1
|
Nam SC. Role of Tau, a microtubule associated protein, in Drosophila photoreceptor morphogenesis. Genesis 2016; 54:553-561. [PMID: 27579500 DOI: 10.1002/dvg.22966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par-1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.
Collapse
Affiliation(s)
- Sang-Chul Nam
- Department of Biology, Texas A&M International University, Laredo, TX, 78041
| |
Collapse
|
2
|
Sun G, Yuan Z, Zhang B, Jia Y, Ji Y, Ma X, Liu Y, Liu Y, Wen Q, Zhao Y. Gastrodin blocks neural stem cell differentiation into glial cells mediated by kainic acid. Neural Regen Res 2015; 7:891-5. [PMID: 25722671 PMCID: PMC4341282 DOI: 10.3969/j.issn.1673-5374.2012.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/05/2012] [Indexed: 01/24/2023] Open
Abstract
Kainic acid can simulate excitatory amino acids in vitro. Neural stem cells, isolated from newborn Wistar rats, were cultured in vitro and exposed to 100–4 000 μM kainic acid for 7 days to induce neuronal cell differentiation, causing the number of astrocytes to be significantly increased. Treatment with a combination of 0.5 mg/L gastrodin and kainic acid also caused the number of differentiated neurons to be significantly increased compared with treatment with kainic acid alone. Experimental findings suggest that gastrodin reduces the excitability of kainic acid and induces neural stem cell differentiation into neurons.
Collapse
Affiliation(s)
- Guifang Sun
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhihao Yuan
- Department of Urology, the Third People's Hospital of Zhengzhou, Zhengzhou 450051, Henan Province, China
| | - Boai Zhang
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yanjie Jia
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yangfei Ji
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xingrong Ma
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu Liu
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yanru Liu
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Quanqing Wen
- Department of Neurology, the Central Hospital of Nanyang, Nanyang 473009, Henan Province, China
| | - Yanling Zhao
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
3
|
Ali Y, Ruan K, Grace Zhai R. Drosophila Models of Tauopathy. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
4
|
Saman S, Lee NC, Inoyo I, Jin J, Li Z, Doyle T, McKee AC, Hall GF. Proteins recruited to exosomes by tau overexpression implicate novel cellular mechanisms linking tau secretion with Alzheimer's disease. J Alzheimers Dis 2014; 40 Suppl 1:S47-70. [PMID: 24718102 PMCID: PMC5977388 DOI: 10.3233/jad-132135] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tau misprocessing to form aggregates and other toxic species has emerged as a major feature in our developing understanding of the etiology and pathogenesis of Alzheimer's disease (AD). The significance of tau misprocessing in AD has been further emphasized by recent studies showing that tau can be secreted from neurons via exosomes and may itself be an important agent in the spreading of neurofibrillary lesions within the brain. Tau secretion occurs most readily under disease-associated conditions in cellular models, suggesting that cellular changes responsible for secretion, possibly including tau oligomerization, could play a key role in the propagation of neurofibrillary lesions in neurodegenerative disease. Here we show that overexpression of 4R0N human tau in neuroblastoma cells recruits mitochondrial and axonogenesis-associated proteins relevant to neurodegeneration into the exosomal secretion pathway via distinct mechanisms. The recruitment of mitochondrial proteins appears to be linked to autophagy disruption (exophagy) in multiple neurodegenerative conditions but has few known direct links to AD and tau. By contrast, the involvement of synaptic plasticity and axonogenesis markers is highly specific to both tau and AD and may be relevant to the reactivation of developmental programs involving tau in AD and the recently demonstrated ability of secreted tau to establish tissue distribution gradients in CNS neuropil. We also found a highly significant correlation between genes that are significantly downregulated in multiple forms of AD and proteins that have been recruited to exosomes by tau, which we interpret as strong evidence for the central involvement of tau secretion in AD cytopathogenesis. Our results suggest that multiple cellular mechanisms may link tau secretion to both toxicity and neurofibrillary lesion spreading in AD and other tauopathies.
