1
|
Wang B, Mao Z, Chen Y, Ying J, Wang H, Sun Z, Li J, Zhang C, Zhuo J. Identification and Functional Analysis of the fruitless Gene in a Hemimetabolous Insect, Nilaparvata lugens. INSECTS 2024; 15:262. [PMID: 38667392 PMCID: PMC11050625 DOI: 10.3390/insects15040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The fruitless (fru) gene functions as a crucial "tuner" in male insect courtship behavior through distinct expression patterns. In Nilaparvata lugens, our previous research showed doublesex (dsx) influencing male courtship songs, causing mating failures with virgin females. However, the impact of fru on N. lugens mating remains unexplored. In this study, the fru homolog (Nlfru) in N. lugens yielded four spliceosomes: Nlfru-374-a/b, Nlfru-377, and Nlfru-433, encoding proteins of 374aa, 377aa, and 433aa, respectively. Notably, only Nlfru-374b exhibited male bias, while the others were non-sex-specific. All NlFRU proteins featured the BTB conserved domain, with NlFRU-374 and NlFRU-377 possessing the ZnF domain with different sequences. RNAi-mediated Nlfru or its isoforms' knockdown in nymph stages blocked wing-flapping behavior in mating males, while embryonic knockdown via maternal RNAi resulted in over 80% of males losing wing-flapping ability, and female receptivity was reduced. Nlfru expression was Nldsx-regulated, and yet courtship signals and mating success were unaffected. Remarkably, RNAi-mediated Nlfru knockdown up-regulated the expression of flightin in macropterous males, which regulated muscle stiffness and delayed force response, suggesting Nlfru's involvement in muscle development regulation. Collectively, our results indicate that Nlfru functions in N. lugens exhibit a combination of conservation and species specificity, contributing insights into fru evolution, particularly in Hemiptera species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jichong Zhuo
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (B.W.); (Z.M.); (Y.C.); (J.Y.); (H.W.); (Z.S.); (J.L.); (C.Z.)
| |
Collapse
|
2
|
Akashi H, Hasui D, Ueda K, Ishikawa M, Takeda M, Miyagawa S. Understanding the role of environmental temperature on sex determination through comparative studies in reptiles and amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:48-59. [PMID: 37905472 DOI: 10.1002/jez.2760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
In vertebrates, species exhibit phenotypic plasticity of sex determination that the sex can plastically be determined by the external environmental temperature through a mechanism, temperature-dependent sex determination (TSD). Temperature exerts influence over the direction of sexual differentiation pathways, resulting in distinct primary sex ratios in a temperature-dependent manner. This review provides a summary of the thermal sensitivities associated with sex determination in reptiles and amphibians, with a focus on the pattern of TSD, gonadal differentiation, temperature sensing, and the molecular basis underlying thermal sensitivity in sex determination. Comparative studies across diverse lineages offer valuable insights into comprehending the evolution of sex determination as a phenotypic plasticity. While evidence of molecular mechanisms governing sexual differentiation pathways continues to accumulate, the intracellular signaling linking temperature sensing and sexual differentiation pathways remains elusive. We emphasize that uncovering these links is a key for understanding species-specific thermal sensitivities in TSD and will contribute to a more comprehensive understanding of ecosystem and biodiversity conservations.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Department of Integrated Biosciences, The University of Tokyo, Chiba, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Daiki Hasui
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kai Ueda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Momoka Ishikawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | | | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Petrović M, Meštrović A, Andretić Waldowski R, Filošević Vujnović A. A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster. PLoS One 2023; 18:e0275795. [PMID: 36952449 PMCID: PMC10035901 DOI: 10.1371/journal.pone.0275795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/19/2022] [Indexed: 03/25/2023] Open
Abstract
Addiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicotine and cocaine (COC) addiction. Scoring of COC-induced behaviors in a large group of flies has been technologically challenging, so we have applied a local, middle and global level of network-based analyses to study social interaction networks (SINs) among a group of 30 untreated males compared to those that have been orally administered with 0.50 mg/mL of COC for 24 hours. In this study, we have confirmed the previously described increase in locomotion upon COC feeding. We have isolated new network-based measures associated with COC, and influenced by group on the individual behavior. COC fed flies showed a longer duration of interactions on the local level, and formed larger, more densely populated and compact, communities at the middle level. Untreated flies have a higher number of interactions with other flies in a group at the local level, and at the middle level, these interactions led to the formation of separated communities. Although the network density at the global level is higher in COC fed flies, at the middle level the modularity is higher in untreated flies. One COC specific behavior that we have isolated was an increase in the proportion of individuals that do not interact with the rest of the group, considered as the individual difference in COC induced behavior and/or consequence of group influence on individual behavior. Our approach can be expanded on different classes of drugs with the same acute response as COC to determine drug specific network-based measures and could serve as a tool to determinate genetic and environmental factors that influence both drug addiction and social interaction.
