1
|
Dact1 is expressed during chicken and mouse skeletal myogenesis and modulated in human muscle diseases. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110645. [PMID: 34252542 DOI: 10.1016/j.cbpb.2021.110645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022]
Abstract
Vertebrate skeletal muscle development and repair relies on the precise control of Wnt signaling. Dact1 (Dapper/Frodo) is an important modulator of Wnt signaling, interacting with key components of the various Wnt transduction pathways. Here, we characterized Dact1 mRNA and protein expression in chicken and mouse fetal muscles in vivo and during the differentiation of chick primary and mouse C2C12 myoblasts in vitro. We also performed in silico analysis to investigate Dact1 gene expression in human myopathies, and evaluated the Dact1 protein structure to seek an explanation for the accumulation of Dact1 protein aggregates in the nuclei of myogenic cells. Our results show for the first time that in both chicken and mouse, Dact1 is expressed during myogenesis, with a strong upregulation as cells engage in terminal differentiation, cell cycle withdrawal and cell fusion. In humans, Dact1 expression was found to be altered in specific muscle pathologies, including muscular dystrophies. Our bioinformatic analyses of Dact1 proteins revealed long intrinsically disordered regions, which may underpin the ability of Dact1 to interact with its many partners in the various Wnt pathways. In addition, we found that Dact1 has strong propensity for liquid-liquid phase separation, a feature that explains its ability to form nuclear aggregates and points to a possible role as a molecular 'on'-'off' switch. Taken together, our data suggest Dact1 as a candidate, multi-faceted regulator of amniote myogenesis with a possible pathophysiological role in human muscular diseases.
Collapse
|
2
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
3
|
Agarwal M, Sharma A, Kumar P, Kumar A, Bharadwaj A, Saini M, Kardon G, Mathew SJ. Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development. Development 2020; 147:dev184507. [PMID: 32094117 PMCID: PMC7157585 DOI: 10.1242/dev.184507] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Myosin heavy chain-embryonic (MyHC-emb) is a skeletal muscle-specific contractile protein expressed during muscle development. Mutations in MYH3, the gene encoding MyHC-emb, lead to Freeman-Sheldon and Sheldon-Hall congenital contracture syndromes. Here, we characterize the role of MyHC-emb during mammalian development using targeted mouse alleles. Germline loss of MyHC-emb leads to neonatal and postnatal alterations in muscle fiber size, fiber number, fiber type and misregulation of genes involved in muscle differentiation. Deletion of Myh3 during embryonic myogenesis leads to the depletion of the myogenic progenitor cell pool and an increase in the myoblast pool, whereas fetal myogenesis-specific deletion of Myh3 causes the depletion of both myogenic progenitor and myoblast pools. We reveal that the non-cell-autonomous effect of MyHC-emb on myogenic progenitors and myoblasts is mediated by the fibroblast growth factor (FGF) signaling pathway, and exogenous FGF rescues the myogenic differentiation defects upon loss of MyHC-emb function in vitro Adult Myh3 null mice exhibit scoliosis, a characteristic phenotype exhibited by individuals with Freeman-Sheldon and Sheldon-Hall congenital contracture syndrome. Thus, we have identified MyHC-emb as a crucial myogenic regulator during development, performing dual cell-autonomous and non-cell-autonomous functions.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Megha Agarwal
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akashi Sharma
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
- KIIT University, Patia, Bhubaneswar, 751024, Odisha, India
| | - Pankaj Kumar
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Amit Kumar
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
| | - Anushree Bharadwaj
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
| | - Masum Saini
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Sam J Mathew
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- KIIT University, Patia, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
4
|
Ravenscroft G, Zaharieva IT, Bortolotti CA, Lambrughi M, Pignataro M, Borsari M, Sewry CA, Phadke R, Haliloglu G, Ong R, Goullée H, Whyte T, Consortium UK, Manzur A, Talim B, Kaya U, Osborn DPS, Forrest ARR, Laing NG, Muntoni F. Bi-allelic mutations in MYL1 cause a severe congenital myopathy. Hum Mol Genet 2019; 27:4263-4272. [PMID: 30215711 DOI: 10.1093/hmg/ddy320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, ∼50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain (ELC) in both probands. A homozygous essential splice acceptor variant (c.479-2A > G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modelling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin ELC is critical for myofibre development and function. Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with severe congenital myopathy.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Irina T Zaharieva
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Carlo A Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Lambrughi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Caroline A Sewry
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Rahul Phadke
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Goknur Haliloglu
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Royston Ong
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Hayley Goullée
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Tamieka Whyte
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | | | - Adnan Manzur
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Beril Talim
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Ulkuhan Kaya
- Department of Pediatric Neurology, Dr. Sami Ulus Maternity and Children's Research and Training Hospital, Ministry of Health, Ankara, Turkey
| | - Daniel P S Osborn
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
5
|
Bi P, Yue F, Sato Y, Wirbisky S, Liu W, Shan T, Wen Y, Zhou D, Freeman J, Kuang S. Stage-specific effects of Notch activation during skeletal myogenesis. eLife 2016; 5. [PMID: 27644105 PMCID: PMC5070950 DOI: 10.7554/elife.17355] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/17/2016] [Indexed: 12/16/2022] Open
Abstract
Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7 quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality. By contrast, myotube-specific Notch1 activation improves the regeneration and exercise performance of aged and dystrophic muscles. Mechanistically, Notch1 activation in myotubes upregulates the expression of Notch ligands, which modulate Notch signaling in the adjacent satellite cells to enhance their regenerative capacity. These results highlight context-dependent effects of Notch activation during myogenesis, and demonstrate that Notch1 activity improves myotube's function as a stem cell niche.
