1
|
Durant-Vesga J, Suzuki N, Ochi H, Le Bouffant R, Eschstruth A, Ogino H, Umbhauer M, Riou JF. Retinoic acid control of pax8 during renal specification of Xenopus pronephros involves hox and meis3. Dev Biol 2023; 493:17-28. [PMID: 36279927 DOI: 10.1016/j.ydbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Development of the Xenopus pronephros relies on renal precursors grouped at neurula stage into a specific region of dorso-lateral mesoderm called the kidney field. Formation of the kidney field at early neurula stage is dependent on retinoic (RA) signaling acting upstream of renal master transcriptional regulators such as pax8 or lhx1. Although lhx1 might be a direct target of RA-mediated transcriptional activation in the kidney field, how RA controls the emergence of the kidney field remains poorly understood. In order to better understand RA control of renal specification of the kidney field, we have performed a transcriptomic profiling of genes affected by RA disruption in lateral mesoderm explants isolated prior to the emergence of the kidney field and cultured at different time points until early neurula stage. Besides genes directly involved in pronephric development (pax8, lhx1, osr2, mecom), hox (hoxa1, a3, b3, b4, c5 and d1) and the hox co-factor meis3 appear as a prominent group of genes encoding transcription factors (TFs) downstream of RA. Supporting the idea of a role of meis3 in the kidney field, we have observed that meis3 depletion results in a severe inhibition of pax8 expression in the kidney field. Meis3 depletion only marginally affects expression of lhx1 and aldh1a2 suggesting that meis3 principally acts upstream of pax8. Further arguing for a role of meis3 and hox in the control of pax8, expression of a combination of meis3, hoxb4 and pbx1 in animal caps induces pax8 expression, but not that of lhx1. The same combination of TFs is also able to transactivate a previously identified pax8 enhancer, Pax8-CNS1. Mutagenesis of potential PBX-Hox binding motifs present in Pax8-CNS1 further allows to identify two of them that are necessary for transactivation. Finally, we have tested deletions of regulatory sequences in reporter assays with a previously characterized transgene encompassing 36.5 kb of the X. tropicalis pax8 gene that allows expression of a truncated pax8-GFP fusion protein recapitulating endogenous pax8 expression. This transgene includes three conserved pax8 enhancers, Pax8-CNS1, Pax8-CNS2 and Pax8-CNS3. Deletion of Pax8-CNS1 alone does not affect reporter expression, but deletion of a 3.5 kb region encompassing Pax8-CNS1 and Pax8-CNS2 results in a severe inhibition of reporter expression both in the otic placode and kidney field domains.
Collapse
Affiliation(s)
- Jennifer Durant-Vesga
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Nanoka Suzuki
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan; Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Ronan Le Bouffant
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Alexis Eschstruth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Hajime Ogino
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Jean-François Riou
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France.
| |
Collapse
|
2
|
Futel M, Le Bouffant R, Buisson I, Umbhauer M, Riou JF. Characterization of potential TRPP2 regulating proteins in early Xenopus embryos. J Cell Biochem 2018; 119:10338-10350. [PMID: 30171710 DOI: 10.1002/jcb.27376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022]
Abstract
Transient receptor potential cation channel-2 (TRPP2) is a nonspecific Ca2+ -dependent cation channel with versatile functions including control of extracellular calcium entry at the plasma membrane, release of intracellular calcium ([Ca2+ ]i) from internal stores of endoplasmic reticulum, and calcium-dependent mechanosensation in the primary cilium. In early Xenopus embryos, TRPP2 is expressed in cilia of the gastrocoel roof plate (GRP) involved in the establishment of left-right asymmetry, and in nonciliated kidney field (KF) cells, where it plays a central role in early specification of nephron tubule cells dependent on [Ca2+ ]i signaling. Identification of proteins binding to TRPP2 in embryo cells can provide interesting clues about the mechanisms involved in its regulation during these various processes. Using mass spectrometry, we have therefore characterized proteins from late gastrula/early neurula stage embryos coimmunoprecipitating with TRPP2. Binding of three of these proteins, golgin A2, protein kinase-D1, and disheveled-2 has been confirmed by immunoblotting analysis of TRPP2-coprecipitated proteins. Expression analysis of the genes, respectively, encoding these proteins, golga2, prkd1, and dvl2 indicates that they are likely to play a role in these two regions. Golga2 and prkd1 are expressed at later stage in the developing pronephric tubule where golgin A2 and protein kinase-D1 might also interact with TRPP2. Colocalization experiments using exogenously expressed fluorescent versions of TRPP2 and dvl2 in GRP and KF reveal that these two proteins are generally not coexpressed, and only colocalized in discrete region of cells. This was observed in KF cells, but does not appear to occur in the apical ciliated region of GRP cells.
