1
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
2
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
3
|
Vallejo Ramirez PP, Zammit J, Vanderpoorten O, Riche F, Blé FX, Zhou XH, Spiridon B, Valentine C, Spasov SE, Oluwasanya PW, Goodfellow G, Fantham MJ, Siddiqui O, Alimagham F, Robbins M, Stretton A, Simatos D, Hadeler O, Rees EJ, Ströhl F, Laine RF, Kaminski CF. OptiJ: Open-source optical projection tomography of large organ samples. Sci Rep 2019; 9:15693. [PMID: 31666606 PMCID: PMC6821862 DOI: 10.1038/s41598-019-52065-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples.
Collapse
Affiliation(s)
- Pedro P Vallejo Ramirez
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Joseph Zammit
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Oliver Vanderpoorten
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Fergus Riche
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Francois-Xavier Blé
- Clinical Discovery Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Xiao-Hong Zhou
- Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bogdan Spiridon
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | | | - Simeon E Spasov
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | | | - Gemma Goodfellow
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Marcus J Fantham
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Omid Siddiqui
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Farah Alimagham
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Miranda Robbins
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Andrew Stretton
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Dimitrios Simatos
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Oliver Hadeler
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Eric J Rees
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Florian Ströhl
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Romain F Laine
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory for Molecular Cell Biology (LMCB), University College London, Gower Street, London, WC1E 6BT, UK
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Koskela O, Montonen T, Belay B, Figueiras E, Pursiainen S, Hyttinen J. Gaussian Light Model in Brightfield Optical Projection Tomography. Sci Rep 2019; 9:13934. [PMID: 31558755 PMCID: PMC6763473 DOI: 10.1038/s41598-019-50469-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 01/27/2023] Open
Abstract
This study focuses on improving the reconstruction process of the brightfield optical projection tomography (OPT). OPT is often described as the optical equivalent of X-ray computed tomography, but based on visible light. The detection optics used to collect light in OPT focus on a certain distance and induce blurring in those features out of focus. However, the conventionally used inverse Radon transform assumes an absolute focus throughout the propagation axis. In this study, we model the focusing properties of the detection by coupling Gaussian beam model (GBM) with the Radon transform. The GBM enables the construction of a projection operator that includes modeling of the blurring caused by the light beam. We also introduce the concept of a stretched GBM (SGBM) in which the Gaussian beam is scaled in order to avoid the modeling errors related to the determination of the focal plane. Furthermore, a thresholding approach is used to compress memory usage. We tested the GBM and SGBM approaches using simulated and experimental data in mono- and multifocal modes. When compared with the traditionally used filtered backprojection algorithm, the iteratively computed reconstructions, including the Gaussian models GBM and SGBM, provided smoother images with higher contrast.
Collapse
Affiliation(s)
- Olli Koskela
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33014, Finland.
- HAMK Smart Research Unit, Häme University of Applied Sciences, Hämeenlinna, 13100, Finland.
| | - Toni Montonen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33014, Finland
| | - Birhanu Belay
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33014, Finland
| | - Edite Figueiras
- Champalimaud Research, Champalimaud Foundation, Lisbon, 1400-038, Portugal
| | - Sampsa Pursiainen
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, 33014, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, 33014, Finland
| |
Collapse
|
5
|
Gao B, Ajima R, Yang W, Li C, Song H, Anderson MJ, Liu RR, Lewandoski MB, Yamaguchi TP, Yang Y. Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgf signaling in planar cell polarity. Development 2018; 145:dev.163824. [PMID: 29615464 DOI: 10.1242/dev.163824] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Embryonic morphogenesis of a complex organism requires proper regulation of patterning and directional growth. Planar cell polarity (PCP) signaling is emerging as a crucial evolutionarily conserved mechanism whereby directional information is conveyed. PCP is thought to be established by global cues, and recent studies have revealed an instructive role of a Wnt signaling gradient in epithelial tissues of both invertebrates and vertebrates. However, it remains unclear whether Wnt/PCP signaling is regulated in a coordinated manner with embryonic patterning during morphogenesis. Here, in mouse developing limbs, we find that apical ectoderm ridge-derived Fgfs required for limb patterning regulate PCP along the proximal-distal axis in a Wnt5a-dependent manner. We demonstrate with genetic evidence that the Wnt5a gradient acts as a global cue that is instructive in establishing PCP in the limb mesenchyme, and that Wnt5a also plays a permissive role to allow Fgf signaling to orient PCP. Our results indicate that limb morphogenesis is regulated by coordination of directional growth and patterning through integration of Wnt5a and Fgf signaling.
