620. [PMID: 26788067 PMCID: PMC4693026 DOI: 10.1155/2016/4034620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Rybp (Ring1 and Yy1 Binding Protein) is a transcriptional regulator and member of the noncanonical polycomb repressive complex 1 with essential role in early embryonic development. We have previously described that alteration of Rybp dosage in mouse models induced striking neural tube defects (NTDs), exencephaly, and disorganized neurocortex. In this study we further investigated the role of Rybp in neural differentiation by utilising wild type (rybp+/+) and rybp null mutant (rybp−/−) embryonic stem cells (ESCs) and tried to uncover underlying molecular events that are responsible for the observed phenotypic changes. We found that rybp null mutant ESCs formed less matured neurons, astrocytes, and oligodendrocytes from existing progenitors than wild type cells. Furthermore, lack of rybp coincided with altered gene expression of key neural markers including Pax6 and Plagl1 pinpointing a possible transcriptional circuit among these genes.
Collapse
|
40
|
Ahmad Z, Rafeeq M, Collombat P, Mansouri A. Pax6 Inactivation in the Adult Pancreas Reveals Ghrelin as Endocrine Cell Maturation Marker. PLoS One 2015; 10:e0144597. [PMID: 26658466 PMCID: PMC4676685 DOI: 10.1371/journal.pone.0144597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Pax6 is an important regulator of development and cell differentiation in various organs. Thus, Pax6 was shown to promote neural development in the cerebral cortex and spinal cord, and to control pancreatic endocrine cell genesis. However, the role of Pax6 in distinct endocrine cells of the adult pancreas has not been addressed. We report the conditional inactivation of Pax6 in insulin and glucagon producing cells of the adult mouse pancreas. In the absence of Pax6, beta- and alpha-cells lose their molecular maturation characteristics. Our findings provide strong evidence that Pax6 is responsible for the maturation of beta-, and alpha-cells, but not of delta-, and PP-cells. Moreover, lineage-tracing experiments demonstrate that Pax6-deficient beta- and alpha-cells are shunted towards ghrelin marked cells, sustaining the idea that ghrelin may represent a marker for endocrine cell maturation.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
- * E-mail: (AM); (ZA)
| | - Maria Rafeeq
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
| | - Patrick Collombat
- Université de Nice Sophia Antipolis, Nice, France
- Inserm U1091, IBV, Diabetes Genetics Team, Nice, France
- JDRF, New York, NY, United States of America
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey
| | - Ahmed Mansouri
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
- JDRF, New York, NY, United States of America
- University of Goettingen, Department of Clinical Neurophysiology, Goettingen, Germany
- * E-mail: (AM); (ZA)
| |
Collapse
|
41
|
Wu CY, Persaud SD, Wei LN. Retinoic Acid Induces Ubiquitination-Resistant RIP140/LSD1 Complex to Fine-Tune Pax6 Gene in Neuronal Differentiation. Stem Cells 2015; 34:114-23. [PMID: 26372689 DOI: 10.1002/stem.2190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023]
Abstract
Receptor-interacting protein 140 (RIP140) is a wide-spectrum coregulator for hormonal regulation of gene expression, but its activity in development/stem cell differentiation is unknown. Here, we identify RIP140 as an immediate retinoic acid (RA)-induced dual-function chaperone for LSD1 (lysine-specific demethylase 1). RIP140 protects LSD1's catalytic domain and antagonizes its Jade-2-mediated ubiquitination and degradation. In RA-induced neuronal differentiation, the increased RIP140/LSD1 complex is recruited by RA-elevated Pit-1 to specifically reduce H3K4me2 modification on the Pax6 promoter, thereby repressing RA-induction of Pax6. This study reveals a new RA-induced gene repressive mechanism that modulates the abundance, enzyme quality, and recruitment of histone modifier LSD1 to neuronal regulator Pax6, which provides a homeostatic control for RA induction of neuronal differentiation.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Shawna D Persaud
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Curto GG, Gard C, Ribes V. Structures and properties of PAX linked regulatory networks architecting and pacing the emergence of neuronal diversity. Semin Cell Dev Biol 2015; 44:75-86. [DOI: 10.1016/j.semcdb.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022]
|
43
|
Huettl RE, Eckstein S, Stahl T, Petricca S, Ninkovic J, Götz M, Huber AB. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Dev Biol 2015; 413:86-103. [PMID: 26187199 DOI: 10.1016/j.ydbio.2015.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/21/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning.