Collapse
Affiliation(s)
- Mélinée Futel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Ronan Le Bouffant
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Isabelle Buisson
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Jean-François Riou
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| |
Collapse
|
3
|
Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR. Id genes are essential for early heart formation. Genes Dev 2017; 31:1325-1338. [PMID: 28794185 PMCID: PMC5580654 DOI: 10.1101/gad.300400.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Michael S Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Department of Bioengineering, University of California at San Diego, La Jolla, California 92037, USA
| | - Wesley L McKeithan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA.,Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California 94305, USA
| | - Sean Spiering
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Florent Carrette
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Paul J Bushway
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92037, USA
| | - Matthew Tierney
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Sonia Albini
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Miguel Mano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Istituti di Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandra Sacco
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Pilar Ruiz-Lozano
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Regencor, Inc., Los Altos, California 94022, USA
| | - Jean-Francois Riou
- UMR 7622 Developmental Biology, Sorbonne Universités, University Pierre and Marie Curie, F- 75005 Paris, France
| | - Muriel Umbhauer
- UMR 7622 Developmental Biology, Sorbonne Universités, University Pierre and Marie Curie, F- 75005 Paris, France
| | - Gregg Duester
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Mark Mercola
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California 94305, USA
| | - Alexandre R Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| |
Collapse
|
4
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Moreau M, Néant I, Webb SE, Miller AL, Riou JF, Leclerc C. Ca(2+) coding and decoding strategies for the specification of neural and renal precursor cells during development. Cell Calcium 2015; 59:75-83. [PMID: 26744233 DOI: 10.1016/j.ceca.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023]
Abstract
During embryogenesis, a rise in intracellular Ca(2+) is known to be a widespread trigger for directing stem cells towards a specific tissue fate, but the precise Ca(2+) signalling mechanisms involved in achieving these pleiotropic effects are still poorly understood. In this review, we compare the Ca(2+) signalling events that appear to be one of the first steps in initiating and regulating both neural determination (neural induction) and kidney development (nephrogenesis). We have highlighted the necessary and sufficient role played by Ca(2+) influx and by Ca(2+) transients in the determination and differentiation of pools of neural or renal precursors. We have identified new Ca(2+) target genes involved in neural induction and we showed that the same Ca(2+) early target genes studied are not restricted to neural tissue but are also present in other tissues, principally in the pronephros. In this review, we also described a mechanism whereby the transcriptional control of gene expression during neurogenesis and nephrogenesis might be directly controlled by Ca(2+) signalling. This mechanism involves members of the Kcnip family such that a change in their binding properties to specific DNA sites is a result of Ca(2+) binding to EF-hand motifs. The different functions of Ca(2+) signalling during these two events illustrate the versatility of Ca(2+) as a second messenger.