Collapse
Affiliation(s)
- Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China .,Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyu Li
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.,Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Hai Song
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Robert R Liu
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Mark B Lewandoski
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Yingzi Yang
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA .,Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
6
|
Yang W, Garrett L, Feng D, Elliott G, Liu X, Wang N, Wong YM, Choi NT, Yang Y, Gao B. Wnt-induced Vangl2 phosphorylation is dose-dependently required for planar cell polarity in mammalian development. Cell Res 2017; 27:1466-1484. [PMID: 29056748 DOI: 10.1038/cr.2017.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 05/16/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
Planar cell polarity (PCP) is an evolutionarily conserved essential mechanism that provides directional information to control and coordinate polarized cellular and tissue behavior during embryonic development. Disruption of PCP leads to severe morphological defects in vertebrates and its dysregulation results in a variety of human diseases such as neural tube defects and skeletal dysplasia. PCP is governed by a set of highly conserved core proteins that are asymmetrically localized at the cell surface throughout the polarized tissues. The uniform directionality of PCP is established by global cues, such as Wg/Wnt signaling gradients that break the original symmetrical localization of core PCP proteins including Vang/Vangl and Fz/Fzd. However, the exact mechanism remains elusive. In this study, we found that Vangl2 phosphorylation, which was previously identified to be induced by Wnt5a signaling, is required for Vangl2 functions in mammalian PCP in multiple tissues. The in vivo activities of Vangl2 are determined by its phosphorylation level. Phospho-mutant Vangl2 exhibits dominant negative effects, whereas Vangl2 with reduced phosphorylation is hypomorphic. We show that Vangl2 phosphorylation is essential for its uniform polarization pattern. Moreover, serine/threonine kinases CK1ɛ and CK1δ are redundantly required for Wnt5a-induced Vangl2 phosphorylation. Dvl family members are also required for Wnt5a-induced Vangl2 phosphorylation by enhancing the interaction of CK1 and Vangl2. These findings demonstrate that induction of Vangl protein phosphorylation plays an essential role in transducing Wnt5a signaling to establish PCP in mammalian development, suggesting a phosphorylation-regulated "Vangl activity gradient" model in addition to the well-documented "Fz activity gradient" model in Wnt/PCP signaling.
Collapse
Affiliation(s)
- Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lisa Garrett
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Gene Elliott
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xilin Liu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.,China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Ni Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yu Ming Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Nga Ting Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yingzi Yang
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA 02115, USA
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Centre for Reproduction, Development and Growth & HKU-SUSTEC Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
7
|
Atlas Toolkit: Fast registration of 3D morphological datasets in the absence of landmarks. Sci Rep 2016; 6:20732. [PMID: 26864723 PMCID: PMC4749973 DOI: 10.1038/srep20732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/31/2015] [Indexed: 11/09/2022] Open
Abstract
Image registration is a gateway technology for Developmental Systems Biology, enabling computational analysis of related datasets within a shared coordinate system. Many registration tools rely on landmarks to ensure that datasets are correctly aligned; yet suitable landmarks are not present in many datasets. Atlas Toolkit is a Fiji/ImageJ plugin collection offering elastic group-wise registration of 3D morphological datasets, guided by segmentation of the interesting morphology. We demonstrate the method by combinatorial mapping of cell signalling events in the developing eyes of chick embryos, and use the integrated datasets to predictively enumerate Gene Regulatory Network states.
Collapse
|
8
|
Hernández C, Bogdanov P, Corraliza L, García-Ramírez M, Solà-Adell C, Arranz JA, Arroba AI, Valverde AM, Simó R. Topical Administration of GLP-1 Receptor Agonists Prevents Retinal Neurodegeneration in Experimental Diabetes. Diabetes 2016; 65:172-87. [PMID: 26384381 DOI: 10.2337/db15-0443] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022]
Abstract
Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR). Since glucagon-like peptide 1 (GLP-1) exerts neuroprotective effects in the central nervous system and the retina is ontogenically a brain-derived tissue, the aims of the current study were as follows: 1) to examine the expression and content of GLP-1 receptor (GLP-1R) in human and db/db mice retinas; 2) to determine the retinal neuroprotective effects of systemic and topical administration (eye drops) of GLP-1R agonists in db/db mice; and 3) to examine the underlying neuroprotective mechanisms. We have found abundant expression of GLP-1R in the human retina and retinas from db/db mice. Moreover, we have demonstrated that systemic administration of a GLP-1R agonist (liraglutide) prevents retinal neurodegeneration (glial activation, neural apoptosis, and electroretinographical abnormalities). This effect can be attributed to a significant reduction of extracellular glutamate and an increase of prosurvival signaling pathways. We have found a similar neuroprotective effect using topical administration of native GLP-1 and several GLP-1R agonists (liraglutide, lixisenatide, and exenatide). Notably, this neuroprotective action was observed without any reduction in blood glucose levels. These results suggest that GLP-1R activation itself prevents retinal neurodegeneration. Our results should open up a new approach in the treatment of the early stages of DR.
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Corraliza
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta García-Ramírez
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Solà-Adell
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - José A Arranz
- Unidad de Metabolopatías, Laboratorios Clínicos, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ana I Arroba
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | - Angela M Valverde
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. PLANT, CELL & ENVIRONMENT 2015; 38:1213-32. [PMID: 25211059 DOI: 10.1111/pce.12448] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/02/2014] [Accepted: 08/25/2014] [Indexed: 05/19/2023]
Abstract
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.
Collapse
Affiliation(s)
- H F Downie
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - M O Adu
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - S Schmidt
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - W Otten
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - P J White
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- King Saud University, Riyadh, Saudi Arabia
| | - T A Valentine
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
10
|
Correlations Between the Morphology of Sonic Hedgehog Expression Domains and Embryonic Craniofacial Shape. Evol Biol 2015; 42:379-386. [PMID: 26321772 DOI: 10.1007/s11692-015-9321-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantitative analysis of gene expression domains and investigation of relationships between gene expression and developmental and phenotypic outcomes are central to advancing our understanding of the genotype-phenotype map. Gene expression domains typically have smooth but irregular shapes lacking homologous landmarks, making it difficult to analyze shape variation with the tools of landmark-based geometric morphometrics. In addition, 3D image acquisition and processing introduce many artifacts that further exacerbate the problem. To overcome these difficulties, this paper presents a method that combines optical projection tomography scanning, a shape regularization technique and a landmark-free approach to quantify variation in the morphology of Sonic hedgehog expression domains in the frontonasal ectodermal zone (FEZ) of avians and investigate relationships with embryonic craniofacial shape. The model reveals axes in FEZ and embryonic-head morphospaces along which variation exhibits a sharp linear relationship at high statistical significance. The technique should be applicable to analyses of other 3D biological structures that can be modeled as smooth surfaces and have ill-defined shape.