Collapse
Affiliation(s)
- Pengpeng Bi
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Yusuke Sato
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Sara Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, United States
| | - Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Yefei Wen
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Daoguo Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Jennifer Freeman
- School of Health Sciences, Purdue University, West Lafayette, United States.,Center for Cancer Research, Purdue University, West Lafayette, United States
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, United States.,Center for Cancer Research, Purdue University, West Lafayette, United States
| |
Collapse
|
6
|
Lozano-Velasco E, Vallejo D, Esteban FJ, Doherty C, Hernández-Torres F, Franco D, Aránega AE. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate. Mol Cell Biol 2015; 35:2892-909. [PMID: 26055324 PMCID: PMC4525317 DOI: 10.1128/mcb.00536-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/21/2023] Open
Abstract
The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5(+) satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Daniel Vallejo
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Francisco J Esteban
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Chris Doherty
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Francisco Hernández-Torres
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Amelia Eva Aránega
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| |
Collapse
|
7
|
Alsters SIM, Goldstone AP, Buxton JL, Zekavati A, Sosinsky A, Yiorkas AM, Holder S, Klaber RE, Bridges N, van Haelst MM, le Roux CW, Walley AJ, Walters RG, Mueller M, Blakemore AIF. Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism. PLoS One 2015; 10:e0131417. [PMID: 26120850 PMCID: PMC4485893 DOI: 10.1371/journal.pone.0131417] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/02/2015] [Indexed: 01/25/2023] Open
Abstract
Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous peptide precursors, including neuropeptides and hormones involved in appetite control and glucose metabolism. Exome sequencing of a morbidly obese female from a consanguineous family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout mouse models, evidencing the importance of this peptide/hormone-processing enzyme in regulating body weight, metabolism, and brain and reproductive function in humans.
Collapse
Affiliation(s)
- Suzanne I. M. Alsters
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anthony P. Goldstone
- Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
- Centre for Neuropsychopharmacology and Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
- * E-mail: (AG); (AB)
| | - Jessica L. Buxton
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Centre for Cardiovascular Genetics, UCL Institute of Cardiovascular Science, London, United Kingdom
| | - Anna Zekavati
- NIHR Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alona Sosinsky
- NIHR Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrianos M. Yiorkas
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Susan Holder
- NW Thames Regional Genetics Service, Kennedy Galton Centre, North West London Hospitals NHS Trust, Northwick Park Hospital, Harrow, United Kingdom
| | - Robert E. Klaber
- Department of Paediatrics, Imperial College Healthcare NHS Trust, St Mary's Hospital, London, United Kingdom
| | - Nicola Bridges
- Department of Paediatric Endocrinology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mieke M. van Haelst
- Department of Medical Genetics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carel W. le Roux
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Andrew J. Walley
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Robin G. Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Michael Mueller
- NIHR Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alexandra I. F. Blakemore
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (AG); (AB)
| |
Collapse
|
8
|
Burguière AC, Nord H, von Hofsten J. Alkali-like myosin light chain-1 (myl1) is an early marker for differentiating fast muscle cells in zebrafish. Dev Dyn 2011; 240:1856-63. [PMID: 21674687 DOI: 10.1002/dvdy.22677] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During myogenesis, muscle precursors become divided into either fast- or slow-twitch fibres, which in the zebrafish occupy distinct domains in the embryo. Genes encoding sarcomeric proteins specific for fast or slow fibres are frequently used as lineage markers. In an attempt to identify and evaluate early definitive markers for cells in the fast-twitch pathway, we analysed genes encoding proteins contributing to the fast sarcomeric structures. The previously uncharacterized zebrafish alkali-like myosin light chain gene (myl1) was found to be expressed exclusively in cells in the fast-twitch pathway initiated at an early stage of fast fibre differentiation. Myl1 was expressed earlier, and in a more fibre type restricted manner, than any of the previously described and frequently used fast myosin light and heavy chain and troponin muscle markers mylz2, mylz3, tnni2, tnnt3a, fMyHC1.3. In summary, this study introduces a novel marker for early differentiating fast muscle cells.