Collapse
Affiliation(s)
- Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China; MBL, Woods Hole, MA, USA
| | - Jean-François Riou
- Université Pierre et Marie Curie-Paris VI, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France; CNRS, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| |
Collapse
|
6
|
Futel M, Leclerc C, Le Bouffant R, Buisson I, Néant I, Umbhauer M, Moreau M, Riou JF. TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus. J Cell Sci 2015; 128:888-99. [PMID: 25588842 DOI: 10.1242/jcs.155499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Xenopus laevis embryos, kidney field specification is dependent on retinoic acid (RA) and coincides with a dramatic increase of Ca(2+) transients, but the role of Ca(2+) signaling in the kidney field is unknown. Here, we identify TRPP2, a member of the transient receptor potential (TRP) superfamily of channel proteins encoded by the pkd2 gene, as a central component of Ca(2+) signaling in the kidney field. TRPP2 is strongly expressed at the plasma membrane where it might regulate extracellular Ca(2+) entry. Knockdown of pkd2 in the kidney field results in the downregulation of pax8, but not of other kidney field genes (lhx1, osr1 and osr2). We further show that inhibition of Ca(2+) signaling with an inducible Ca(2+) chelator also causes downregulation of pax8, and that pkd2 knockdown results in a severe inhibition of Ca(2+) transients in kidney field explants. Finally, we show that disruption of RA results both in an inhibition of intracellular Ca(2+) signaling and of TRPP2 incorporation into the plasma membrane of kidney field cells. We propose that TRPP2-dependent Ca(2+) signaling is a key component of pax8 regulation in the kidney field downstream of RA-mediated non-transcriptional control of TRPP2.
Collapse
Affiliation(s)
- Mélinée Futel
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Ronan Le Bouffant
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Isabelle Buisson
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Muriel Umbhauer
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Jean-François Riou
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
7
|
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. Dev Biol 2014; 397:175-90. [PMID: 25446030 DOI: 10.1016/j.ydbio.2014.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2014] [Accepted: 10/26/2014] [Indexed: 11/23/2022]
Abstract
The respective role of Pax2 and Pax8 in early kidney development in vertebrates is poorly understood. In this report, we have studied the roles of Pax8 and Pax2 in Xenopus pronephros development using a loss-of-function approach. Our results highlight a differential requirement of these two transcription factors for proper pronephros formation. Pax8 is necessary for the earliest steps of pronephric development and its depletion leads to a complete absence of pronephric tubule. Pax2 is required after the establishment of the tubule pronephric anlage, for the expression of several terminal differentiation markers of the pronephric tubule. Neither Pax2 nor Pax8 is essential to glomus development. We further show that Pax8 controls hnf1b, but not lhx1 and Osr2, expression in the kidney field as soon as the mid-neurula stage. Pax8 is also required for cell proliferation of pronephric precursors in the kidney field. It may exert its action through the wnt/beta-catenin pathway since activation of this pathway can rescue MoPax8 induced proliferation defect and Pax8 regulates expression of the wnt pathway components, dvl1 and sfrp3. Finally, we observed that loss of pronephros in Pax8 morphants correlates with an expanded vascular/blood gene expression domain indicating that Pax8 function is important to delimit the blood/endothelial genes expression domain in the anterior part of the dorso-lateral plate.