Collapse
|
11
|
Chen L, Kumar S, Kelly D, Andrews N, Dallman MJ, French PMW, McGinty J. Remote focal scanning optical projection tomography with an electrically tunable lens. BIOMEDICAL OPTICS EXPRESS 2014; 5:3367-75. [PMID: 25360356 PMCID: PMC4206308 DOI: 10.1364/boe.5.003367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 05/04/2023]
Abstract
We describe a remote focal scanning technique for optical projection tomography (OPT) implemented with an electrically tunable lens (ETL) that removes the need to scan the specimen or objective lens. Using a 4× objective lens the average spatial resolution is improved by ∼46% and the light collection efficiency by a factor of ∼6.76, thereby enabling increased acquisition speed and reduced light dose. This convenient implementation is particularly appropriate for lower magnifications and larger sample diameters where axial objective scanning would encounter problems with speed and stability.
Collapse
Affiliation(s)
- Lingling Chen
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| | - Douglas Kelly
- Institute for Chemical Biology, Department of Chemistry, Imperial College London, SW7 2AZ,
UK
| | - Natalie Andrews
- Institute for Chemical Biology, Department of Chemistry, Imperial College London, SW7 2AZ,
UK
| | - Margaret J. Dallman
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ,
UK
- Centre for Integrative Systems Biology, Department of Life Sciences, Imperial College London, SW7 2AZ,
UK
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| |
Collapse
|
12
|
Castro-González C, Luengo-Oroz MA, Duloquin L, Savy T, Rizzi B, Desnoulez S, Doursat R, Kergosien YL, Ledesma-Carbayo MJ, Bourgine P, Peyriéras N, Santos A. A digital framework to build, visualize and analyze a gene expression atlas with cellular resolution in zebrafish early embryogenesis. PLoS Comput Biol 2014; 10:e1003670. [PMID: 24945246 PMCID: PMC4063669 DOI: 10.1371/journal.pcbi.1003670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/28/2014] [Indexed: 01/30/2023] Open
Abstract
A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages. We propose a workflow to map the expression domains of multiple genes onto a series of 3D templates, or “atlas”, during early embryogenesis. It was applied to the zebrafish at different stages between 4 and 6.3 hpf, generating 6 templates. Our system overcomes the lack of significant morphological landmarks in early development by relying on the expression of a reference gene (goosecoid, gsc) and nuclear staining to guide the registration of the analyzed genes. The proposed method also successfully maps gene domains from partially imaged embryos, thus allowing greater microscope magnification and cellular resolution. By using the workflow to construct a spatiotemporal database of zebrafish, we opened the way to a systematic analysis of vertebrate embryogenesis. The atlas database, together with the mapping software (Match-IT), a custom-made visualization platform (Atlas-IT), and step-by-step user guides are available from the Supplementary Material. We expect that this will encourage other laboratories to generate, map, visualize and analyze new gene expression datasets.
Collapse
Affiliation(s)
- Carlos Castro-González
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, CEIMoncloa, Madrid, Spain
- Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Miguel A. Luengo-Oroz
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, CEIMoncloa, Madrid, Spain
- Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Louise Duloquin
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - Thierry Savy
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - Barbara Rizzi
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - Sophie Desnoulez
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - René Doursat
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Yannick L. Kergosien
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- LIMICS-INSERM UMR 1142, UFR SMBH, Université Paris 13, Bobigny, France
| | - María J. Ledesma-Carbayo
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, CEIMoncloa, Madrid, Spain
- Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Paul Bourgine
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - Nadine Peyriéras
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- * E-mail: (NP); (AS)
| | - Andrés Santos
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, CEIMoncloa, Madrid, Spain
- Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- * E-mail: (NP); (AS)
| |
Collapse
|
13
|
Ohtani M, Villumsen KR, Strøm HK, Raida MK. 3D visualization of the initial Yersinia ruckeri infection route in rainbow trout (Oncorhynchus mykiss) by optical projection tomography. PLoS One 2014; 9:e89672. [PMID: 24586953 PMCID: PMC3938485 DOI: 10.1371/journal.pone.0089672] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/15/2014] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that enteric redmouth disease (ERM) in farmed rainbow trout is one of the most devastating disease problems, little is known about the initial route of infection and pathogenicity of the aetiological agent, Yersinia ruckeri. In order to determine the initially infected organs, optical projection tomography (OPT), a novel three-dimensional (3D) bio-imaging technique, was applied. OPT not only enables the visualization of Y. ruckeri on mucosal surfaces but also the 3D spatial distribution in whole organs, without sectioning. Rainbow trout were infected by bath challenge exposure to 1 × 10(8) CFU/ml of Y. ruckeri O1 for 1 hour. Three fish were sampled for OPT and immunohistochemistry (IHC) 1, 10 and 30 minutes, 1, 3, 6, 12 and 24 hours, as well as 2, 3, 7 and 21 days after the start of the infection period. Y. ruckeri was re-isolated from the blood of infected fish as early as 1 minute post infection. Both OPT and IHC analysis confirmed that the secondary gill lamellae were the only tissues infected at this early time point, indicating that Y. ruckeri initially infects gill epithelial cells. The experimentally induced infection caused septicemia, and Y. ruckeri was found in all examined organs 7 days post infection including the brain, which correlated with the peak in mortality. To the best of our knowledge this is the first description of Y. ruckeri infection in the brain, which is likely to cause encephalitis. This in part could explain the lethality of ERM in rainbow trout. Using OPT scanning it was possible to visualize the initial route of entry, as well as secondary infection routes along with the proliferation and spread of Y. ruckeri, ultimately causing significant mortality in the exposed rainbow trout. These results demonstrate that OPT is a state-of-the-art technique capable of visualizing pathogenesis at high resolution.