Collapse
Affiliation(s)
- Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Simone Eckstein
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tessa Stahl
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefania Petricca
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
44
|
Jin YM, Wang G, Zhang N, Wei YF, Li S, Chen YP, Chuai M, Lee HSS, Hocher B, Yang X. Changes in the osmolarity of the embryonic microenvironment induce neural tube defects. Mol Reprod Dev 2015; 82:365-76. [DOI: 10.1002/mrd.22482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/24/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Yi-mei Jin
- Key Laboratory for Regenerative Medicine of the Ministry of Education; Division of Histology and Embryology; Medical College; Jinan University; Guangzhou China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education; Division of Histology and Embryology; Medical College; Jinan University; Guangzhou China
| | - Nuan Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education; Division of Histology and Embryology; Medical College; Jinan University; Guangzhou China
| | - Yi-fan Wei
- Key Laboratory for Regenerative Medicine of the Ministry of Education; Division of Histology and Embryology; Medical College; Jinan University; Guangzhou China
| | - Shuai Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education; Division of Histology and Embryology; Medical College; Jinan University; Guangzhou China
| | - You-peng Chen
- Department of Neonates; The First Affiliated Hospital of Jinan University; Guangzhou China
| | - Manli Chuai
- Division of Cell and Developmental Biology; University of Dundee; Dundee United Kingdom
| | - Henry Siu Sum Lee
- Faculty of Life Sciences; University of Manchester; Manchester United Kingdom
| | - Berthold Hocher
- Department of Neonates; The First Affiliated Hospital of Jinan University; Guangzhou China
- Humboldt University of Berlin; University Hospital Charite; Center for Cardiovascular Research & Institute for Pharmacology; Berlin Germany
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education; Division of Histology and Embryology; Medical College; Jinan University; Guangzhou China
| |
Collapse
|
45
|
Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 2015; 9:70. [PMID: 25805971 PMCID: PMC4354436 DOI: 10.3389/fncel.2015.00070] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development.
Collapse
Affiliation(s)
- Martine N Manuel
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - Da Mi
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - John O Mason
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| |
Collapse
|
46
|
Li X, Liu Z, Qiu M, Yang Z. Sp8 plays a supplementary role to Pax6 in establishing the pMN/p3 domain boundary in the spinal cord. Development 2014; 141:2875-84. [DOI: 10.1242/dev.105387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Progenitor cells are segregated into multiple domains along the dorsoventral axis of the vertebrate neural tube, and each progenitor domain generates particular types of neurons. Selective cross-repressive interactions between pairs of class I and class II transcription factors play important roles in patterning neural progenitors into domains with clear boundaries. Here, we provide evidence that the zinc-finger protein Sp8 plays a supplementary role to Pax6 in establishing the pMN/p3 domain boundary through mutually repressive interactions with the class II protein Nkx2-2. The ventral limit of Sp8 expression is complementary to the dorsal limit of Nkx2-2 expression at the pMN/p3 boundary. Sp8 and Nkx2-2 exert cross-repressive interactions, and changing the expression of Sp8 and Nkx2-2 is coupled with pMN and p3 progenitor fate conversion. Sp8 exerts its neural patterning activities by acting as a transcriptional activator. The expression of a repressive form of Sp8 results in the selective inhibition of motor neuron generation and the ectopic induction of Nkx2-2 expression. Sp8 expression is positively regulated by, but not completely dependent on, Pax6. Furthermore, whereas loss of Pax6 function alone results in disruption of the pMN/p3 domain boundary only in the rostral levels of the spinal cord, loss of both Sp8 and Pax6 functions results in disruption of the pMN/p3 domain boundary along the whole rostrocaudal axis of the spinal cord. We conclude that Sp8 plays a supplementary role to Pax6 in specifying the pMN over p3 progenitor fate through cross-repressive interactions with Nkx2-2.