Collapse
|
8
|
Warga RM, Mueller RL, Ho RK, Kane DA. Zebrafish Tbx16 regulates intermediate mesoderm cell fate by attenuating Fgf activity. Dev Biol 2013; 383:75-89. [PMID: 24008197 DOI: 10.1016/j.ydbio.2013.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/04/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Progenitors of the zebrafish pronephros, red blood and trunk endothelium all originate from the ventral mesoderm and often share lineage with one another, suggesting that their initial patterning is linked. Previous studies have shown that spadetail (spt) mutant embryos, defective in tbx16 gene function, fail to produce red blood cells, but retain the normal number of endothelial and pronephric cells. We report here that spt mutants are deficient in all the types of early blood, have fewer endothelial cells as well as far more pronephric cells compared to wildtype. In vivo cell tracing experiments reveal that blood and endothelium originate in spt mutants almost exclusive from the dorsal mesoderm whereas, pronephros and tail originate from both dorsal and ventral mesoderm. Together these findings suggest possible defects in posterior patterning. In accord with this, gene expression analysis shows that mesodermal derivatives within the trunk and tail of spt mutants have acquired more posterior identity. Secreted signaling molecules belonging to the Fgf, Wnt and Bmp families have been implicated as patterning factors of the posterior mesoderm. Further investigation demonstrates that Fgf and Wnt signaling are elevated throughout the nonaxial region of the spt gastrula. By manipulating Fgf signaling we show that Fgfs both promote pronephric fate and repress blood and endothelial fate. We conclude that Tbx16 plays an important role in regulating the balance of intermediate mesoderm fates by attenuating Fgf activity.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA; Department of Organismal Biology and Anatomy, University of Chicago, 1027 East, 57th Street, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
9
|
Cases O, Perea-Gomez A, Aguiar DP, Nykjaer A, Amsellem S, Chandellier J, Umbhauer M, Cereghini S, Madsen M, Collignon J, Verroust P, Riou JF, Creuzet SE, Kozyraki R. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head. J Biol Chem 2013; 288:16655-16670. [PMID: 23592779 DOI: 10.1074/jbc.m113.451070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.
Collapse
Affiliation(s)
- Olivier Cases
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France
| | - Aitana Perea-Gomez
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris, France
| | - Diego P Aguiar
- Institut de Neurobiologie Alfred-Fessard, CNRS UPR3294, Développement, Evolution et Plasticité du Système Nerveux, F-91198 Gif-sur-Yvette, France
| | - Anders Nykjaer
- Lundbeck Foundation Research Centre MIND, Department of Biomedicine, University of Aarhus, Olle Worms Allé 3, 8000 Aarhus, Denmark
| | - Sabine Amsellem
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France
| | - Jacqueline Chandellier
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France
| | - Muriel Umbhauer
- CNRS UMR7622, Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, 9 Quai Saint Bernard, F-75252 Paris, France
| | - Silvia Cereghini
- CNRS UMR7622, Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, 9 Quai Saint Bernard, F-75252 Paris, France
| | - Mette Madsen
- Department of Biomedicine, University of Aarhus, Olle Worms Allé 3, 8000 Aarhus, Denmark
| | - Jérôme Collignon
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris, France
| | - Pierre Verroust
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France
| | - Jean-François Riou
- CNRS UMR7622, Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, 9 Quai Saint Bernard, F-75252 Paris, France
| | - Sophie E Creuzet
- Institut de Neurobiologie Alfred-Fessard, CNRS UPR3294, Développement, Evolution et Plasticité du Système Nerveux, F-91198 Gif-sur-Yvette, France
| | - Renata Kozyraki
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France.
| |
Collapse
|
10
|
Della Gaspera B, Armand AS, Lecolle S, Charbonnier F, Chanoine C. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. PLoS One 2012; 7:e52359. [PMID: 23300648 PMCID: PMC3534117 DOI: 10.1371/journal.pone.0052359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Xenopus myotome is formed by a first medial and lateral myogenesis directly arising from the presomitic mesoderm followed by a second myogenic wave emanating from the dermomyotome. Here, by a series of gain and loss of function experiments, we showed that Mef2d, a member of the Mef2 family of MADS-box transcription factors, appeared as an upstream regulator of lateral myogenesis, and as an inducer of dermomyotome formation at the beginning of neurulation. In the lateral presomitic cells, we showed that Mef2d transactivates Myod expression which is necessary for lateral myogenesis. In the most lateral cells of the presomitic mesoderm, we showed that Mef2d and Paraxis (Tcf15), a member of the Twist family of transcription factors, were co-localized and activate directly the expression of Meox2, which acts upstream of Pax3 expression during dermomyotome formation. Cell tracing experiments confirm that the most lateral Meox2 expressing cells of the presomitic mesoderm correspond to the dermomyotome progenitors since they give rise to the most dorsal cells of the somitic mesoderm. Thus, Xenopus Mef2d couples lateral myogenesis to dermomyotome formation before somite segmentation. These results together with our previous works reveal striking similarities between dermomyotome and tendon formation in Xenopus: both develop in association with myogenic cells and both involve a gene transactivation pathway where one member of the Mef2 family, Mef2d or Mef2c, cooperates with a bHLH protein of the Twist family, Paraxis or Scx (Scleraxis) respectively. We propose that these shared characteristics in Xenopus laevis reflect the existence of a vertebrate ancestral mechanism which has coupled the development of the myogenic cells to the formation of associated tissues during somite compartmentalization.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France.