Collapse
Affiliation(s)
- Sudad Saman
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street Lowell MA, USA
- Mass Bay Community College Science Department STEM Division 50 Oakland Street Wellesley Hills, MA 02481
| | - Norman C.Y. Lee
- Boston University Chemical Instrumentation Center, Department of Chemistry, Boston, MA USA 02215
| | - Itoro Inoyo
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street Lowell MA, USA
| | - Jun Jin
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street Lowell MA, USA
| | - Zhihan Li
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street Lowell MA, USA
| | - Thomas Doyle
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street Lowell MA, USA
- Mass Bay Community College Science Department STEM Division 50 Oakland Street Wellesley Hills, MA 02481
| | - Ann C. McKee
- GRECC unit, Veterans Administration Medical Center, 182-B, 200 Springs Rd, Bedford, MA 01730 and Departments of Neurology and Pathology, Boston University School of Medicine Boston, MA USA 02215
| | - Garth F. Hall
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street Lowell MA, USA
| |
Collapse
|
5
|
Abstract
AbstractRecent investigations into the etiology and pathogenesis of Alzheimer’s disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of Aβ and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.
Collapse
|
6
|
Efficient EGFR signaling and dorsal-ventral axis patterning requires syntaxin dependent Gurken trafficking. Dev Biol 2012; 373:349-58. [PMID: 23127433 DOI: 10.1016/j.ydbio.2012.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 11/22/2022]
Abstract
Vesicle trafficking plays a crucial role in the establishment of cell polarity in various cellular contexts, including axis-pattern formation in the developing egg chamber of Drosophila. The EGFR ligand, Gurken (Grk), is first localized at the posterior of young oocytes for anterior-posterior axis formation and later in the dorsal anterior region for induction of the dorsal-ventral (DV) axis, but regulation of Grk localization by membrane trafficking in the oocyte remains poorly understood. Here, we report that Syntaxin 1A (Syx1A) is required for efficient trafficking of Grk protein for DV patterning. We show that Syx1A is associated with the Golgi membrane and is required for the transportation of Grk-containing vesicles along the microtubules to their dorsal anterior destination in the oocyte. Our studies reveal that the Syx1A dependent trafficking of Grk protein is required for efficient EGFR signaling during DV patterning.
Collapse
|
7
|
Drosophila models of tauopathies: what have we learned? Int J Alzheimers Dis 2012; 2012:970980. [PMID: 22701808 PMCID: PMC3373119 DOI: 10.1155/2012/970980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/08/2012] [Indexed: 01/10/2023] Open
Abstract
Aggregates of the microtubule-associated protein Tau are neuropathological hallmark lesions in Alzheimer's disease (AD) and related primary tauopathies. In addition, Tau is genetically implicated in a number of human neurodegenerative disorders including frontotemporal dementia (FTD) and Parkinson's disease (PD). The exact mechanism by which Tau exerts its neurotoxicity is incompletely understood. Here, we give an overview of how studies using the genetic model organism Drosophila over the past decade have contributed to the molecular understanding of Tau neurotoxicity. We compare the different available readouts for Tau neurotoxicity in flies and review the molecular pathways in which Tau has been implicated. Finally, we emphasize that the integration of genome-wide approaches in human or mice with high-throughput genetic validation in Drosophila is a fruitful approach.
Collapse
|
8
|
Parton RM, Hamilton RS, Ball G, Yang L, Cullen CF, Lu W, Ohkura H, Davis I. A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte. J Cell Biol 2011; 194:121-35. [PMID: 21746854 PMCID: PMC3135408 DOI: 10.1083/jcb.201103160] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/07/2011] [Indexed: 12/31/2022] Open
Abstract
Cytoskeletal organization is central to establishing cell polarity in various cellular contexts, including during messenger ribonucleic acid sorting in Drosophila melanogaster oocytes by microtubule (MT)-dependent molecular motors. However, MT organization and dynamics remain controversial in the oocyte. In this paper, we use rapid multichannel live-cell imaging with novel image analysis, tracking, and visualization tools to characterize MT polarity and dynamics while imaging posterior cargo transport. We found that all MTs in the oocyte were highly dynamic and were organized with a biased random polarity that increased toward the posterior. This organization originated through MT nucleation at the oocyte nucleus and cortex, except at the posterior end of the oocyte, where PAR-1 suppressed nucleation. Our findings explain the biased random posterior cargo movements in the oocyte that establish the germline and posterior.
