1
|
Zhao B, Zhang H, Liu Y, Zu G, Zhang Y, Hu J, Liu S, You L. Forebrain excitatory neuron-specific loss of Brpf1 attenuates excitatory synaptic transmission and impairs spatial and fear memory. Neural Regen Res 2024; 19:1133-1141. [PMID: 37862219 PMCID: PMC10749587 DOI: 10.4103/1673-5374.385307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/10/2023] [Accepted: 07/19/2023] [Indexed: 10/22/2023] Open
Abstract
Bromodomain and plant homeodomain (PHD) finger containing protein 1 (Brpf1) is an activator and scaffold protein of a multiunit complex that includes other components involving lysine acetyltransferase (KAT) 6A/6B/7. Brpf1, KAT6A, and KAT6B mutations were identified as the causal genes of neurodevelopmental disorders leading to intellectual disability. Our previous work revealed strong and specific expression of Brpf1 in both the postnatal and adult forebrain, especially the hippocampus, which has essential roles in learning and memory. Here, we hypothesized that Brpf1 plays critical roles in the function of forebrain excitatory neurons, and that its deficiency leads to learning and memory deficits. To test this, we knocked out Brpf1 in forebrain excitatory neurons using CaMKIIa-Cre. We found that Brpf1 deficiency reduced the frequency of miniature excitatory postsynaptic currents and downregulated the expression of genes Pcdhgb1, Slc16a7, Robo3, and Rho, which are related to neural development, synapse function, and memory, thereby damaging spatial and fear memory in mice. These findings help explain the mechanisms of intellectual impairment in patients with BRPF1 mutation.
Collapse
Affiliation(s)
- Baicheng Zhao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuxiao Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Jiayi Hu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shuai Liu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| |
Collapse
|
2
|
Barman S, Padhan J, Sudhamalla B. Uncovering the non-histone interactome of the BRPF1 bromodomain using site-specific azide-acetyllysine photochemistry. J Biol Chem 2024; 300:105551. [PMID: 38072045 PMCID: PMC10789646 DOI: 10.1016/j.jbc.2023.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/08/2024] Open
Abstract
Bromodomain-PHD finger protein 1 (BRPF1) belongs to the BRPF family of bromodomain-containing proteins. Bromodomains are exclusive reader modules that recognize and bind acetylated histones and non-histone transcription factors to regulate gene expression. The biological functions of acetylated histone recognition by BRPF1 bromodomain are well characterized; however, the function of BRPF1 regulation via non-histone acetylation is still unexplored. Therefore, identifying the non-histone interactome of BRPF1 is pivotal in deciphering its role in diverse cellular processes, including its misregulation in diseases like cancer. Herein, we identified the non-histone interacting partners of BRPF1 utilizing a protein engineering-based approach. We site-specifically introduced the unnatural photo-cross-linkable amino acid 4-azido-L-phenylalanine into the bromodomain of BRPF1 without altering its ability to recognize acetylated histone proteins. Upon photoirradiation, the engineered BRPF1 generates a reactive nitrene species, cross-linking interacting partners with spatio-temporal precision. We demonstrated the robust cross-linking efficiency of the engineered variant with reported histone ligands of BRPF1 and further used the variant reader to cross-link its interactome. We also characterized novel interacting partners by proteomics, suggesting roles for BRPF1 in diverse cellular processes. BRPF1 interaction with interleukin enhancer-binding factor 3, one of these novel interacting partners, was further validated by isothermal titration calorimetry and co-IP. Lastly, we used publicly available ChIP-seq and RNA-seq datasets to understand the colocalization of BRPF1 and interleukin enhancer-binding factor 3 in regulating gene expression in the context of hepatocellular carcinoma. Together, these results will be crucial for full understanding of the roles of BRPF1 in transcriptional regulation and in the design of small-molecule inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
3
|
Singh M, Spendlove SJ, Wei A, Bondhus LM, Nava AA, de L Vitorino FN, Amano S, Lee J, Echeverria G, Gomez D, Garcia BA, Arboleda VA. KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster. Hum Genet 2023; 142:1705-1720. [PMID: 37861717 PMCID: PMC10676314 DOI: 10.1007/s00439-023-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo mutations in Lysine(K) acetyltransferase 6A (KAT6A). ARTHS is clinically heterogeneous and characterized by several common features, including intellectual disability, developmental and speech delay, and hypotonia, and affects multiple organ systems. KAT6A is the enzymatic core of a histone-acetylation protein complex; however, the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient (n = 8) and control (n = 14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23% (14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster (HOXC10, HOXC11, HOXC-AS3, HOXC-AS2, and HOTAIR) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene-body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.
Collapse
Affiliation(s)
- Meghna Singh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Sarah J Spendlove
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, CA, USA
| | - Angela Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, CA, USA
| | - Leroy M Bondhus
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Aileen A Nava
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Francisca N de L Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, USA
| | - Seth Amano
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jacob Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gesenia Echeverria
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Dianne Gomez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, USA
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Singh M, Spendlove S, Wei A, Bondhus L, Nava A, de L. Vitorino FN, Amano S, Lee J, Echeverria G, Gomez D, Garcia BA, Arboleda VA. KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.550595. [PMID: 37577627 PMCID: PMC10418288 DOI: 10.1101/2023.08.03.550595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo truncating mutations in Lysine(K) acetyltransferase 6A (KAT6A). ARTHS is clinically heterogeneous and characterized by several common features including intellectual disability, developmental and speech delay, hypotonia and affects multiple organ systems. KAT6A is highly expressed in early development and plays a key role in cell-type specific differentiation. KAT6A is the enzymatic core of a histone-acetylation protein complex, however the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient (n=8) and control (n=14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23%(14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster (HOXC10, HOXC11, HOXC-AS3, HOXC-AS2, HOTAIR) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene-body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.