Collapse
Affiliation(s)
- Maki Ohtani
- Research Group of Fish Diseases and Immunology, Section of Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Kasper Rømer Villumsen
- Research Group of Fish Diseases and Immunology, Section of Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Helene Kragelund Strøm
- Research Group of Fish Diseases and Immunology, Section of Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Martin Kristian Raida
- Research Group of Fish Diseases and Immunology, Section of Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
14
|
Lopez-Real RE, Budge JJR, Marder TB, Whiting A, Hunt PN, Przyborski SA. Application of synthetic photostable retinoids induces novel limb and facial phenotypes during chick embryogenesis in vivo. J Anat 2013; 224:392-411. [PMID: 24303996 PMCID: PMC4098675 DOI: 10.1111/joa.12147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 02/02/2023] Open
Abstract
We have recently developed a range of synthetic retinoid analogues which include the compounds EC23 and EC19. They are stable on exposure to light and are predicted to be resistant to the normal metabolic processes involved in the inactivation of retinoids in vivo. Based on the position of the terminal carboxylic acid groups in the compounds we suggest that EC23 is a structural analogue of all-trans retinoic acid (ATRA), and EC19 is an analogue of 13-cis retinoic acid. Their effects on the differentiation of pluripotent stem cells has been previously described in vitro and are consistent with this hypothesis. We present herein the first description of the effects of these molecules in vivo. Retinoids were applied to the anterior limb buds of chicken embryos in ovo via ion-exchange beads. We found that retinoid EC23 produces effects on the wing digits similar to ATRA, but does so at two orders of magnitude lower concentration. When larger quantities of EC23 are applied, a novel phenotype is obtained involving production of multiple digit 1s on the anterior limb. This corresponds to differential effects of ATRA and EC23 on sonic hedgehog (shh) expression in the developing limb bud. With EC23 application we also find digit 1 phenotypes similar to thumb duplications described in the clinical literature. EC23 and ATRA are shown to have effects on the entire proximal–distal axis of the limb, including hitherto undescribed effects on the scapula. This includes suppression of expression of the scapula marker Pax1. EC23 also produces effects similar to those of ATRA on the developing face, producing reductions of the upper beak at concentrations two orders of magnitude lower than ATRA. In contrast, EC19, which is structurally very similar to EC23, has novel, less severe effects on the face and rarely alters limb development. EC19 and ATRA are effective at similar concentrations. These results further demonstrate the ability of retinoids to influence embryonic development. Moreover, EC23 represents a useful new tool to investigate developmental processes and probe the mechanisms underlying congenital abnormalities in vertebrates including man.
Collapse
Affiliation(s)
- R E Lopez-Real
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | | | | | | | | | | |
Collapse
|
15
|
Shimizu H, Kubo A, Uchibe K, Hashimoto M, Yokoyama S, Takada S, Mitsuoka K, Asahara H. The AERO system: a 3D-like approach for recording gene expression patterns in the whole mouse embryo. PLoS One 2013; 8:e75754. [PMID: 24146773 PMCID: PMC3797748 DOI: 10.1371/journal.pone.0075754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/20/2013] [Indexed: 12/30/2022] Open
Abstract
We have recently constructed a web-based database of gene expression in the mouse whole embryo, EMBRYS (http://embrys.jp/embrys/html/MainMenu.html). To allow examination of gene expression patterns to the fullest extent possible, this database provides both photo images and annotation data. However, since embryos develop via an intricate process of morphogenesis, it would be of great value to track embryonic gene expression from a three dimensional perspective. In fact, several methods have been developed to achieve this goal, but highly laborious procedures and specific operational skills are generally required. We utilized a novel microscopic technique that enables the easy capture of rotational, 3D-like images of the whole embryo. In this method, a rotary head equipped with two mirrors that are designed to obtain an image tilted at 45 degrees to the microscope stage captures serial images at 2-degree intervals. By a simple operation, 180 images are automatically collected. These 2D images obtained at multiple angles are then used to reconstruct 3D-like images, termed AERO images. By means of this system, over 800 AERO images of 191 gene expression patterns were captured. These images can be easily rotated on the computer screen using the EMBRYS database so that researchers can view an entire embryo by a virtual viewing on a computer screen in an unbiased or non-predetermined manner. The advantages afforded by this approach make it especially useful for generating data viewed in public databases.