Collapse
Affiliation(s)
- Richard M. Parton
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Russell S. Hamilton
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Graeme Ball
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Lei Yang
- Department of Physics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, UK
| | - C. Fiona Cullen
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Weiping Lu
- Department of Physics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, UK
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Ilan Davis
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| |
Collapse
|
9
|
Papanikolopoulou K, Skoulakis EMC. The power and richness of modelling tauopathies in Drosophila. Mol Neurobiol 2011; 44:122-33. [PMID: 21681411 DOI: 10.1007/s12035-011-8193-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/06/2011] [Indexed: 02/07/2023]
Abstract
Tauopathies are a group of neurodegenerative disorders characterised by altered levels of phosphorylation or mutations in the neuronal microtubule protein Tau. The heterogeneous pathology of tauopathies suggests differential susceptibility of different neuronal types to wild-type and mutant Tau. The genetic power and facility of the Drosophila model has been instrumental in exploring the molecular aetiologies of tauopathies, identifying additional proteins likely contributing to neuronal dysfunction and toxicity and novel Tau phosphorylations mediating them. Importantly, recent results indicate tissue- and temporal-specific effects on dysfunction and toxicity coupled with differential effects of distinct Tau isoforms within them. Therefore, they reveal an unexpected richness of the Drosophila model that, coupled with its molecular genetic power, will likely play a significant role in our understanding of multiple tauopathies potentially leading to their differential treatment.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre Alexander Fleming, Vari 16672, Greece.
| | | |
Collapse
|
10
|
Lennerz JK, Hurov JB, White LS, Lewandowski KT, Prior JL, Planer GJ, Gereau RW, Piwnica-Worms D, Schmidt RE, Piwnica-Worms H. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. Mol Cell Biol 2010; 30:5043-56. [PMID: 20733003 PMCID: PMC2953066 DOI: 10.1128/mcb.01472-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/22/2009] [Accepted: 07/29/2010] [Indexed: 12/11/2022] Open
Abstract
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.
Collapse
Affiliation(s)
- Jochen K. Lennerz
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Jonathan B. Hurov
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Lynn S. White
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Katherine T. Lewandowski
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Julie L. Prior
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - G. James Planer
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Robert W. Gereau
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - David Piwnica-Worms
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Helen Piwnica-Worms
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
11
|
Abstract
The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal-ventral symmetry of the egg and embryo.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Developmental Biology, University of Cologne, Gyrhofstr. 17, D-50923 Cologne, Germany.
| | | |
Collapse
|
12
|
Doerflinger H, Vogt N, Torres IL, Mirouse V, Koch I, Nüsslein-Volhard C, St Johnston D. Bazooka is required for polarisation of the Drosophila anterior-posterior axis. Development 2010; 137:1765-73. [PMID: 20430751 DOI: 10.1242/dev.045807] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila anterior-posterior (AP) axis is determined by the polarisation of the stage 9 oocyte and the subsequent localisation of bicoid and oskar mRNAs to opposite poles of the cell. Oocyte polarity has been proposed to depend on the same PAR proteins that generate AP polarity in C. elegans, with a complex of Bazooka (Baz; Par-3), Par-6 and aPKC marking the anterior and lateral cortex, and Par-1 defining the posterior. The function of the Baz complex in oocyte polarity has remained unclear, however, because although baz-null mutants block oocyte determination, egg chambers that escape this early arrest usually develop normal polarity at stage 9. Here, we characterise a baz allele that produces a penetrant polarity phenotype at stage 9 without affecting oocyte determination, demonstrating that Baz is essential for axis formation. The dynamics of Baz, Par-6 and Par-1 localisation in the oocyte indicate that the axis is not polarised by a cortical contraction as in C. elegans, and instead suggest that repolarisation of the oocyte is triggered by posterior inactivation of aPKC or activation of Par-1. This initial asymmetry is then reinforced by mutual inhibition between the anterior Baz complex and posterior Par-1 and Lgl. Finally, we show that mutation of the aPKC phosphorylation site in Par-1 results in the uniform cortical localisation of Par-1 and the loss of cortical microtubules. Since non-phosphorylatable Par-1 is epistatic to uninhibitable Baz, Par-1 seems to function downstream of the other PAR proteins to polarize the oocyte microtubule cytoskeleton.