Collapse
Affiliation(s)
- Meghna Singh
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Sarah Spendlove
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA
| | - Angela Wei
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA
| | - Leroy Bondhus
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Aileen Nava
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Seth Amano
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jacob Lee
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gesenia Echeverria
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Dianne Gomez
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis
| | - Valerie A. Arboleda
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA
| |
Collapse
|
5
|
Kose CC, Kaya D, Akcan MB, Silan F. Anemia and thrombocytopenia due to a novel BRPF1 variant in a family from Çanakkale with intellectual disability and dysmorphic facies: Case report and review of the literature. Am J Med Genet A 2023; 191:2209-2214. [PMID: 37190896 DOI: 10.1002/ajmg.a.63244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/26/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Intellectual developmental disorder with dysmorphic facies and ptosis (IDDDFP) (MIM#617333) is an autosomal dominant disorder characterized by delayed psychomotor development, intellectual disability (ID), and dysmorphic facial features due to pathogenic variations in the Bromodomain- and PHD Finger-Containing Protein (BRPF1) (MIM#602410) gene. Herein, we report the first Turkish patients with IDDDFP. Additionally, the patients had hematopoietic disorders such as anemia and thrombocytopenia, which have not been previously described in IDDDFP patients. Genetic testing using Whole Exome Sequencing (WES) revealed a novel heterozygous c.1433G > A; p.W478* (NM_004634.3) pathogenic variant on exon 3 of the BRPF1 gene. The patients demonstrated classical features of IDDDFP such as intellectual disability, developmental delay, ptosis, micro and retrognathia, and dysmorphic facial features, in addition to the anemia and thrombocytopenia. Apart from the variant in BRPF1, no additional genomic changes were detected by WES and chromosomal microarray analysis (CMA). Hopefully, our novel report on the hematopoietic anomalies of our patients due to BRPF1 will expand upon the clinical spectrum of IDDDFP, encourage further studies about BRPF1-hematopoietic system relations, and affect the diagnostic and therapeutic schemes of hematopoietic system disorders.
Collapse
Affiliation(s)
- Canan Ceylan Kose
- Department of Medical Genetics, Çanakkale Onsekiz Mart University, Faculty of Medicine, Çanakkale, Turkey
| | - Derya Kaya
- Department of Medical Genetics, Çanakkale Onsekiz Mart University, Faculty of Medicine, Çanakkale, Turkey
| | - Mehmet Berkay Akcan
- Department of Medical Genetics, Çanakkale Onsekiz Mart University, Faculty of Medicine, Çanakkale, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Çanakkale Onsekiz Mart University, Faculty of Medicine, Çanakkale, Turkey
| |
Collapse
|
6
|
Viita T, Côté J. The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Front Cell Dev Biol 2023; 10:1115903. [PMID: 36712963 PMCID: PMC9873972 DOI: 10.3389/fcell.2022.1115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.
Collapse
Affiliation(s)
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| |
Collapse
|
7
|
Zhang C, Lin H, Zhang Y, Xing Q, Zhang J, Zhang D, Liu Y, Chen Q, Zhou T, Wang J, Shan Y, Pan G. BRPF1 bridges H3K4me3 and H3K23ac in human embryonic stem cells and is essential to pluripotency. iScience 2023; 26:105939. [PMID: 36711238 PMCID: PMC9874078 DOI: 10.1016/j.isci.2023.105939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Post-translational modifications (PTMs) on histones play essential roles in cell fate decisions during development. However, how these PTMs are recognized and coordinated remains to be fully illuminated. Here, we show that BRPF1, a multi-histone binding module protein, is essential for pluripotency in human embryonic stem cells (ESCs). BRPF1, H3K4me3, and H3K23ac substantially co-occupy the open chromatin and stemness genes in hESCs. BRPF1 deletion impairs H3K23ac in hESCs and leads to closed chromatin accessibility on stemness genes and hESC differentiation as well. Deletion of the N terminal or PHD-zinc knuckle-PHD (PZP) module in BRPF1 completely impairs its functions in hESCs while PWWP module deletion partially impacts the function. In sum, we reveal BRPF1, the multi-histone binding module protein that bridges the crosstalk between different histone modifications in hESCs to maintain pluripotency.