Collapse
Affiliation(s)
- Hirohito Shimizu
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Kubo
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenta Uchibe
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Megumi Hashimoto
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Mitsuoka
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Wong F, Welten MCM, Anderson C, Bain AA, Liu J, Wicks MN, Pavlovska G, Davey MG, Murphy P, Davidson D, Tickle CA, Stern CD, Baldock RA, Burt DW. eChickAtlas: an introduction to the database. Genesis 2013; 51:365-71. [PMID: 23355415 DOI: 10.1002/dvg.22374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/21/2012] [Accepted: 01/17/2013] [Indexed: 11/12/2022]
Abstract
The precise control of gene expression is critical in embryonic development. Quantitative assays, such as microarrays and RNA sequencing, provide gene expression levels for a large number of genes, but do not contain spatial information. In contrast, in situ methods, such as in situ hybridization and immunohistochemistry, provide spatial resolution, but poor quantification and can only reveal the expression of one, or very few genes at a time. Furthermore, the usual methods of documenting the results, by photographing whole mounts or sections, makes it very difficult to assess the three-dimensional (3D) relationships between expressing and nonexpressing cells. Optical projection tomography (OPT) can capture the full 3D expression pattern in a whole embryo at a reasonable level of resolution and at moderately high throughput. A large database containing spatio-temporal patterns of expression for the mouse (e-Mouse Atlas Project, EMAP, www.emouseatlas.org) has been created, incorporating 3D information. Like the mouse, the chick is an important model in developmental biology and translational studies. To facilitate comparisons between these important model organisms, we have created a 3D anatomical atlas, accompanied by an anatomical ontology of the chick embryo and a database of gene expression patterns during chick development. This database is publicly available (www.echickatlas.org).
Collapse
Affiliation(s)
- Frances Wong
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Martin A, Maher S, Summerhurst K, Davidson D, Murphy P. Differential deployment of paralogous Wnt genes in the mouse and chick embryo during development. Evol Dev 2013; 14:178-95. [PMID: 23017026 PMCID: PMC3498729 DOI: 10.1111/j.1525-142x.2012.00534.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genes encoding Wnt ligands are crucial in body patterning and are highly conserved among metazoans. Given their conservation at the protein-coding level, it is likely that changes in where and when these genes are active are important in generating evolutionary variations. However, we lack detailed knowledge about how their deployment has diverged. Here, we focus on four Wnt subfamilies (Wnt2, Wnt5, Wnt7, and Wnt8) in mammalian and avian species, consisting of a paralogous gene pair in each, believed to have duplicated in the last common ancestor of vertebrates. We use three-dimensional imaging to capture expression patterns in detail and carry out systematic comparisons. We find evidence of greater divergence between these subgroup paralogues than the respective orthologues, consistent with some level of subfunctionalization/neofunctionalization in the common vertebrate ancestor that has been conserved. However, there were exceptions; in the case of chick Wnt2b, individual sites were shared with both mouse Wnt2 and Wnt2b. We also find greater divergence, between paralogues and orthologues, in some subfamilies (Wnt2 and Wnt8) compared to others (Wnt5 and Wnt7) with the more highly similar expression patterns showing more extensive expression in more structures in the embryo. Wnt8 genes were most restricted and most divergent. Major sites of expression for all subfamilies include CNS, limbs, and facial region, and in general there were more similarities in gene deployment in these territories with divergent patterns featuring more in organs such as heart and gut. A detailed comparison of gene expression patterns in the limb showed similarities in overall combined domains across species with notable differences that may relate to lineage-specific morphogenesis.
Collapse
Affiliation(s)
- Audrey Martin
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
18
|
Asadulina A, Panzera A, Verasztó C, Liebig C, Jékely G. Whole-body gene expression pattern registration in Platynereis larvae. EvoDevo 2012. [PMID: 23199348 PMCID: PMC3586958 DOI: 10.1186/2041-9139-3-27] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere) of the Platynereis trochophore larva and used for the detailed study of neuronal development. Results Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2’-thiodiethanol (TDE), which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4’6-diamidino-2-phenylindole (DAPI). Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental stage. We then registered to these templates the expression patterns of cell-type specific genes. In order to evaluate the gene expression pattern registration, we analyzed the absolute deviation of cell-center positions. Both the acetylated-tubulin- and the nuclear-stain-based templates allowed near-cellular-resolution gene expression registration. Nuclear-stain-based templates often performed significantly better than acetylated-tubulin-based templates. We provide detailed guidelines and scripts for the use and further expansion of the Platynereis gene expression atlas. Conclusions We established whole-body reference templates for the generation of gene expression atlases for Platynereis trochophore and nectochaete larvae. We anticipate that nuclear-staining-based image registration will be applicable for whole-body alignment of the embryonic and larval stages of other organisms in a similar size range.
Collapse
Affiliation(s)
- Albina Asadulina
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076, Germany.
| | | | | | | | | |
Collapse
|
19
|
Colas JF, Sharpe J. Live optical projection tomography. Organogenesis 2012; 5:211-6. [PMID: 20539740 DOI: 10.4161/org.5.4.10426] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 09/06/2009] [Accepted: 10/26/2009] [Indexed: 01/27/2023] Open
Abstract
Optical projection tomography (OPT) is a technology ideally suited for imaging embryonic organs. We emphasize here recent successes in translating this potential into the field of live imaging. Live OPT (also known as 4D OPT, or time-lapse OPT) is already in position to accumulate good quantitative data on the developmental dynamics of organogenesis, a prerequisite for building realistic computer models and tackling new biological problems. Yet, live OPT is being further developed by merging state-of-the-art mouse embryo culture with the OPT system. We discuss the technological challenges that this entails and the prospects for expansion of this molecular imaging technique into a wider range of applications.