Collapse
Affiliation(s)
- Hélène Doerflinger
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Wentzell J, Kretzschmar D. Alzheimer's disease and tauopathy studies in flies and worms. Neurobiol Dis 2010; 40:21-8. [PMID: 20302939 DOI: 10.1016/j.nbd.2010.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 12/24/2022] Open
Abstract
Progressive dementias like Alzheimer's Disease (AD) and other tauopathies are an increasing threat to human health worldwide. Although significant progress has been made in understanding the pathogenesis of these diseases using cell culture and mouse models, the complexity of these diseases has still prevented a comprehensive understanding of their underlying causes. As with other neurological diseases, invertebrate models have provided novel genetic approaches for investigating the molecular pathways that are affected in tauopathies, including AD. This review focuses on transgenic models that have been established in Drosophila melanogaster and Caenorhabditis elegans to investigate these diseases, and the insights that have been gained from these studies. Also included are a brief description of the endogenous versions of human "disease genes" (like tau and the Amyloid Precursor Protein) that are expressed in invertebrates, and an overview of results that have been obtained from animals lacking or overexpressing these genes. These diverse models can be used to advance our knowledge about how these proteins acquire a pathogenic function and how disrupting their normal functions may contribute to neurological pathologies. They also provide powerful assays for identifying molecular and genetic interactions that are important in developing or preventing the deleterious effects.
Collapse
Affiliation(s)
- Jill Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
14
|
Fichelson P, Jagut M, Lepanse S, Lepesant JA, Huynh JR. lethal giant larvae is required with the par genes for the early polarization of the Drosophila oocyte. Development 2010; 137:815-24. [PMID: 20147382 DOI: 10.1242/dev.045013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Most cell types in an organism show some degree of polarization, which relies on a surprisingly limited number of proteins. The underlying molecular mechanisms depend, however, on the cellular context. Mutual inhibitions between members of the Par genes are proposed to be sufficient to polarize the C. elegans one-cell zygote and the Drosophila oocyte during mid-oogenesis. By contrast, the Par genes interact with cellular junctions and associated complexes to polarize epithelial cells. The Par genes are also required at an early step of Drosophila oogenesis for the maintenance of the oocyte fate and its early polarization. Here we show that the Par genes are not sufficient to polarize the oocyte early and that the activity of the tumor-suppressor gene lethal giant larvae (lgl) is required for the posterior translocation of oocyte-specific proteins, including germline determinants. We also found that Lgl localizes asymmetrically within the oocyte and is excluded from the posterior pole. We further demonstrate that phosphorylation of Par-1, Par-3 (Bazooka) and Lgl is crucial to regulate their activity and localization in vivo and describe, for the first time, adherens junctions located around the ring canals, which link the oocyte to the other cells of the germline cyst. However, null mutations in the DE-cadherin gene, which encodes the main component of the zonula adherens, do not affect the early polarization of the oocyte. We conclude that, despite sharing many similarities with other model systems at the genetic and cellular levels, the polarization of the early oocyte relies on a specific subset of polarity proteins.
Collapse
Affiliation(s)
- Pierre Fichelson
- Institut Jacques Monod, CNRS-Universite Paris Diderot, Bât. Buffon -15 rue Hélène Brion, 75205 Paris cedex 13, France
| | | | | | | | | |
Collapse
|
15
|
Bazooka regulates microtubule organization and spatial restriction of germ plasm assembly in the Drosophila oocyte. Dev Biol 2010; 340:528-38. [PMID: 20152826 DOI: 10.1016/j.ydbio.2010.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 11/20/2022]
Abstract
Localization of the germ plasm to the posterior of the Drosophila oocyte is required for anteroposterior patterning and germ cell development during embryogenesis. While mechanisms governing the localization of individual germ plasm components have been elucidated, the process by which germ plasm assembly is restricted to the posterior pole is poorly understood. In this study, we identify a novel allele of bazooka (baz), the Drosophila homolog of Par-3, which has allowed the analysis of baz function throughout oogenesis. We demonstrate that baz is required for spatial restriction of the germ plasm and axis patterning, and we uncover multiple requirements for baz in regulating the organization of the oocyte microtubule cytoskeleton. Our results suggest that distinct cortical domains established by Par proteins polarize the oocyte through differential effects on microtubule organization. We further show that microtubule plus-end enrichment is sufficient to drive germ plasm assembly even at a distance from the oocyte cortex, suggesting that control of microtubule organization is critical not only for the localization of germ plasm components to the posterior of the oocyte but also for the restriction of germ plasm assembly to the posterior pole.
Collapse
|
16
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|