Collapse
Affiliation(s)
- A C Burguière
- Umeå Centre for Molecular Medicine, UCMM, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
9
|
Dib S, Denarier E, Dionne N, Beaudoin M, Friedman HH, Peterson AC. Regulatory modules function in a non-autonomous manner to control transcription of the mbp gene. Nucleic Acids Res 2010; 39:2548-58. [PMID: 21131280 PMCID: PMC3074125 DOI: 10.1093/nar/gkq1160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple regulatory modules contribute to the complex expression programs realized by many loci. Although long thought of as isolated components, recent studies demonstrate that such regulatory sequences can physically associate with promoters and with each other and may localize to specific sub-nuclear transcription factories. These associations provide a substrate for putative interactions and have led to the suggested existence of a transcriptional interactome. Here, using a controlled strategy of transgenesis, we analyzed the functional consequences of regulatory sequence interaction within the myelin basic protein (mbp) locus. Interactions were revealed through comparisons of the qualitative and quantitative expression programs conferred by an allelic series of 11 different enhancer/inter-enhancer combinations ligated to a common promoter/reporter gene. In a developmentally contextual manner, the regulatory output of all modules changed markedly in the presence of other sequences. Predicted by transgene expression programs, deletion of one such module from the endogenous locus reduced oligodendrocyte expression levels but unexpectedly, also attenuated expression of the overlapping golli transcriptional unit. These observations support a regulatory architecture that extends beyond a combinatorial model to include frequent interactions capable of significantly modulating the functions conferred through regulatory modules in isolation.
Collapse
Affiliation(s)
- Samar Dib
- Department of Human Genetics, Laboratory of Developmental Biology, Royal Victoria Hospital, H-5, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 2010; 86:564-600. [PMID: 21040371 PMCID: PMC3170710 DOI: 10.1111/j.1469-185x.2010.00161.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
11
|
Ling F, Fang W, Chen Y, Li J, Liu X, Wang L, Zhang H, Chen S, Mei Y, Du H, Wang C. Identification of novel transcripts from the porcine MYL1 gene and initial characterization of its promoters. Mol Cell Biochem 2010; 343:239-47. [PMID: 20563743 DOI: 10.1007/s11010-010-0519-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 06/05/2010] [Indexed: 11/28/2022]
Abstract
The fast skeletal alkali myosin light polypeptide 1 (MYL1) gene is one of three mammalian alkali MLC genes and encodes two isoforms, 1f and 3f, which play a vital role in embryonic, fetal, and adult skeletal muscle development. We isolated the MYL1 gene from a pig BAC library with the goal of characterizing its promoter and identifying its transcripts. Genes and isoforms were identified by reverse transcriptase-PCR, northern blot and RACE (Rapid Amplification of cDNA Ends). Potential MYL1 gene promoters were characterized using a luciferase reporter assay and electrophoretic mobility shift assays (EMSA). MLC1f, MLC3f, and three additional isoforms of porcine MYL1, MLC5f-A, -B, and -C were identified. Up to now, the three novel isoforms had not been reported in human or mouse. Northern blot analysis indicated that MLC1f, MLC3f, and MLC5fs were expressed only in longissimus dorsi muscles. Two transcription initiation and termination sites were identified by RACE. Promoter analysis and EMSA demonstrated the presence of a MEF3 (skeletal muscle-specific transcriptional enhancer) binding site (+384 to +481), which might be essential for porcine MYL1 transcription. Our results suggested that five transcript variants were generated using alternative promoters, two transcription start sites, and polyA sites, as well as variable splicing of the pig MYL1 exon 5. The identification of alternative promoters and splice variants, the expression of the splice variants in different muscle tissues, and the definition of regulatory elements provide important molecular genetic knowledge concerning the MYL1 gene.
Collapse
Affiliation(s)
- Fei Ling
- College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McGrew MJ, Sherman A, Lillico SG, Taylor L, Sang H. Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens. BMC DEVELOPMENTAL BIOLOGY 2010; 10:26. [PMID: 20184756 PMCID: PMC2841079 DOI: 10.1186/1471-213x-10-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 02/25/2010] [Indexed: 11/24/2022]
Abstract
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species.
Collapse
Affiliation(s)
- Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, UK.
| | | | | | | | | |
Collapse
|
13
|
Buckingham M, Vincent SD. Distinct and dynamic myogenic populations in the vertebrate embryo. Curr Opin Genet Dev 2009; 19:444-53. [PMID: 19762225 DOI: 10.1016/j.gde.2009.08.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/21/2009] [Accepted: 08/07/2009] [Indexed: 11/24/2022]
Abstract
Myogenic cells in the body of vertebrates derive from the dorsal somite, the dermomyotome, where multipotent cells are present. Regulation of cell fate choice is discussed, as is that of progenitor cell self-renewal once cells have entered the myogenic programme. Ongoing research on the formation of the first skeletal muscle, the myotome, is presented with emphasis on mechanisms controlling the early segregation of slow and fast muscle lineages that characterizes this process in the zebrafish embryo. Further insights into myogenic populations that contribute to trunk and limb development at different stages are summarized and the distinct regulatory networks that underlie the formation of head muscles are discussed.
Collapse
|
14
|
Grifone R, Jarry T, Dandonneau M, Grenier J, Duprez D, Kelly RG. Properties of branchiomeric and somite-derived muscle development in Tbx1 mutant embryos. Dev Dyn 2008; 237:3071-8. [DOI: 10.1002/dvdy.21718] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|