Collapse
Affiliation(s)
- Jean-François Colas
- EMBL-CRG Systems Biology Program; Centre for Genomic Regulation; UPF; Barcelona, Spain; Istituciô Catalana de Recerca i Estudis Avançats; Barcelona, Spain
| | | |
Collapse
|
20
|
Castro-González C, Ledesma-Carbayo MJ, Peyriéras N, Santos A. Assembling models of embryo development: Image analysis and the construction of digital atlases. ACTA ACUST UNITED AC 2012; 96:109-20. [DOI: 10.1002/bdrc.21012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Cheddad A, Svensson C, Sharpe J, Georgsson F, Ahlgren U. Image processing assisted algorithms for optical projection tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1-15. [PMID: 21768046 DOI: 10.1109/tmi.2011.2161590] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Since it was first presented in 2002, optical projection tomography (OPT) has emerged as a powerful tool for the study of biomedical specimen on the mm to cm scale. In this paper, we present computational tools to further improve OPT image acquisition and tomographic reconstruction. More specifically, these methods provide: semi-automatic and precise positioning of a sample at the axis of rotation and a fast and robust algorithm for determination of postalignment values throughout the specimen as compared to existing methods. These tools are easily integrated for use with current commercial OPT scanners and should also be possible to implement in "home made" or experimental setups for OPT imaging. They generally contribute to increase acquisition speed and quality of OPT data and thereby significantly simplify and improve a number of three-dimensional and quantitative OPT based assessments.
Collapse
Affiliation(s)
- Abbas Cheddad
- Umeå Centre for Molecular Medicine, Umeå University, S-901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Bangs F, Antonio N, Thongnuek P, Welten M, Davey MG, Briscoe J, Tickle C. Generation of mice with functional inactivation of talpid3, a gene first identified in chicken. Development 2011; 138:3261-72. [PMID: 21750036 PMCID: PMC3133916 DOI: 10.1242/dev.063602] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 01/28/2023]
Abstract
Specification of digit number and identity is central to digit pattern in vertebrate limbs. The classical talpid(3) chicken mutant has many unpatterned digits together with defects in other regions, depending on hedgehog (Hh) signalling, and exhibits embryonic lethality. The talpid(3) chicken has a mutation in KIAA0586, which encodes a centrosomal protein required for the formation of primary cilia, which are sites of vertebrate Hh signalling. The highly conserved exons 11 and 12 of KIAA0586 are essential to rescue cilia in talpid(3) chicken mutants. We constitutively deleted these two exons to make a talpid3(-/-) mouse. Mutant mouse embryos lack primary cilia and, like talpid(3) chicken embryos, have face and neural tube defects but also defects in left/right asymmetry. Conditional deletion in mouse limb mesenchyme results in polydactyly and in brachydactyly and a failure of subperisoteal bone formation, defects that are attributable to abnormal sonic hedgehog and Indian hedgehog signalling, respectively. Like talpid(3) chicken limbs, the mutant mouse limbs are syndactylous with uneven digit spacing as reflected in altered Raldh2 expression, which is normally associated with interdigital mesenchyme. Both mouse and chicken mutant limb buds are broad and short. talpid3(-/-) mouse cells migrate more slowly than wild-type mouse cells, a change in cell behaviour that possibly contributes to altered limb bud morphogenesis. This genetic mouse model will facilitate further conditional approaches, epistatic experiments and open up investigation into the function of the novel talpid3 gene using the many resources available for mice.
Collapse
Affiliation(s)
- Fiona Bangs
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Nicole Antonio
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Peerapat Thongnuek
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Monique Welten
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Megan G. Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - James Briscoe
- Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Cheryll Tickle
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
23
|
Fisher M, Downie H, Welten MCM, Delgado I, Bain A, Planzer T, Sherman A, Sang H, Tickle C. Comparative analysis of 3D expression patterns of transcription factor genes and digit fate maps in the developing chick wing. PLoS One 2011; 6:e18661. [PMID: 21526123 PMCID: PMC3081307 DOI: 10.1371/journal.pone.0018661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/08/2011] [Indexed: 11/23/2022] Open
Abstract
Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage.