Collapse
Affiliation(s)
- Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaisong Lin
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yancai Liu
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Corresponding author
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Key Lab for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong 250117, China,Corresponding author
| |
Collapse
|
8
|
Yokoyama A. Role of the MOZ/MLL-mediated transcriptional activation system for self-renewal in normal hematopoiesis and leukemogenesis. FEBS J 2022; 289:7987-8002. [PMID: 34482632 PMCID: PMC10078767 DOI: 10.1111/febs.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Homeostasis in the blood system is maintained by the balance between self-renewing stem cells and nonstem cells. To promote self-renewal, transcriptional regulators maintain epigenetic information during multiple rounds of cell division. Mutations in such transcriptional regulators cause aberrant self-renewal, leading to leukemia. MOZ, a histone acetyltransferase, and MLL, a histone methyltransferase, are transcriptional regulators that promote the self-renewal of hematopoietic stem cells. Gene rearrangements of MOZ and MLL generate chimeric genes encoding fusion proteins that function as constitutively active forms. These MOZ and MLL fusion proteins constitutively activate transcription of their target genes and cause aberrant self-renewal in committed hematopoietic progenitors, which normally do not self-renew. Recent progress in the field suggests that MOZ and MLL are part of a transcriptional activation system that activates the transcription of genes with nonmethylated CpG-rich promoters. The nonmethylated state of CpGs is normally maintained during cell divisions from the mother cell to the daughter cells. Thus, the MOZ/MLL-mediated transcriptional activation system replicates the expression profile of mother cells in daughter cells by activating the transcription of genes previously transcribed in the mother cell. This review summarizes the functions of the components of the MOZ/MLL-mediated transcriptional activation system and their roles in the promotion of self-renewal.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
9
|
Zu G, Liu Y, Cao J, Zhao B, Zhang H, You L. BRPF1-KAT6A/KAT6B Complex: Molecular Structure, Biological Function and Human Disease. Cancers (Basel) 2022; 14:4068. [PMID: 36077605 PMCID: PMC9454415 DOI: 10.3390/cancers14174068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The bromodomain and PHD finger-containing protein1 (BRPF1) is a member of family IV of the bromodomain-containing proteins that participate in the post-translational modification of histones. It functions in the form of a tetrameric complex with a monocytic leukemia zinc finger protein (MOZ or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1 or KAT7) and two small non-catalytic proteins, the inhibitor of growth 5 (ING5) or the paralog ING4 and MYST/Esa1-associated factor 6 (MEAF6). Mounting studies have demonstrated that all the four core subunits play crucial roles in different biological processes across diverse species, such as embryonic development, forebrain development, skeletal patterning and hematopoiesis. BRPF1, KAT6A and KAT6B mutations were identified as the cause of neurodevelopmental disorders, leukemia, medulloblastoma and other types of cancer, with germline mutations associated with neurodevelopmental disorders displaying intellectual disability, and somatic variants associated with leukemia, medulloblastoma and other cancers. In this paper, we depict the molecular structures and biological functions of the BRPF1-KAT6A/KAT6B complex, summarize the variants of the complex related to neurodevelopmental disorders and cancers and discuss future research directions and therapeutic potentials.
Collapse
Affiliation(s)
- Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingli Cao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baicheng Zhao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hang Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai 200040, China
| |
Collapse
|
10
|
Barman S, Roy A, Padhan J, Sudhamalla B. Molecular Insights into the Recognition of Acetylated Histone Modifications by the BRPF2 Bromodomain. Biochemistry 2022; 61:1774-1789. [PMID: 35976792 DOI: 10.1021/acs.biochem.2c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HBO1 [HAT bound to the origin recognition complex (ORC)], a member of the MYST family of histone acetyltransferases (HATs), was initially identified as a binding partner of ORC that acetylates free histone H3, H4, and nucleosomal H3. It functions as a quaternary complex with the BRPF (BRPF1/2/3) scaffolding protein and two accessory proteins, ING4/5 and Eaf6. Interaction of BRPF2 with HBO1 has been shown to be important for regulating H3K14 acetylation during embryonic development. However, how BRPF2 directs the HBO1 HAT complex to chromatin to regulate its HAT activity toward nucleosomal substrates remains unclear. Our findings reveal novel interacting partners of the BRPF2 bromodomain that recognizes different acetyllysine residues on the N-terminus of histone H4, H3, and H2A and preferentially binds to H4K5ac, H4K8ac, and H4K5acK12ac modifications. In addition, mutational analysis of the BRPF2 bromodomain coupled with isothermal titration calorimetry binding and pull-down assays on the histone substrates identified critical residues responsible for acetyllysine binding. Moreover, the BRPF2 bromodomain could enrich H4K5ac mark-bearing mononucleosomes compared to other acetylated H4 marks. Consistent with this, ChIP-seq analysis revealed that BRPF2 strongly co-localizes with HBO1 at histone H4K5ac and H4K8ac marks near the transcription start sites in the genome. Our study provides novel insights into how the histone binding function of the BRPF2 bromodomain directs the recruitment of the HBO1 HAT complex to chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
11
|
Jaruga A, Ksiazkiewicz J, Kuzniarz K, Tylzanowski P. Orofacial Cleft and Mandibular Prognathism-Human Genetics and Animal Models. Int J Mol Sci 2022; 23:ijms23020953. [PMID: 35055138 PMCID: PMC8779325 DOI: 10.3390/ijms23020953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic-NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype-phenotype correlations. We then present the animal models used to study these defects.
Collapse
Affiliation(s)
- Anna Jaruga
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
| | - Jakub Ksiazkiewicz
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Krystian Kuzniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland;
| | - Przemko Tylzanowski
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Department of Development and Regeneration, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
12
|
Matharu NK, Yadav S, Kumar M, Mishra RK. Role of vertebrate GAGA associated factor (vGAF) in early development of zebrafish. Cells Dev 2021; 166:203682. [PMID: 33994355 DOI: 10.1016/j.cdev.2021.203682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Homeotic genes and their genomic organization show remarkable conservation across bilaterians. Consequently, the regulatory mechanisms, which control hox gene expression, are also highly conserved. The crucial presence of conserved GA rich motifs between Hox genes has been previously observed but what factor binds to these is still unknown. Previously we have reported that the vertebrate homologue of Drosophila Trl-GAF preferentially binds to GA rich regions in Evx2-hoxd13 intergenic region of vertebrate HoxD cluster. In this study, we show that the vertebrate-GAF (v-GAF) binds at known cis-regulatory elements in the HoxD complex of zebrafish and mouse. We further used morpholino based knockdown and CRISPR-cas9 knockout technique to deplete the v-GAF in zebrafish. We checked expression of the HoxD genes and found gain of the HoxD4 gene in GAF knockout embryos. Further, we partially rescued the morphological phenotypes in GAF depleted embryos by providing GAF mRNA. Our results show that GAF binds at intergenic regions of the HoxD complex and is important for maintaining the spatial domains of HoxD4 expression during embryonic development.