Collapse
Affiliation(s)
- Milan Petrović
- Department of Informatics, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
| | - Ana Meštrović
- Department of Informatics, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
| | - Rozi Andretić Waldowski
- Department of Biotechnology, Laboratory for behavioral genetics, University of Rijeka, Rijeka, Croatia
| | - Ana Filošević Vujnović
- Department of Biotechnology, Laboratory for behavioral genetics, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
4
|
Duckhorn JC, Cande J, Metkus MC, Song H, Altamirano S, Stern DL, Shirangi TR. Regulation of Drosophila courtship behavior by the Tlx/tailless-like nuclear receptor, dissatisfaction. Curr Biol 2022; 32:1703-1714.e3. [PMID: 35245457 DOI: 10.1016/j.cub.2022.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Sexually dimorphic courtship behaviors in Drosophila melanogaster develop from the activity of the sexual differentiation genes, doublesex (dsx) and fruitless (fru), functioning with other regulatory factors that have received little attention. The dissatisfaction (dsf) gene encodes an orphan nuclear receptor homologous to vertebrate Tlx and Drosophila tailless that is critical for the development of several aspects of female- and male-specific sexual behaviors. Here, we report the pattern of dsf expression in the central nervous system and show that the activity of sexually dimorphic abdominal interneurons that co-express dsf and dsx is necessary and sufficient for vaginal plate opening in virgin females, ovipositor extrusion in mated females, and abdominal curling in males during courtship. We find that dsf activity results in different neuroanatomical outcomes in females and males, promoting and suppressing, respectively, female development and function of these neurons depending upon the sexual state of dsx expression. We posit that dsf and dsx interact to specify sex differences in the neural circuitry for dimorphic abdominal behaviors.
Collapse
Affiliation(s)
- Julia C Duckhorn
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Jessica Cande
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mary C Metkus
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Hyeop Song
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Sofia Altamirano
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Troy R Shirangi
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA.
| |
Collapse
|
5
|
Wu B, Ma L, Zhang E, Du J, Liu S, Price J, Li S, Zhao Z. Sexual dimorphism of sleep regulated by juvenile hormone signaling in Drosophila. PLoS Genet 2018; 14:e1007318. [PMID: 29617359 PMCID: PMC5909909 DOI: 10.1371/journal.pgen.1007318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/20/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022] Open
Abstract
Sexually dimorphic phenotypes are a universal phenomenon in animals. In the model animal fruit fly Drosophila, males and females exhibit long- and short-sleep phenotypes, respectively. However, the mechanism is still a mystery. In this study, we showed that juvenile hormone (JH) is involved in regulation of sexually dimorphic sleep in Drosophila, in which gain of JH function enlarges differences of the dimorphic sleep phenotype with higher sleep in males and lower sleep in females, while loss of JH function blurs these differences and results in feminization of male sleep and masculinization of female sleep. Further studies indicate that germ cell-expressed (GCE), one of the JH receptors, mediates the response in the JH pathway because the sexually dimorphic sleep phenotypes cannot be rescued by JH hormone in a gce deletion mutant. The JH-GCE regulated sleep dimorphism is generated through the sex differentiation-related genes -fruitless (fru) and doublesex (dsx) in males and sex-lethal (sxl), transformer (tra) and doublesex (dsx) in females. These are the “switch” genes that separately control the sleep pattern in males and females. Moreover, analysis of sleep deprivation and circadian behaviors showed that the sexually dimorphic sleep induced by JH signals is a change of sleep drive and independent of the circadian clock. Furthermore, we found that JH seems to also play an unanticipated role in antagonism of an aging-induced sleep decrease in male flies. Taken together, these results indicate that the JH signal pathway is critical for maintenance of sexually dimorphic sleep by regulating sex-relevant genes. Sleep is a very important biological behavior in all animals and takes up around one third of the lifespan in many animals. In both insects and mammals (including humans), sleep differences between male and female (sexually dimorphic sleep) have been described over the past decades. However, its internal regulation mechanism is still unclear. The fruit fly Drosophila melanogaster, sharing most sleep characteristics with humans, has been used for sleep studies as a powerful model for genetic analysis. In this study, we reported that Juvenile hormone (JH) induces completely different sleep effects between males and females with higher sleep in males and lower sleep in females, while loss of JH function blurs these differences and results in feminization of male sleep and masculinization of female sleep. Further studies indicate that the sexual dimorphism of sleep is generated through the sex differentiation-related genes regulated by JH and its receptor GCE (germ cell-expressed) signaling. Furthermore, we found that JH seems to also play an unanticipated role in aging-induced sleep changes.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lingling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Enyan Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Suning Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jeffrey Price
- Department of Neurology and Cognitive Neuroscience, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail: (SL); (ZZ)
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- * E-mail: (SL); (ZZ)
| |
Collapse
|
6
|
The roles of Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes in sex determination and differentiation mechanisms: Ubiquity and diversity across the animal kingdom. C R Biol 2015; 338:451-62. [DOI: 10.1016/j.crvi.2015.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
|
7
|
Zheng X, Reho JJ, Wirth B, Fisher SA. TRA2β controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle. Am J Physiol Cell Physiol 2015; 308:C289-96. [PMID: 25428883 PMCID: PMC4329427 DOI: 10.1152/ajpcell.00304.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/17/2014] [Indexed: 01/19/2023]
Abstract
Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2β (Tra2β), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24+ and Smtn E20- splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2β within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2β causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24-) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2β is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle.