Collapse
Affiliation(s)
- Malcolm Fisher
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Helen Downie
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Monique C. M. Welten
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail:
| | - Irene Delgado
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Andrew Bain
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Thorsten Planzer
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Helen Sang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Cheryll Tickle
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
24
|
Welten M, Pavlovska G, Chen Y, Teruoka Y, Fisher M, Bangs F, Towers M, Tickle C. 3D expression patterns of cell cycle genes in the developing chick wing and comparison with expression patterns of genes implicated in digit specification. Dev Dyn 2011; 240:1278-88. [DOI: 10.1002/dvdy.22633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Knudsen TB, Kochhar DM. The Hemimelic extra toes mouse mutant: Historical perspective on unraveling mechanisms of dysmorphogenesis. ACTA ACUST UNITED AC 2010; 90:155-62. [PMID: 20544697 DOI: 10.1002/bdrc.20181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemimelic extra toes (Hx) arose spontaneously as a dominant mutation in B10.D2/nSnJ mice in 1967. It specifically affects the appendicular skeleton, causing variable foreshortening of the tibia (radius) and preaxial polydactylism. Early anatomical studies revealed anterior overgrowth of the autopod, with decreased apoptosis and increased mitosis in the anterior apical ectodermal ridge and underlying mesenchyme; overextension of apoptosis in the central zeugopod accounted for hemimelia. The Hx mutant phenotype was coarsely mapped to mouse chromosome (Chr) 5 and closely linked to engrailed-2 (En2) and Sonic hedgehog (Shh). This region is syntenic to human Chr 7q36 that harbors several dominant mutations affecting the hand. High-resolution genome mapping identified the Hx mutation as a G --> A base pair transition within Intron 5 of the murine Lmbr1 locus. The critical effect is on a multifunctional conserved regulatory element that acts as a limb-specific, long-distance cis-acting enhancer of Shh expression. As such, the Hx mutant phenotype results from ectopic Shh signals at the anterior margin of the limb bud that directly or indirectly alter FGF4 signaling from the apical ectodermal ridge. Given significant advances in understanding of embryonic development in general and limb development in particular, this review article reveals how research that once attracted interest of teratologists has advanced across the decades to pinpoint a critical molecular lesion and reveal a potential mechanism of a specific malformation that is found commonly in experimental teratology.
Collapse
Affiliation(s)
- Thomas B Knudsen
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | |
Collapse
|
26
|
Bangs F, Welten M, Davey MG, Fisher M, Yin Y, Downie H, Paton B, Baldock R, Burt DW, Tickle C. Identification of genes downstream of the Shh signalling in the developing chick wing and syn-expressed with Hoxd13 using microarray and 3D computational analysis. Mech Dev 2010; 127:428-41. [PMID: 20708683 DOI: 10.1016/j.mod.2010.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 02/04/2023]
Abstract
Sonic hedgehog (Shh) signalling by the polarizing region at the posterior margin of the chick wing bud is pivotal in patterning the digits but apart from a few key downstream genes, such as Hoxd13, which is expressed in the posterior region of the wing that gives rise to the digits, the genes that mediate the response to Shh signalling are not known. To find genes that are co-expressed with Hoxd13 in the posterior of chick wing buds and regulated in the same way, we used microarrays to compare gene expression between anterior and posterior thirds of wing buds from normal chick embryos and from polydactylous talpid³ mutant chick embryos, which have defective Shh signalling due to lack of primary cilia. We identified 1070 differentially expressed gene transcripts, which were then clustered. Two clusters contained genes predominantly expressed in posterior thirds of normal wing buds; in one cluster, genes including Hoxd13, were expressed at high levels in anterior and posterior thirds in talpid³ wing buds, in the other cluster, genes including Ptc1, were expressed at low levels in anterior and posterior thirds in talpid³ wing buds. Expression patterns of genes in these two clusters were validated in normal and talpid³ mutant wing buds by in situ hybridisation and demonstrated to be responsive to application of Shh. Expression of several genes in the Hoxd13 cluster was also shown to be responsive to manipulation of protein kinase A (PKA) activity, thus demonstrating regulation by Gli repression. Genes in the Hoxd13 cluster were then sub-clustered by computational comparison of 3D expression patterns in normal wing buds to produce syn-expression groups. Hoxd13 and Sall1 are syn-expressed in the posterior region of early chick wing buds together with 6 novel genes which are likely to be functionally related and represent secondary targets of Shh signalling. Other groups of syn-expressed genes were also identified, including a group of genes involved in vascularisation.
Collapse
Affiliation(s)
- Fiona Bangs
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schmidt EJ, Parsons TE, Jamniczky HA, Gitelman J, Trpkov C, Boughner JC, Logan CC, Sensen CW, Hallgrímsson B. Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:18. [PMID: 20163731 PMCID: PMC2836989 DOI: 10.1186/1471-213x-10-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 02/17/2010] [Indexed: 01/24/2023]
Abstract
Background Growing demand for three dimensional (3D) digital images of embryos for purposes of phenotypic assessment drives implementation of new histological and imaging techniques. Among these micro-computed tomography (μCT) has recently been utilized as an effective and practical method for generating images at resolutions permitting 3D quantitative analysis of gross morphological attributes of developing tissues and organs in embryonic mice. However, histological processing in preparation for μCT scanning induces changes in organ size and shape. Establishing normative expectations for experimentally induced changes in size and shape will be an important feature of 3D μCT-based phenotypic assessments, especially if quantifying differences in the values of those parameters between comparison sets of developing embryos is a primary aim. Toward that end, we assessed the nature and degree of morphological artifacts attending μCT scanning following use of common fixatives, using a two dimensional (2D) landmark geometric morphometric approach to track the accumulation of distortions affecting the embryonic head from the native, uterine state through to fixation and subsequent scanning. Results Bouin's fixation reduced average centroid sizes of embryonic mouse crania by approximately 30% and substantially altered the morphometric shape, as measured by the shift in Procrustes distance, from the unfixed state, after the data were normalized for naturally occurring shape variation. Subsequent μCT scanning produced negligible changes in size but did appear to reduce or even reverse fixation-induced random shape changes. Mixtures of paraformaldehyde + glutaraldehyde reduced average centroid sizes by 2-3%. Changes in craniofacial shape progressively increased post-fixation. Conclusions The degree to which artifacts are introduced in the generation of random craniofacial shape variation relates to the degree of specimen dehydration during the initial fixation. Fixation methods that better maintain original craniofacial dimensions at reduced levels of dehydration and tissue shrinkage lead to the progressive accumulation of random shape variation during handling and data acquisition. In general, to the degree that embryonic organ size and shape factor into μCT-based phenotypic assessments, procedurally induced artifacts associated with fixation and scanning will influence results. Experimental designs will need to address these significant effects, either by employing alternative methods that minimize artifacts in the region of focus or in the interpretation of statistical patterns.