Collapse
Affiliation(s)
- Navneet K Matharu
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Sonu Yadav
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India
| | - Megha Kumar
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India.
| |
Collapse
|
13
|
Cho HI, Kim MS, Lee J, Yoo BC, Kim KH, Choe KM, Jang YK. BRPF3-HUWE1-mediated regulation of MYST2 is required for differentiation and cell-cycle progression in embryonic stem cells. Cell Death Differ 2020; 27:3273-3288. [PMID: 32555450 PMCID: PMC7853152 DOI: 10.1038/s41418-020-0577-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Brpf-histone acetyltransferase (HAT) complexes have important roles in embryonic development and regulating differentiation in ESCs. Among Brpf family, Brpf3 is a scaffold protein of Myst2 histone acetyltransferase complex that plays crucial roles in gene regulation, DNA replication, development as well as maintaining pluripotency in embryonic stem cells (ESCs). However, its biological functions in ESCs are not elucidated. In this study, we find out that Brpf3 protein level is critical for Myst2 stability and E3 ligase Huwe1 functions as a novel negative regulator of Myst2 via ubiquitin-mediated degradation. Importantly, Brpf3 plays an antagonistic role in Huwe1-mediated degradation of Myst2, suggesting that protein-protein interaction between Brpf3 and Myst2 is required for retaining Myst2 stability. Further, Brpf3 overexpression causes the aberrant upregulation of Myst2 protein levels which in turn induces the dysregulated cell-cycle progression and also delay of early embryonic development processes such as embryoid-body formation and lineage commitment of mouse ESCs. The Brpf3 overexpression-induced phenotypes can be reverted by Huwe1 overexpression. Together, these results may provide novel insights into understanding the functions of Brpf3 in proper differentiation as well as cell-cycle progression of ESCs via regulation of Myst2 stability by obstructing Huwe1-mediated ubiquitination. In addition, we suggest that this is a useful report which sheds light on the function of an unknown gene in ESC field.
Collapse
Affiliation(s)
- Hye In Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Min Seong Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jina Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Kyung Hee Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Kwang-Min Choe
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
14
|
He Q, Hong M, He J, Chen W, Zhao M, Zhao W. Isoform-specific involvement of Brpf1 in expansion of adult hematopoietic stem and progenitor cells. J Mol Cell Biol 2020; 12:359-371. [PMID: 31565729 PMCID: PMC7288741 DOI: 10.1093/jmcb/mjz092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/16/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Bromodomain-containing proteins are known readers of histone acetylation that regulate chromatin structure and transcription. Although the functions of bromodomain-containing proteins in development, homeostasis, and disease states have been well studied, their role in self-renewal of hematopoietic stem and progenitor cells (HSPCs) remains poorly understood. Here, we performed a chemical screen using nine bromodomain inhibitors and found that the bromodomain and PHD finger-containing protein 1 (Brpf1) inhibitor OF-1 enhanced the expansion of Lin-Sca-1+c-Kit+ HSPCs ex vivo without skewing their lineage differentiation potential. Importantly, our results also revealed distinct functions of Brpf1 isoforms in HSPCs. Brpf1b promoted the expansion of HSPCs. By contrast, Brpf1a is the most abundant isoform in adult HSPCs but enhanced HSPC quiescence and decreased the HSPC expansion. Furthermore, inhibition of Brpf1a by OF-1 promoted histone acetylation and chromatin accessibility leading to increased expression of self-renewal-related genes (e.g. Mn1). The phenotypes produced by OF-1 treatment can be rescued by suppression of Mn1 in HSPCs. Our findings demonstrate that this novel bromodomain inhibitor OF-1 can promote the clinical application of HSPCs in transplantation.
Collapse
Affiliation(s)
- Qiuping He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Mengzhi Hong
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jincan He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Weixin Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Wei Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
15
|
Abstract
Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.