Collapse
MESH Headings
- Age Factors
- Alternative Splicing
- Animals
- Cell Differentiation
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Dose-Response Relationship, Drug
- Exons
- Female
- Gene Expression Regulation, Developmental
- Genotype
- In Vitro Techniques
- Male
- Mesenteric Arteries/enzymology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/metabolism
- Myosin-Light-Chain Phosphatase
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Serine-Arginine Splicing Factors
- Smooth Muscle Myosins/genetics
- Smooth Muscle Myosins/metabolism
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Division of Cardiovascular Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - John J Reho
- Division of Cardiovascular Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany; Institute for Genetics, University of Cologne, Cologne, Germany; and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Steven A Fisher
- Division of Cardiovascular Medicine, School of Medicine, University of Maryland, Baltimore, Maryland;
| |
Collapse
|
8
|
Yamamoto D, Ishikawa Y. Genetic and Neural Bases for Species-Specific Behavior inDrosophilaSpecies. J Neurogenet 2013; 27:130-42. [DOI: 10.3109/01677063.2013.800060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Mellert DJ, Robinett CC, Baker BS. doublesex functions early and late in gustatory sense organ development. PLoS One 2012; 7:e51489. [PMID: 23240029 PMCID: PMC3519885 DOI: 10.1371/journal.pone.0051489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/02/2012] [Indexed: 01/05/2023] Open
Abstract
Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.
Collapse
Affiliation(s)
- David J. Mellert
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Carmen C. Robinett
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - Bruce S. Baker
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| |
Collapse
|
10
|
Abstract
The fruitless (fru) gene in Drosophila plays a pivotal role in the formation of neural circuits underlying gender-specific behaviors. Specific labeling of fru expressing neurons has revealed a core circuit responsible for male courtship behavior.Females with a small number of masculinized neuronal clusters in their brain can initiate male-type courtship behavior. By examining the correlations between the masculinized neurons and behavioral gender type, a male-specific neuronal cluster,named P1, which coexpresses fru and double sex, was identified as a putative trigger center for male-type courtship behavior. P1 neurons extend dendrite to the lateral horn,where multimodal sensory inputs converge. Molecular studies suggest that fru determines the level of masculinization of neurons by orchestrating the transcription of a set of downstream genes, which remain to be identified.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences,Sendai, Japan.
| |
Collapse
|
11
|
Fu K, Mende Y, Bhetwal BP, Baker S, Perrino BA, Wirth B, Fisher SA. Tra2β protein is required for tissue-specific splicing of a smooth muscle myosin phosphatase targeting subunit alternative exon. J Biol Chem 2012; 287:16575-85. [PMID: 22437831 DOI: 10.1074/jbc.m111.325761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing of the smooth muscle myosin phosphatase targeting subunit (Mypt1) exon 23 (E23) is tissue-specific and developmentally regulated and, thus, an attractive model for the study of smooth muscle phenotypic specification. We have proposed that Tra2β functions as a tissue-specific activator of Mypt1 E23 splicing on the basis of concordant expression patterns and Tra2β activation of Mypt1 E23 mini-gene splicing in vitro. In this study we examined the relationship between Tra2β and Mypt1 E23 splicing in vivo in the mouse. Tra2β was 2- to 5-fold more abundant in phasic smooth muscle tissues, such as the portal vein, small intestine, and small mesenteric artery, in which Mypt1 E23 is predominately included as compared with the tonic smooth muscle tissues, such as the aorta and inferior vena cava, in which Mypt1 E23 is predominately skipped. Tra2β was up-regulated in the small intestine postnatally, concordant with a switch to Mypt1 E23 splicing. Targeting of Tra2β in smooth muscle cells using SM22α-Cre caused a substantial reduction in Mypt1 E23 inclusion specifically in the intestinal smooth muscle of heterozygotes, indicating sensitivity to Tra2β gene dosage. The switch to the Mypt1 E23 skipped isoform coding for the C-terminal leucine zipper motif caused increased sensitivity of the muscle to the relaxant effects of 8-Br-cyclic guanosine monophosphate (cGMP). We conclude that Tra2β is necessary for the tissue-specific splicing of Mypt1 E23 in the phasic intestinal smooth muscle. Tra2β, by regulating the splicing of Mypt1 E23, sets the sensitivity of smooth muscle to cGMP-mediated relaxation.