| | | | | | | | | |
Collapse
|
11
|
Colas AR, McKeithan WL, Cunningham TJ, Bushway PJ, Garmire LX, Duester G, Subramaniam S, Mercola M. Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. Genes Dev 2012; 26:2567-79. [PMID: 23152446 DOI: 10.1101/gad.200758.112] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tight control over the segregation of endoderm, mesoderm, and ectoderm is essential for normal embryonic development of all species, yet how neighboring embryonic blastomeres can contribute to different germ layers has never been fully explained. We postulated that microRNAs, which fine-tune many biological processes, might modulate the response of embryonic blastomeres to growth factors and other signals that govern germ layer fate. A systematic screen of a whole-genome microRNA library revealed that the let-7 and miR-18 families increase mesoderm at the expense of endoderm in mouse embryonic stem cells. Both families are expressed in ectoderm and mesoderm, but not endoderm, as these tissues become distinct during mouse and frog embryogenesis. Blocking let-7 function in vivo dramatically affected cell fate, diverting presumptive mesoderm and ectoderm into endoderm. siRNA knockdown of computationally predicted targets followed by mutational analyses revealed that let-7 and miR-18 down-regulate Acvr1b and Smad2, respectively, to attenuate Nodal responsiveness and bias blastomeres to ectoderm and mesoderm fates. These findings suggest a crucial role for the let-7 and miR-18 families in germ layer specification and reveal a remarkable conservation of function from amphibians to mammals.
Collapse
|
12
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
13
|
Le Bouffant R, Wang JH, Futel M, Buisson I, Umbhauer M, Riou JF. Retinoic acid-dependent control of MAP kinase phosphatase-3 is necessary for early kidney development in Xenopus. Biol Cell 2012; 104:516-32. [DOI: 10.1111/boc.201200005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
|
14
|
Wessely O, Tran U. Xenopus pronephros development--past, present, and future. Pediatr Nephrol 2011; 26:1545-51. [PMID: 21499947 PMCID: PMC3425949 DOI: 10.1007/s00467-011-1881-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/08/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
Abstract
Kidney development is a multi-step process where undifferentiated mesenchyme is converted into a highly complex organ through several inductive events. The general principles regulating these events have been under intense investigation and despite extensive progress, many open questions remain. While the metanephric kidneys of mouse and rat have served as the primary model, other organisms also significantly contribute to the field. In particular, the more primitive pronephric kidney has emerged as an alternative model due to its simplicity and experimental accessibility. Many aspects of nephron development such as the patterning along its proximo-distal axis are evolutionarily conserved and are therefore directly applicable to higher vertebrates. This review will focus on the current understanding of pronephros development in Xenopus. It summarizes how signaling, transcriptional regulation, as well as post-transcriptional mechanisms contribute to the differentiation of renal epithelial cells. The data show that even in the simple pronephros the mechanisms regulating kidney organogenesis are highly complex. It also illustrates that a multifaceted analysis embracing modern genome-wide approaches combined with single gene analysis will be required to fully understand all the intricacies.