Collapse
|
16
|
Naseer MI, Abdulkareem AA, Guzmán-Vega FJ, Arold ST, Pushparaj PN, Chaudhary AG, AlQahtani MH. Novel Missense Variant in Heterozygous State in the BRPF1 Gene Leading to Intellectual Developmental Disorder With Dysmorphic Facies and Ptosis. Front Genet 2020; 11:368. [PMID: 32457794 PMCID: PMC7221184 DOI: 10.3389/fgene.2020.00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Intellectual developmental disorder with dysmorphic facies and ptosis is an autosomal dominant condition characterized by delayed psychomotor development, intellectual disability, delayed speech, and dysmorphic facial features, mostly ptosis. Heterozygous mutations in bromodomain and plant homeodomain (PHD) finger containing one (BRPF1) gene have been reported. In this study, whole exome sequencing (WES) was performed as a molecular diagnostic test. Bioinformatics of WES data and candidate gene prioritization identified a novel variant in heterozygous state in the exon 3 of BRPF1 gene (ENST383829: c.1054G > C and p.Val352Leu). Autosomal dominant inheritance in the family affected individuals and exclusion of non-pathogenicity in the ethnically matched healthy controls (n = 100) were performed by Sanger sequencing. To the best of our knowledge, this is the first evidence of BRPF1 variant in a Saudi family. Whole exome sequencing analysis has been proven as a valuable tool in the molecular diagnostics. Our findings further expand the role of WES in efficient disease diagnosis in Arab families and explained that the mutation in BRPF1 gene plays an important role for the development of IDDFP syndrome.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Francisco J Guzmán-Vega
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad H AlQahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Marji FP, Hall JA, Anstadt E, Madan-Khetarpal S, Goldstein JA, Losee JE. A Novel Frameshift Mutation in KAT6A Is Associated with Pancraniosynostosis. J Pediatr Genet 2020; 10:81-84. [PMID: 33552646 DOI: 10.1055/s-0040-1710330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
De novo heterozygous mutations in the KAT6A gene give rise to a distinct intellectual disability syndrome, with features including speech delay, cardiac anomalies, craniofacial dysmorphisms, and craniosynostosis. Here, we reported a 16-year-old girl with a novel pathogenic variant of the KAT6A gene. She is the first case to possess pancraniosynostosis, a rare suture fusion pattern, affecting all her major cranial sutures. The diagnosis of KAT6A syndrome is established via recognition of its inherent phenotypic features and the utilization of whole exome sequencing. Thorough craniofacial evaluation is imperative, craniosynostosis may require operative intervention, the delay of which may be detrimental.
Collapse
Affiliation(s)
- Fady P Marji
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jennifer A Hall
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Erin Anstadt
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Suneeta Madan-Khetarpal
- Department of Genetics, Center for Clinical Genetics and Genomics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jesse A Goldstein
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joseph E Losee
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
18
|
Klein BJ, Cox KL, Jang SM, Côté J, Poirier MG, Kutateladze TG. Molecular Basis for the PZP Domain of BRPF1 Association with Chromatin. Structure 2019; 28:105-110.e3. [PMID: 31711755 DOI: 10.1016/j.str.2019.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022]
Abstract
The assembly of human histone acetyltransferase MOZ/MORF complexes relies on the scaffolding bromodomain plant homeodomain (PHD) finger 1 (BRPF1) subunit. The PHD-zinc-knuckle-PHD module of BRPF1 (BRPF1PZP) has been shown to associate with the histone H3 tail and DNA; however, the molecular mechanism underlying recognition of H3 and the relationship between the histone and DNA-binding activities remain unclear. In this study, we report the crystal structure of BRPF1PZP bound to the H3 tail and characterize the role of the bipartite interaction in the engagement of BRPF1PZP with the nucleosome core particle (NCP). We find that although both interactions of BRPF1PZP with the H3 tail and DNA are required for tight binding to NCP and for acetyltransferase function of the BRPF1-MORF-ING5-MEAF6 complex, binding to extranucleosomal DNA dominates. Our findings suggest that functionally active BRPF1PZP might be important in stabilization of the MOZ/MORF complexes at chromatin with accessible DNA.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | - Suk Min Jang
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, OH 43210, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Demeulenaere S, Beysen D, De Veuster I, Reyniers E, Kooy F, Meuwissen M. Novel BRPF1 mutation in a boy with intellectual disability, coloboma, facial nerve palsy and hypoplasia of the corpus callosum. Eur J Med Genet 2019; 62:103691. [DOI: 10.1016/j.ejmg.2019.103691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
|
20
|
Su Y, Liu J, Yu B, Ba R, Zhao C. Brpf1 Haploinsufficiency Impairs Dendritic Arborization and Spine Formation, Leading to Cognitive Deficits. Front Cell Neurosci 2019; 13:249. [PMID: 31213987 PMCID: PMC6558182 DOI: 10.3389/fncel.2019.00249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of the bromodomain and PHD finger-containing protein 1 (BRPF1) gene causes intellectual disability (ID), which is characterized by impaired intellectual and cognitive function; however, the neurological basis for ID and the neurological function of BRPF1 dosage in the brain remain unclear. Here, by crossing Emx1-cre mice with Brpf1fl/fl mice, we generated Brpf1 heterozygous mice to model BRPF1-related ID. Brpf1 heterozygotes showed reduced dendritic complexity in both hippocampal granule cells and cortical pyramidal neurons, accompanied by reduced spine density and altered spine and synapse morphology. An in vitro study of Brpf1 haploinsufficiency also demonstrated decreased frequency and amplitude of miniature EPSCs that may subsequently contribute to abnormal behaviors, including decreased anxiety levels and defective learning and memory. Our results demonstrate a critical role for Brpf1 dosage in neuron dendrite arborization, spine morphogenesis and behavior and provide insight into the pathogenesis of BRPF1-related ID.
Collapse
Affiliation(s)
- Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Junhua Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, Gower G, Llamas B, Soubrier J, Heider TN, Menzies BR, Cooper A, O'Neill RJ, Pask AJ. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat Ecol Evol 2017; 2:182-192. [PMID: 29230027 DOI: 10.1038/s41559-017-0417-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022]
Abstract
The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was the largest carnivorous Australian marsupial to survive into the modern era. Despite last sharing a common ancestor with the eutherian canids ~160 million years ago, their phenotypic resemblance is considered the most striking example of convergent evolution in mammals. The last known thylacine died in captivity in 1936 and many aspects of the evolutionary history of this unique marsupial apex predator remain unknown. Here we have sequenced the genome of a preserved thylacine pouch young specimen to clarify the phylogenetic position of the thylacine within the carnivorous marsupials, reconstruct its historical demography and examine the genetic basis of its convergence with canids. Retroposon insertion patterns placed the thylacine as the basal lineage in Dasyuromorphia and suggest incomplete lineage sorting in early dasyuromorphs. Demographic analysis indicated a long-term decline in genetic diversity starting well before the arrival of humans in Australia. In spite of their extraordinary phenotypic convergence, comparative genomic analyses demonstrated that amino acid homoplasies between the thylacine and canids are largely consistent with neutral evolution. Furthermore, the genes and pathways targeted by positive selection differ markedly between these species. Together, these findings support models of adaptive convergence driven primarily by cis-regulatory evolution.