Collapse
Affiliation(s)
- Kang Fu
- Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kimura KI. Role of cell death in the formation of sexual dimorphism in the Drosophila central nervous system. Dev Growth Differ 2011; 53:236-44. [PMID: 21338349 DOI: 10.1111/j.1440-169x.2010.01223.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Currently, sex differences in behavior are believed to result from sexually dimorphic neural circuits in the central nervous system (CNS). Drosophila melanogaster is a common model organism for studying the relationship between brain structure, behavior, and genes. Recent studies of sex-specific reproductive behaviors in D. melanogaster have addressed the contribution of sexual differences in the CNS to the control of sex-specific behaviors and the development of sexual dimorphism. For example, sexually dimorphic regions of the CNS are involved in the initiation of male courtship behavior, the generation of the courtship song, and the induction of male-specific muscles in D. melanogaster. In this review, I discuss recent findings about the contribution of cell death to the formation of sexually dimorphic neural circuitry and the regulation of sex-specific cell death by two sex determination factors, Fruitless and Doublesex, in Drosophila.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo 002-8502, Japan.
| |
Collapse
|
13
|
Dauwalder B. Systems behavior: of male courtship, the nervous system and beyond in Drosophila. Curr Genomics 2011; 9:517-24. [PMID: 19516958 PMCID: PMC2694563 DOI: 10.2174/138920208786847980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/22/2008] [Accepted: 06/29/2008] [Indexed: 11/22/2022] Open
Abstract
Male courtship in fruit flies is regulated by the same major regulatory genes that also determine general sexual differentiation of the animal. Elaborate genetics has given us insight into the roles of these master genes. These findings have suggested two separate and independent pathways for the regulation of sexual behavior and other aspects of sexual differentiation. Only recently have molecular studies started to look at the downstream effector genes and how they might control sex-specific behavior. These studies have confirmed the essential role of the previously identified male specific products of the fruitless gene in the neuronal circuits in which it is expressed. But there is increasing evidence that a number of non-neuronal tissues and pathways play a pivotal role in modulating this circuit and assuring efficient courtship.
Collapse
Affiliation(s)
- B Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
14
|
Salvemini M, Polito C, Saccone G. Fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story? J Genet 2011; 89:287-99. [PMID: 20876995 DOI: 10.1007/s12041-010-0040-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specific courtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects.
Collapse
Affiliation(s)
- Marco Salvemini
- Department of Biological Sciences, University of Naples Federico II, 80134, Naples, Italy
| | | | | |
Collapse
|
15
|
Ramani AK, Calarco JA, Pan Q, Mavandadi S, Wang Y, Nelson AC, Lee LJ, Morris Q, Blencowe BJ, Zhen M, Fraser AG. Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res 2011; 21:342-8. [PMID: 21177968 PMCID: PMC3032936 DOI: 10.1101/gr.114645.110] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/07/2010] [Indexed: 11/24/2022]
Abstract
Alternative splicing (AS) plays a crucial role in the diversification of gene function and regulation. Consequently, the systematic identification and characterization of temporally regulated splice variants is of critical importance to understanding animal development. We have used high-throughput RNA sequencing and microarray profiling to analyze AS in C. elegans across various stages of development. This analysis identified thousands of novel splicing events, including hundreds of developmentally regulated AS events. To make these data easily accessible and informative, we constructed the C. elegans Splice Browser, a web resource in which researchers can mine AS events of interest and retrieve information about their relative levels and regulation across development. The data presented in this study, along with the Splice Browser, provide the most comprehensive set of annotated splice variants in C. elegans to date, and are therefore expected to facilitate focused, high resolution in vivo functional assays of AS function.