Collapse
Affiliation(s)
- Eric J Schmidt
- Department of Cell Biology & Anatomy, The McCaig Bone and Joint Institute, and the Alberta Children's Hospital Institute for Child and Maternal Health, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aoyagi H, Tsuchikawa K, Iwasaki SI. Three-dimensional observation of the mouse embryo by micro-computed tomography: composition of the trigeminal ganglion. Odontology 2010; 98:26-30. [DOI: 10.1007/s10266-009-0112-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/20/2009] [Indexed: 11/28/2022]
|
29
|
de Boer BA, Ruijter JM, Voorbraak FPJM, Moorman AFM. More than a decade of developmental gene expression atlases: where are we now? Nucleic Acids Res 2010; 37:7349-59. [PMID: 19822576 PMCID: PMC2794177 DOI: 10.1093/nar/gkp819] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To unravel regulatory networks of genes functioning during embryonic development, information on in situ gene expression is required. Enormous amounts of such data are available in literature, where each paper reports on a limited number of genes and developmental stages. The best way to make these data accessible is via spatio-temporal gene expression atlases. Eleven atlases, describing developing vertebrates and covering at least 100 genes, were reviewed. This review focuses on: (i) the used anatomical framework, (ii) the handling of input data and (iii) the retrieval of information. Our aim is to provide insights into both the possibilities of the atlases, as well as to describe what more than a decade of developmental gene expression atlases can teach us about the requirements of the design of the ‘ideal atlas’. This review shows that most ingredients needed to develop the ideal atlas are already applied to some extent in at least one of the discussed atlases. A review of these atlases shows that the ideal atlas should be based on a spatial framework, i.e. a series of 3D reference models, which is anatomically annotated using an ontology with sufficient resolution, both for relations as well as for anatomical terms.
Collapse
Affiliation(s)
- Bouke A de Boer
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Richardson L, Venkataraman S, Stevenson P, Yang Y, Burton N, Rao J, Fisher M, Baldock RA, Davidson DR, Christiansen JH. EMAGE mouse embryo spatial gene expression database: 2010 update. Nucleic Acids Res 2010; 38:D703-9. [PMID: 19767607 PMCID: PMC2808994 DOI: 10.1093/nar/gkp763] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 08/31/2009] [Indexed: 12/03/2022] Open
Abstract
EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (approximately 19,000 gene) 'EURExpress' dataset into EMAGE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jeffrey H. Christiansen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
31
|
Yakoby N, Bristow CA, Gong D, Schafer X, Lembong J, Zartman JJ, Halfon MS, Schüpbach T, Shvartsman SY. A combinatorial code for pattern formation in Drosophila oogenesis. Dev Cell 2008; 15:725-37. [PMID: 19000837 PMCID: PMC2822874 DOI: 10.1016/j.devcel.2008.09.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/27/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.
Collapse
Affiliation(s)
- Nir Yakoby
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Walls JR, Coultas L, Rossant J, Henkelman RM. Three-dimensional analysis of vascular development in the mouse embryo. PLoS One 2008; 3:e2853. [PMID: 18682734 PMCID: PMC2478714 DOI: 10.1371/journal.pone.0002853] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/11/2008] [Indexed: 02/07/2023] Open
Abstract
Key vasculogenic (de-novo vessel forming) and angiogenic (vessel remodelling) events occur in the mouse embryo between embryonic days (E) 8.0 and 10.0 of gestation, during which time the vasculature develops from a simple circulatory loop into a complex, fine structured, three-dimensional organ. Interpretation of vascular phenotypes exhibited by signalling pathway mutants has historically been hindered by an inability to comprehensively image the normal sequence of events that shape the basic architecture of the early mouse vascular system. We have employed Optical Projection Tomography (OPT) using frequency distance relationship (FDR)-based deconvolution to image embryos immunostained with the endothelial specific marker PECAM-1 to create a high resolution, three-dimensional atlas of mouse vascular development between E8.0 and E10.0 (5 to 30 somites). Analysis of the atlas has provided significant new information regarding normal development of intersomitic vessels, the perineural vascular plexus, the cephalic plexus and vessels connecting the embryonic and extraembryonic circulation. We describe examples of vascular remodelling that provide new insight into the mechanisms of sprouting angiogenesis, vascular guidance cues and artery/vein identity that directly relate to phenotypes observed in mouse mutants affecting vascular development between E8.0 and E10.0. This atlas is freely available at http://www.mouseimaging.ca/research/mouse_atlas.html and will serve as a platform to provide insight into normal and abnormal vascular development.
Collapse
Affiliation(s)
- Johnathon R. Walls
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Leigh Coultas
- Hospital for Sick Children Research Institute, Developmental and Stem Cell Biology Program, Toronto, Ontario, Canada
| | - Janet Rossant
- Hospital for Sick Children Research Institute, Developmental and Stem Cell Biology Program, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|