Collapse
Affiliation(s)
- Charles Y Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Axel H Newton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museums Victoria, Melbourne, Victoria, Australia
| | - Liliya Doronina
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Christy A Hipsley
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museums Victoria, Melbourne, Victoria, Australia
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Julien Soubrier
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas N Heider
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Brandon R Menzies
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia. .,Museums Victoria, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Meier JC, Tallant C, Fedorov O, Witwicka H, Hwang SY, van Stiphout RG, Lambert JP, Rogers C, Yapp C, Gerstenberger BS, Fedele V, Savitsky P, Heidenreich D, Daniels DL, Owen DR, Fish PV, Igoe NM, Bayle ED, Haendler B, Oppermann UC, Buffa F, Brennan PE, Müller S, Gingras AC, Odgren PR, Birnbaum MJ, Knapp S. Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation. ACS Chem Biol 2017; 12:2619-2630. [PMID: 28849908 PMCID: PMC5662925 DOI: 10.1021/acschembio.7b00481] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/29/2017] [Indexed: 01/16/2023]
Abstract
Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains (bromodomains) present in BRPF1-3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with high selectivity for the BRPF1B isoform and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF in regulating gene expression during osteoclastogenesis, and the excellent druggability of these bromodomains may lead to new treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions.
Collapse
Affiliation(s)
- Julia C. Meier
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
| | - Cynthia Tallant
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
| | - Oleg Fedorov
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
| | - Hanna Witwicka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Sung-Yong Hwang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Ruud G. van Stiphout
- Department of Oncology, Oxford University, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Catherine Rogers
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
| | - Clarence Yapp
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
| | - Brian S. Gerstenberger
- Pfizer Worldwide Medicinal
Chemistry, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Vita Fedele
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
| | - Pavel Savitsky
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
| | - David Heidenreich
- Goethe-University Frankfurt, Institute of Pharmaceutical Chemistry, Riedberg Campus, 60438 Frankfurt am Main, Germany
| | | | - Dafydd R. Owen
- Pfizer Worldwide Medicinal
Chemistry, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Paul V. Fish
- Department
of Pharmaceutical & Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United
Kingdom
| | - Niall M. Igoe
- Department
of Pharmaceutical & Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United
Kingdom
| | - Elliott D. Bayle
- Department
of Pharmaceutical & Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United
Kingdom
| | - Bernard Haendler
- Drug Discovery, Bayer Pharma
AG, Müllerstrasse
178, D-13353 Berlin, Germany
| | | | - Francesca Buffa
- Department of Oncology, Oxford University, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Paul E. Brennan
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
| | - Susanne Müller
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
- Buchmann Institute for Life Sciences (BMLS), Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Anne Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paul R. Odgren
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Mark J. Birnbaum
- Department of Biology, Merrimack College, North Andover, Massachusetts, United States
| | - Stefan Knapp
- Target Discovery
Institute and Structural Genomics Consortium, Oxford University, Oxford, United Kingom
- Buchmann Institute for Life Sciences (BMLS), Riedberg Campus, 60438 Frankfurt am Main, Germany
- Goethe-University Frankfurt, Institute of Pharmaceutical Chemistry, Riedberg Campus, 60438 Frankfurt am Main, Germany
- German Cancer Network (DKTK), Frankfurt site, 60438 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Sheikh BN, Metcalf D, Voss AK, Thomas T. MOZ and BMI1 act synergistically to maintain hematopoietic stem cells. Exp Hematol 2017; 47:83-97.e8. [DOI: 10.1016/j.exphem.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022]
|
24
|
Mattioli F, Schaefer E, Magee A, Mark P, Mancini GM, Dieterich K, Von Allmen G, Alders M, Coutton C, van Slegtenhorst M, Vieville G, Engelen M, Cobben JM, Juusola J, Pujol A, Mandel JL, Piton A. Mutations in Histone Acetylase Modifier BRPF1 Cause an Autosomal-Dominant Form of Intellectual Disability with Associated Ptosis. Am J Hum Genet 2017; 100:105-116. [PMID: 27939639 DOI: 10.1016/j.ajhg.2016.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022] Open
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder exhibiting extreme genetic heterogeneity, and more than 500 genes have been implicated in Mendelian forms of ID. We performed exome sequencing in a large family affected by an autosomal-dominant form of mild syndromic ID with ptosis, growth retardation, and hypotonia, and we identified an inherited 2 bp deletion causing a frameshift in BRPF1 (c.1052_1053del) in five affected family members. BRPF1 encodes a protein modifier of two histone acetyltransferases associated with ID: KAT6A (also known as MOZ or MYST3) and KAT6B (MORF or MYST4). The mRNA transcript was not significantly reduced in affected fibroblasts and most likely produces a truncated protein (p.Val351Glyfs∗8). The protein variant shows an aberrant cellular location, loss of certain protein interactions, and decreased histone H3K23 acetylation. We identified BRPF1 deletions or point mutations in six additional individuals with a similar phenotype. Deletions of the 3p25 region, containing BRPF1 and SETD5, cause a defined ID syndrome where most of the clinical features are attributed to SETD5 deficiency. We compared the clinical symptoms of individuals carrying mutations or small deletions of BRPF1 alone or SETD5 alone with those of individuals with deletions encompassing both BRPF1 and SETD5. We conclude that both genes contribute to the phenotypic severity of 3p25 deletion syndrome but that some specific features, such as ptosis and blepharophimosis, are mostly driven by BRPF1 haploinsufficiency.