Collapse
Affiliation(s)
- Arun K. Ramani
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - John A. Calarco
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Qun Pan
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Ontario M5S 3E1, Canada
| | - Sepand Mavandadi
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Ontario M5S 3E1, Canada
| | - Ying Wang
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew C. Nelson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Leo J. Lee
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Ontario M5S 3E1, Canada
| | - Quaid Morris
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Benjamin J. Blencowe
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Mei Zhen
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew G. Fraser
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
16
|
Ellis LL, Carney GE. Socially-responsive gene expression in male Drosophila melanogaster is influenced by the sex of the interacting partner. Genetics 2011; 187:157-69. [PMID: 20980240 PMCID: PMC3018301 DOI: 10.1534/genetics.110.122754] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022] Open
Abstract
Behavior is influenced by an organism's genes and environment, including its interactions with same or opposite sex individuals. Drosophila melanogaster perform innate, yet socially modifiable, courtship behaviors that are sex specific and require rapid integration and response to multiple sensory cues. Furthermore, males must recognize and distinguish other males from female courtship objects. It is likely that perception, integration, and response to sex-specific cues is partially mediated by changes in gene expression. Reasoning that social interactions with members of either sex would impact gene expression, we compared expression profiles in heads of males that courted females, males that interacted with other males, or males that did not interact with another fly. Expression of 281 loci changes when males interact with females, whereas 505 changes occur in response to male-male interactions. Of these genes, 265 are responsive to encounters with either sex and 240 respond specifically to male-male interactions. Interestingly, 16 genes change expression only when a male courts a female, suggesting that these changes are a specific response to male-female courtship interactions. We supported our hypothesis that socially-responsive genes can function in behavior by showing that egghead (egh) expression, which increases during social interactions, is required for robust male-to-female courtship. We predict that analyzing additional socially-responsive genes will give us insight into genes and neural signaling pathways that influence reproductive and other behavioral interactions.
Collapse
Affiliation(s)
| | - Ginger E. Carney
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|
17
|
Mating alters gene expression patterns in Drosophila melanogaster male heads. BMC Genomics 2010; 11:558. [PMID: 20937114 PMCID: PMC3091707 DOI: 10.1186/1471-2164-11-558] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/11/2010] [Indexed: 11/28/2022] Open
Abstract
Background Behavior is a complex process resulting from the integration of genetic and environmental information. Drosophila melanogaster rely on multiple sensory modalities for reproductive success, and mating causes physiological changes in both sexes that affect reproductive output or behavior. Some of these effects are likely mediated by changes in gene expression. Courtship and mating alter female transcript profiles, but it is not known how mating affects male gene expression. Results We used Drosophila genome arrays to identify changes in gene expression profiles that occur in mated male heads. Forty-seven genes differed between mated and control heads 2 hrs post mating. Many mating-responsive genes are highly expressed in non-neural head tissues, including an adipose tissue called the fat body. One fat body-enriched gene, female-specific independent of transformer (fit), is a downstream target of the somatic sex-determination hierarchy, a genetic pathway that regulates Drosophila reproductive behaviors as well as expression of some fat-expressed genes; three other mating-responsive loci are also downstream components of this pathway. Another mating-responsive gene expressed in fat, Juvenile hormone esterase (Jhe), is necessary for robust male courtship behavior and mating success. Conclusions Our study demonstrates that mating causes changes in male head gene expression profiles and supports an increasing body of work implicating adipose signaling in behavior modulation. Since several mating-induced genes are sex-determination hierarchy target genes, additional mating-responsive loci may be downstream components of this pathway as well.
Collapse
|
18
|
The transformer gene of Ceratitis capitata: a paradigm for a conserved epigenetic master regulator of sex determination in insects. Genetica 2010; 139:99-111. [PMID: 20890720 DOI: 10.1007/s10709-010-9503-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 09/18/2010] [Indexed: 12/21/2022]
Abstract
The transformer gene in Ceratitis capitata (Cctra(ep)) is the founding member of a family of related SR genes that appear to act as the master epigenetic switch in sex determination in insects. A functional protein seems to be produced only in individuals with a female XX karyotype where it is required to maintain the productive mode of expression through a positive feedback loop and to direct female development by instructing the downstream target genes accordingly. When zygotic activation of this loop is prevented, male development follows. Recently, tra(ep) orthologues were isolated in more distantly related dipteran species including Musca domestica, Glossina morsitans and Lucilia cuprina and in the Hymenopterans Apis mellifera and Nasonia vitripennis. All of these tra(ep) orthologues seem to act as binary switches that govern all aspects of sexual development. Transient silencing leads to complete masculinization of individuals with a female karyotype. Reciprocally, in some systems it has been shown that transient expression of the functional TRA product is sufficient to transactivate the endogenous gene and implement female development in individuals with a male karyotype. Hence, a mechanism based on tra(ep) epigenetic autoregulation seems to represent a common and presumably ancestral single principle of sex determination in Insecta. The results of these studies will not only be important for understanding divergent evolution of basic developmental processes but also for designing new strategies to improve genetic sexing in different insect species of economical or medical importance.
Collapse
|
19
|
Abstract
The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts.