Collapse
Affiliation(s)
- Oliver Wessely
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, LA, USA.
| | - Uyen Tran
- LSU Health Sciences Center, Department of Cell Biology & Anatomy, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Drews C, Senkel S, Ryffel GU. The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps. BMC DEVELOPMENTAL BIOLOGY 2011; 11:5. [PMID: 21281489 PMCID: PMC3042965 DOI: 10.1186/1471-213x-11-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The three distinct types of kidneys, pronephros, mesonephros and metanephros, develop consecutively in vertebrates. The earliest form of embryonic kidney, the pronephros, is derived from intermediate mesoderm and the first expressed genes localized in the pronephros anlage are the transcription factors osr1, osr2, hnf1b, lhx1 and pax8, here referred to as the early nephrogenic transcription factors. However, the pathway inducing nephrogenesis and the network of theses factors are poorly understood. Treatment of the undifferentiated animal pole explant (animal cap) of Xenopus with activin A and retinoic acid induces pronephros formation providing a powerful tool to analyze key molecular events in nephrogenesis. RESULTS We have investigated the expression kinetics of the early nephrogenic transcription factors in activin A and retinoic acid treated animal caps and their potential to induce pronephric differentiation. In treated animal caps, expression of osr1, osr2, hnf1b and lhx1 are induced early, whereas pax8 expression occurs later implying an indirect activation. Activin A alone is able to induce osr2 and lhx1 after three hours treatment in animal caps while retinoic acid fails to induce any of these nephrogenic transcription factors. The early expression of the five transcription factors and their interference with pronephros development when overexpressed in embryos suggest that these factors potentially induce nephrogenesis upon expression in animal caps. But no pronephros development is achieved by either overexpression of OSR1, by HNF1B injection with activin A treatment, or the combined application of LHX1 and PAX8, although they influenced the expression of several early nephrogenic transcription factors in some cases. In an additional approach we could show that HNF1B induces several genes important in nephrogenesis and regulates lhx1 expression by an HNF1 binding site in the lhx1 promoter. CONCLUSIONS The early nephrogenic transcription factors play an important role in nephrogenesis, but have no pronephros induction potential upon overexpression in animal caps. They activate transcriptional cascades that partially reflect the gene activation initiated by activin A and retinoic acid. Significantly, HNF1B activates the lhx1 promoter directly, thus extending the known activin A regulation of the lhx1 gene via an activin A responsive element.
Collapse
Affiliation(s)
- Christiane Drews
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Sabine Senkel
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Gerhart U Ryffel
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
16
|
Swiers G, Chen YH, Johnson AD, Loose M. A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals. Dev Biol 2010; 343:138-52. [PMID: 20394741 DOI: 10.1016/j.ydbio.2010.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 11/26/2022]
Abstract
Understanding how mesoderm is specified during development is a fundamental issue in biology, and it has been studied intensively in embryos from Xenopus. The gene regulatory network (GRN) for Xenopus is surprisingly complex and is not conserved in vertebrates, including mammals, which have single copies of the key genes Nodal and Mix. Why the Xenopus GRN should express multiple copies of Nodal and Mix genes is not known. To understand how these expanded gene families evolved, we investigated mesoderm specification in embryos from axolotls, representing urodele amphibians, since urodele embryology is basal to amphibians and was conserved during the evolution of amniotes, including mammals. We show that single copies of Nodal and Mix are required for mesoderm specification in axolotl embryos, suggesting the ancestral vertebrate state. Furthermore, we uncovered a novel genetic interaction in which Mix induces Brachyury expression, standing in contrast to the relationship of these molecules in Xenopus. However, we demonstrate that this functional relationship is conserved in mammals by showing that it is involved in the production of mesoderm from mouse embryonic stem cells. From our results, we produced an ancestral mesoderm (m)GRN, which we suggest is conserved in vertebrates. The results are discussed within the context of a theory in which the evolution of mechanisms governing early somatic development is constrained by the ancestral germ line-soma relationship, in which germ cells are produced by epigenesis.
Collapse
Affiliation(s)
- Gemma Swiers
- Institute of Genetics, Queens Medical Centre, University of Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|