Collapse
Affiliation(s)
- Francesca Mattioli
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, 67400 Illkirch-Graffenstaden, France; INSERM U964, 67400 Illkirch-Graffenstaden, France; CNRS UMR 7104, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, 67400 Illkirch, France; Chaire de Génétique Humaine, Collège de France, 67400 Illkirch, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, 67000 Strasbourg, France
| | - Alex Magee
- Genetic Medicine, Belfast City Hospital, Belfast BT9 7AB, Ireland
| | - Paul Mark
- Spectrum Health Medical Group, Grand Rapids, MI 49544, USA
| | - Grazia M Mancini
- Department of Clinical Genetics, Erasmus MC, Rotterdam 3015, the Netherlands
| | - Klaus Dieterich
- Service de Génétique Clinique, Centre Hospitalier Universitaire de Grenoble site Nord, Hôpital Couple-Enfant, 38700 Grenoble, France
| | - Gretchen Von Allmen
- Department of Pediatrics, McGovern Medical School, University of Texas in Houston, Houston, TX 77030, USA
| | - Marielle Alders
- Department of Clinical Genetic, Academic Medical Center, Amsterdam 1100, the Netherlands
| | - Charles Coutton
- INSERM 1209, CNRS UMR 5309, Laboratoire de Génétique Chromosomique, Centre Hospitalier Universitaire Grenoble Alpes, Institut Albert Bonniot, Université Grenoble Alpes, 38706 Grenoble, France
| | | | - Gaëlle Vieville
- INSERM 1209, CNRS UMR 5309, Laboratoire de Génétique Chromosomique, Centre Hospitalier Universitaire Grenoble Alpes, Institut Albert Bonniot, Université Grenoble Alpes, 38706 Grenoble, France
| | - Mark Engelen
- Department of Clinical Genetic, Academic Medical Center, Amsterdam 1100, the Netherlands
| | - Jan Maarten Cobben
- Department of Clinical Genetic, Academic Medical Center, Amsterdam 1100, the Netherlands
| | | | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, Institut d'Investigació Biomèdica de Bellvitge, 08908 Barcelona, Spain; Center for Biomedical Research on Rare Diseases U759, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jean-Louis Mandel
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, 67400 Illkirch-Graffenstaden, France; INSERM U964, 67400 Illkirch-Graffenstaden, France; CNRS UMR 7104, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, 67400 Illkirch, France; Chaire de Génétique Humaine, Collège de France, 67400 Illkirch, France; Laboratoire de diagnostic génétique, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; University of Strasbourg Institute for Advanced studies, 67000 Strasbourg, France.
| | - Amélie Piton
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, 67400 Illkirch-Graffenstaden, France; INSERM U964, 67400 Illkirch-Graffenstaden, France; CNRS UMR 7104, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, 67400 Illkirch, France; Laboratoire de diagnostic génétique, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
25
|
Yan K, You L, Degerny C, Ghorbani M, Liu X, Chen L, Li L, Miao D, Yang XJ. The Chromatin Regulator BRPF3 Preferentially Activates the HBO1 Acetyltransferase but Is Dispensable for Mouse Development and Survival. J Biol Chem 2015; 291:2647-63. [PMID: 26677226 DOI: 10.1074/jbc.m115.703041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
To interpret epigenetic information, chromatin readers utilize various protein domains for recognition of DNA and histone modifications. Some readers possess multidomains for modification recognition and are thus multivalent. Bromodomain- and plant homeodomain-linked finger-containing protein 3 (BRPF3) is such a chromatin reader, containing two plant homeodomain-linked fingers, one bromodomain and a PWWP domain. However, its molecular and biological functions remain to be investigated. Here, we report that endogenous BRPF3 preferentially forms a tetrameric complex with HBO1 (also known as KAT7) and two other subunits but not with related acetyltransferases such as MOZ, MORF, TIP60, and MOF (also known as KAT6A, KAT6B, KAT5, and KAT8, respectively). We have also characterized a mutant mouse strain with a lacZ reporter inserted at the Brpf3 locus. Systematic analysis of β-galactosidase activity revealed dynamic spatiotemporal expression of Brpf3 during mouse embryogenesis and high expression in the adult brain and testis. Brpf3 disruption, however, resulted in no obvious gross phenotypes. This is in stark contrast to Brpf1 and Brpf2, whose loss causes lethality at E9.5 and E15.5, respectively. In Brpf3-null mice and embryonic fibroblasts, RT-quantitative PCR uncovered no changes in levels of Brpf1 and Brpf2 transcripts, confirming no compensation from them. These results indicate that BRPF3 forms a functional tetrameric complex with HBO1 but is not required for mouse development and survival, thereby distinguishing BRPF3 from its paralogs, BRPF1 and BRPF2.