Collapse
Affiliation(s)
- Xiaosu Li
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zhidong Liu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou 310036, China
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY40392, USA
| | - Zhengang Yang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 2014; 141:737-51. [PMID: 24496612 DOI: 10.1242/dev.091785] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.
Collapse
Affiliation(s)
- Judith A Blake
- School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | |
Collapse
|
48
|
Farhy C, Elgart M, Shapira Z, Oron-Karni V, Yaron O, Menuchin Y, Rechavi G, Ashery-Padan R. Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS One 2013; 8:e76489. [PMID: 24073291 PMCID: PMC3779171 DOI: 10.1371/journal.pone.0076489] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
The coupling between cell-cycle exit and onset of differentiation is a common feature throughout the developing nervous system, but the mechanisms that link these processes are mostly unknown. Although the transcription factor Pax6 has been implicated in both proliferation and differentiation of multiple regions within the central nervous system (CNS), its contribution to the transition between these successive states remains elusive. To gain insight into the role of Pax6 during the transition from proliferating progenitors to differentiating precursors, we investigated cell-cycle and transcriptomic changes occurring in Pax6 (-) retinal progenitor cells (RPCs). Our analyses revealed a unique cell-cycle phenotype of the Pax6-deficient RPCs, which included a reduced number of cells in the S phase, an increased number of cells exiting the cell cycle, and delayed differentiation kinetics of Pax6 (-) precursors. These alterations were accompanied by coexpression of factors that promote (Ccnd1, Ccnd2, Ccnd3) and inhibit (P27 (kip1) and P27 (kip2) ) the cell cycle. Further characterization of the changes in transcription profile of the Pax6-deficient RPCs revealed abrogated expression of multiple factors which are known to be involved in regulating proliferation of RPCs, including the transcription factors Vsx2, Nr2e1, Plagl1 and Hedgehog signaling. These findings provide novel insight into the molecular mechanism mediating the pleiotropic activity of Pax6 in RPCs. The results further suggest that rather than conveying a linear effect on RPCs, such as promoting their proliferation and inhibiting their differentiation, Pax6 regulates multiple transcriptional networks that function simultaneously, thereby conferring the capacity to proliferate, assume multiple cell fates and execute the differentiation program into retinal lineages.
Collapse
Affiliation(s)
- Chen Farhy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michael Elgart
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zehavit Shapira
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Varda Oron-Karni
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Yaron
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yotam Menuchin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Pax6-Dependent Cortical Glutamatergic Neuronal Differentiation Regulates Autism-Like Behavior in Prenatally Valproic Acid-Exposed Rat Offspring. Mol Neurobiol 2013; 49:512-28. [DOI: 10.1007/s12035-013-8535-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
|
50
|
Kayam G, Kohl A, Magen Z, Peretz Y, Weisinger K, Bar A, Novikov O, Brodski C, Sela-Donenfeld D. A novel role for Pax6 in the segmental organization of the hindbrain. Development 2013; 140:2190-202. [PMID: 23578930 DOI: 10.1242/dev.089136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complex patterns and networks of genes coordinate rhombomeric identities, hindbrain segmentation and neuronal differentiation and are responsible for later brainstem functions. Pax6 is a highly conserved transcription factor crucial for neuronal development, yet little is known regarding its early roles during hindbrain segmentation. We show that Pax6 expression is highly dynamic in rhombomeres, suggesting an early function in the hindbrain. Utilization of multiple gain- and loss-of-function approaches in chick and mice revealed that loss of Pax6 disrupts the sharp expression borders of Krox20, Kreisler, Hoxa2, Hoxb1 and EphA and leads to their expansion into adjacent territories, whereas excess Pax6 reduces these expression domains. A mutual negative cross-talk between Pax6 and Krox20 allows these genes to be co-expressed in the hindbrain through regulation of the Krox20-repressor gene Nab1 by Pax6. Rhombomere boundaries are also distorted upon Pax6 manipulations, suggesting a mechanism by which Pax6 acts to set hindbrain segmentation. Finally, FGF signaling acts upstream of the Pax6-Krox20 network to regulate Pax6 segmental expression. This study unravels a novel role for Pax6 in the segmental organization of the early hindbrain and provides new evidence for its significance in regional organization along the central nervous system.
Collapse
Affiliation(s)
- Galya Kayam
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|