Collapse
Affiliation(s)
- Steven A Fisher
- Department of Medicine, and Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106-7290, USA.
| |
Collapse
|
20
|
Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, Chow CY, Wolfner MF. Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. ADVANCES IN GENETICS 2010; 68:23-56. [PMID: 20109658 PMCID: PMC3925388 DOI: 10.1016/s0065-2660(09)68002-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of social behavior generally focus on interactions between two or more individual animals. However, these interactions are not simply between whole animals, but also occur between molecules that were produced by the interacting individuals. Such "molecular social interactions" can both influence and be influenced by the organismal-level social interactions. We illustrate this by reviewing the roles played by seminal fluid proteins (Sfps) in molecular social interactions between males and females of the fruit fly Drosophila melanogaster. Sfps, which are produced by males and transferred to females during mating, are involved in inherently social interactions with female-derived molecules, and they influence social interactions between males and females and between a female's past and potential future mates. Here, we explore four examples of molecular social interactions involving D. melanogaster Sfps: processes that influence mating, sperm storage, ovulation, and ejaculate transfer. We consider the molecular and organismal players involved in each interaction and the consequences of their interplay for the reproductive success of both sexes. We conclude with a discussion of the ways in which Sfps can both shape and be shaped by (in an evolutionary sense) the molecular social interactions in which they are involved.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana F. Wolfner
- Corresponding author: Department of Molecular Biology & Genetics, 421 Biotechnology Building, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
21
|
Kimura KI, Hachiya T, Koganezawa M, Tazawa T, Yamamoto D. Fruitless and doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 2008; 59:759-69. [PMID: 18786359 DOI: 10.1016/j.neuron.2008.06.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 05/29/2008] [Accepted: 06/02/2008] [Indexed: 11/29/2022]
Abstract
Biologists postulate that sexual dimorphism in the brain underlies gender differences in behavior, yet direct evidence for this has been sparse. We identified a male-specific, fruitless (fru)/doublesex (dsx)-coexpressing neuronal cluster, P1, in Drosophila. The artificial induction of a P1 clone in females effectively provokes male-typical behavior in such females even when the other parts of the brain are not masculinized. P1, located in the dorsal posterior brain near the mushroom body, is composed of 20 interneurons, each of which has a primary transversal neurite with extensive ramifications in the bilateral protocerebrum. P1 is fated to die in females through the action of a feminizing protein, DsxF. A masculinizing protein Fru is required in the male brain for correct positioning of the terminals of P1 neurites. Thus, the coordinated actions of two sex determination genes, dsx and fru, confer the unique ability to initiate male-typical sexual behavior on P1 neurons.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Iwamizawa Campus, Hokkaido University of Education, Iwamizawa 068-8642, Japan.
| | | | | | | | | |
Collapse
|
22
|
Ferri SL, Bohm RA, Lincicome HE, Hall JC, Villella A. fruitless Gene products truncated of their male-like qualities promote neural and behavioral maleness in Drosophila if these proteins are produced in the right places at the right times. J Neurogenet 2008; 22:17-55. [PMID: 18363163 DOI: 10.1080/01677060701671947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To bring GAL4 production under the control of the sex promoter (P1) contained within Drosophila's fruitless gene, a gal4 cassette was previously inserted downstream of P1. This insert should eliminate male-specific FRU(M) proteins, which normally contain 101 amino acids (aa's) at their N termini. Thus males homozygous for the P1-gal4 insert should be courtless, as was briefly stated to be so in the initial report of this transgenic type. But XY flies whose only fru form is P1-gal4 have now been found to court vigorously. P1-gal4 females displayed no appreciable male-like actions except courtship rejection behaviors; yet, they developed a male-specific abdominal muscle. No immunoreactivity against the male-specific aa's was detectable in P1-gal4 flies. But male-like neural signals were observed in XY or XX P1-gal4 pupae and adults after applying an antibody that detects all FRU isoforms; transgenic females displayed reduced expression of such proteins. RT-PCR's rationalized these findings: P1 transcripts include anomalous splice forms from which gal4 was removed, allowing FRU's lacking M aa's to be produced in male-like patterns in both sexes. Within males, such defective proteins promote neural differentiation and function that is sufficient to support spirited P1-gal4 courtship. But dispensability of the male-specific FRU N-terminus is tempered by the finding that intra-fru sequences encoding these 101 aa's are highly conserved among interspecific relatives of D. melanogaster.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Biology, Brandeis University, Waltham, Massachusettes 02454-9110, USA
| | | | | | | | | |
Collapse
|
23
|
Ainsley JA, Kim MJ, Wegman LJ, Pettus JM, Johnson WA. Sensory mechanisms controlling the timing of larval developmental and behavioral transitions require the Drosophila DEG/ENaC subunit, Pickpocket1. Dev Biol 2008; 322:46-55. [PMID: 18674528 DOI: 10.1016/j.ydbio.2008.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/25/2008] [Accepted: 07/01/2008] [Indexed: 01/30/2023]
Abstract
Growth of multicellular organisms proceeds through a series of precisely timed developmental events requiring coordination between gene expression, behavioral changes, and environmental conditions. In Drosophila melanogaster larvae, the essential midthird instar transition from foraging (feeding) to wandering (non-feeding) behavior occurs prior to pupariation and metamorphosis. The timing of this key transition is coordinated with larval growth and size, but physiological mechanisms regulating this process are poorly understood. Results presented here show that Drosophila larvae associate specific environmental conditions, such as temperature, with food in order to enact appropriate foraging strategies. The transition from foraging to wandering behavior is associated with a striking reversal in the behavioral responses to food-associated stimuli that begins early in the third instar, well before food exit. Genetic manipulations disrupting expression of the Degenerin/Epithelial Sodium Channel subunit, Pickpocket1(PPK1) or function of PPK1 peripheral sensory neurons caused defects in the timing of these behavioral transitions. Transient inactivation experiments demonstrated that sensory input from PPK1 neurons is required during a critical period early in the third instar to influence this developmental transition. Results demonstrate a key role for the PPK1 sensory neurons in regulation of important behavioral transitions associated with developmental progression of larvae from foraging to wandering stage.
Collapse
Affiliation(s)
- Joshua A Ainsley
- University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
24
|
Grosjean Y, Grillet M, Augustin H, Ferveur JF, Featherstone DE. A glial amino-acid transporter controls synapse strength and courtship in Drosophila. Nat Neurosci 2008; 11:54-61. [PMID: 18066061 PMCID: PMC2196133 DOI: 10.1038/nn2019] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 10/31/2007] [Indexed: 02/06/2023]
Abstract
Mate choice is an evolutionarily critical decision that requires the detection of multiple sex-specific signals followed by central integration of these signals to direct appropriate behavior. The mechanisms controlling mate choice remain poorly understood. Here, we show that the glial amino-acid transporter genderblind controls whether Drosophila melanogaster males will attempt to mate with other males. Genderblind (gb) mutant males showed no alteration in heterosexual courtship or copulation, but were attracted to normally unappealing male species-specific chemosensory cues. As a result, genderblind mutant males courted and attempted to copulate with other Drosophila males. This homosexual behavior could be induced within hours using inducible RNAi, suggesting that genderblind controls nervous system function rather than its development. Consistent with this, and indicating that glial genderblind regulates ambient extracellular glutamate to suppress glutamatergic synapse strength in vivo, homosexual behavior could be turned on and off by altering glutamatergic transmission pharmacologically and/or genetically.
Collapse
Affiliation(s)
- Yael Grosjean
- Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
25
|
Camara N, Whitworth C, Van Doren M. The creation of sexual dimorphism in the Drosophila soma. Curr Top Dev Biol 2008; 83:65-107. [PMID: 19118664 DOI: 10.1016/s0070-2153(08)00403-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animals have evolved a fascinating array of mechanisms for conducting sexual reproduction. These include producing the sex-specific gametes, as well as mechanisms for attracting a mate, courting a mate, and getting the gametes together. These processes require that males and females take on dramatically different forms (sexual dimorphism). Here, we will explore the problem of how sex is determined in Drosophila, and pay particular attention to how information about sexual identity is used to instruct males and females to develop differently. Along the way, we will highlight new work that challenges some of the traditional views about sex determination. In Drosophila, it is commonly thought that every cell decides its own sex based on its sex chromosome constitution (XX vs. XY). However, we now know that many cell types undergo nonautonomous sex determination, where they are told what sex to be through signals from surrounding cells, independent of their own chromosomal content. Further, it now appears that not all cells even "know" their sex, since key members of the sex determination pathway are not expressed in all cells. Thus, our understanding of how sex is determined, and how sexual identity is used to create sexual dimorphism, has changed considerably.
Collapse
Affiliation(s)
- Nicole Camara
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
26
|
Abstract
The reproductive biology of Drosophila melanogaster is described and critically discussed, primarily with regard to genetic studies of sex-specific behavior and its neural underpinnings. The investigatory history of this system includes, in addition to a host of recent neurobiological analyses of reproductive phenotypes, studies of mating as well as the behaviors leading up to that event. Courtship and mating have been delved into mostly with regard to male-specific behavior and biology, although a small number of studies has also pointed to the neural substrates of female reproduction. Sensory influences on interactions between courting flies have long been studied, partly by application of mutants and partly by surgical experiments. More recently, molecular-genetic approaches to sensations passing between flies in reproductive contexts have aimed to "dissect" further the meaning of separate sensory modalities. Notable among these are olfactory and contact-chemosensory stimuli, which perhaps have received an inordinate amount of attention in terms of the possibility that they could comprise the key cues involved in triggering and sustaining courtship actions. But visual and auditory stimuli are heavily involved as well--appreciated mainly from older experiments, but analyzable further using elementary approaches (single-gene mutations mutants and surgeries), as well as by applying the molecularly defined factors alluded to above. Regarding regulation of reproductive behavior by components of Drosophila's central nervous system (CNS), once again significant invigoration of the relevant inquiries has been stimulated and propelled by identification and application of molecular-genetic materials. A distinct plurality of the tools applied involves transposons inserted in the fly's chromosomes, defining "enhancer-trap" strains that can be used to label various portions of the nervous system and, in parallel, disrupt their structure and function by "driving" companion transgenes predesigned for these experimental purposes. Thus, certain components of interneuronal routes, functioning along pathways whose starting points are sensory reception by the peripheral nervous system (PNS), have been manipulated to enhance appreciation of sexually important sensory modalities, as well as to promote understanding of where such inputs end up within the CNS: Where are reproductively related stimuli processed, such that different kinds of sensation would putatively be integrated to mediate sex-specific behavioral readouts? In line with generic sensory studies that have tended to concentrate on chemical stimuli, PNS-to-CNS pathways focused upon in reproductive experiments relying on genic enhancers have mostly involved smell and taste. Enhancer traps have also been applied to disrupt various regions within the CNS to ask about the various ganglia, and portions thereof, that contribute to male- or female-specific behavior. These manipulations have encompassed structural or functional disruptions of such regions as well as application of molecular-genetic tricks to feminize or masculinize a given component of the CNS. Results of such experiments have, indeed, identified certain discrete subsets of centrally located ganglia that, on the one hand, lead to courtship defects when disrupted or, on the other, must apparently maintain sex-specific identity if the requisite courtship actions are to be performed. As just implied, perturbations of certain neural tissues not based on manipulating "sex factors" might lead to reproductive behavioral abnormalities, even though changing the sexual identity of such structures would not necessarily have analogous consequences. It has been valuable to uncover these sexually significant subsets of the Drosophila nervous system, although it must be said that not all of the transgenically based dissection outcomes are in agreement. Thus, the good news is that not all of the CNS is devoted to courtship control, whereby any and all locales disrupted might have led to sex-specific deficits; but the bad news is that the enhancer-trap approach to these matters has not led to definitive homing-in on some tractable number of mutually agreed-upon "courtship centers" within the brain or within the ventral nerve cord (VNC). The latter neural region, which comprises about half of the fly's CNS, is underanalyzed as to its sex-specific significance: How, for example, are various kinds of sensory inputs to posteriorly located PNS structures processed, such that they eventually end up modulating brain functions underlying courtship? And how are sex-specific motor outputs mediated by discrete collections of neurons within VNC ganglia--so that, for instance, male-specific whole-animal motor actions and appendage usages are evoked? These behaviors can be thought of as fixed action patterns. But it is increasingly appreciated that elements of the fly's reproductive behavior can be modulated by previous experience. In this regard, the neural substrates of conditioned courtship are being more and more analyzed, principally by further usages of various transgenic types. Additionally, a set of molecular neurogenetic experiments devoted to experience-dependent courtship was based on manipulations of a salient "sex gene" in D. melanogaster. This well-defined factor is called fruitless (fru). The gene, its encoded products, along with their behavioral and neurobiological significance, have become objects of frenetic attention in recent years. How normal, mutated, and molecularly manipulated forms of fru seem to be generating a good deal of knowledge and insight about male-specific courtship and mating is worthy of much attention. This previews the fact that fruitless matters are woven throughout this chapter as well as having a conspicuous section allocated to them. Finally, an acknowledgment that the reader is being subjected to lengthy preview of an article about this subject is given. This matter is mentioned because--in conjunction with the contemporary broadening and deepening of this investigatory area--brief summaries of its findings are appearing with increasing frequency. This chapter will, from time to time, present our opinion that a fair fraction of the recent minireviews are replete with too many catch phrases about what is really known. This is one reason why the treatment that follows not only attempts to describe the pertinent primary reports in detail but also pauses often to discuss our views about current understandings of sex-specific behavior in Drosophila and its underlying biology.
Collapse
|
27
|
Abstract
The fruitless gene is well-known to play a key role in determining the sexual identity of the fruitfly's nervous system, but new results show that doublesex is also required in thoracic neurons to generate normal male lovesongs.
Collapse
|