Collapse
Affiliation(s)
- Kezhi Yan
- From the Rosalind and Morris Goodman Cancer Research Center, Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Linya You
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Cindy Degerny
- From the Rosalind and Morris Goodman Cancer Research Center
| | - Mohammad Ghorbani
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Xin Liu
- From the Rosalind and Morris Goodman Cancer Research Center
| | - Lulu Chen
- the State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing 210029, China, and
| | - Lin Li
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Dengshun Miao
- the State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing 210029, China, and
| | - Xiang-Jiao Yang
- From the Rosalind and Morris Goodman Cancer Research Center, Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada, the McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
26
|
Edmunds RC, Su B, Balhoff JP, Eames BF, Dahdul WM, Lapp H, Lundberg JG, Vision TJ, Dunham RA, Mabee PM, Westerfield M. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes. Mol Biol Evol 2015; 33:13-24. [PMID: 26500251 PMCID: PMC4693980 DOI: 10.1093/molbev/msv223] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology.
Collapse
Affiliation(s)
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University
| | | | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wasila M Dahdul
- National Evolutionary Synthesis Center, Durham, NC Department of Biology, University of South Dakota
| | - Hilmar Lapp
- National Evolutionary Synthesis Center, Durham, NC
| | - John G Lundberg
- Department of Ichthyology, The Academy of Natural Sciences, Philadelphia, Philadelphia, PA
| | - Todd J Vision
- National Evolutionary Synthesis Center, Durham, NC Department of Biology, University of North Carolina, Chapel Hill
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University
| | | | | |
Collapse
|
27
|
Taimatsu K, Takubo K, Maruyama K, Suda T, Kudo A. Proliferation following tetraploidization regulates the size and number of erythrocytes in the blood flow during medaka development, as revealed by the abnormal karyotype of erythrocytes in the medakaTFDP1mutant. Dev Dyn 2015; 244:651-68. [DOI: 10.1002/dvdy.24259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kiyohito Taimatsu
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Keiyo Takubo
- Department of Cell Differentiation; The Sakaguchi Laboratory of Developmental Biology; Keio University School of Medicine; Tokyo Japan
- Department of Stem Cell Biology; Research Institute, National Center for Global Health and Medicine; Tokyo Japan
| | | | - Toshio Suda
- Department of Cell Differentiation; The Sakaguchi Laboratory of Developmental Biology; Keio University School of Medicine; Tokyo Japan
| | - Akira Kudo
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
28
|
Yang XJ. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1818-26. [PMID: 25920810 DOI: 10.1016/j.bbamcr.2015.04.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
Lysine residues are subject to many forms of covalent modification and one such modification is acetylation of the ε-amino group. Initially identified on histone proteins in the 1960s, lysine acetylation is now considered as an important form of post-translational modification that rivals phosphorylation. However, only about a dozen of human lysine acetyltransferases have been identified. Among them are MOZ (monocytic leukemia zinc finger protein; a.k.a. MYST3 and KAT6A) and its paralog MORF (a.k.a. MYST4 and KAT6B). Although there is a distantly related protein in Drosophila and sea urchin, these two enzymes are vertebrate-specific. They form tetrameric complexes with BRPF1 (bromodomain- and PHD finger-containing protein 1) and two small non-catalytic subunits. These two acetyltransferases and BRPF1 play key roles in various developmental processes; for example, they are important for development of hematopoietic and neural stem cells. The human KAT6A and KAT6B genes are recurrently mutated in leukemia, non-hematologic malignancies, and multiple developmental disorders displaying intellectual disability and various other abnormalities. In addition, the BRPF1 gene is mutated in childhood leukemia and adult medulloblastoma. Therefore, these two acetyltransferases and their partner BRPF1 are important in animal development and human disease.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
29
|
Sheikh BN, Downer NL, Kueh AJ, Thomas T, Voss AK. Excessive versus physiologically relevant levels of retinoic acid in embryonic stem cell differentiation. Stem Cells 2015; 32:1451-8. [PMID: 25099890 DOI: 10.1002/stem.1604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/28/2013] [Accepted: 11/03/2013] [Indexed: 01/01/2023]
Abstract
Over the past two decades, embryonic stem cells (ESCs) have been established as a valuable system to study the complex molecular events that underlie the collinear activation of Hox genes during development. When ESCs are induced to differentiate in response to retinoic acid (RA), Hox genes are transcriptionally activated in their chromosomal order, with the most 3' Hox genes activated first, sequentially followed by more 5' Hox genes. In contrast to the low levels of RA detected during gastrulation (∼33 nM), a time when Hox genes are induced during embryonic development, high levels of RA are used to study Hox gene activation in ESCs in vitro (1-10 µM). This compelled us to compare RA-induced ESC differentiation in vitro with Hox gene activation in vivo. In this study, we show that treatment of ESCs for 2 days with RA best mimics activation of Hox genes during embryonic development. Furthermore, we show that defects in Hox gene expression known to occur in embryos lacking the histone acetyltransferase MOZ (also called MYST3 or KAT6A) were masked in Moz-deficient ESCs when excessive RA (0.5-5 µM) was used. The role of MOZ in Hox gene activation was only evident when ESCs were differentiated at low concentrations of RA, namely 20 nM, which is similar to RA levels in vivo. Our results demonstrate that using RA at physiologically relevant levels to study the activation of Hox genes, more accurately reflects the molecular events during the early phase of Hox gene activation in vivo.
Collapse
Affiliation(s)
- Bilal N Sheikh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
30
|
You L, Yan K, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. The chromatin regulator Brpf1 regulates embryo development and cell proliferation. J Biol Chem 2015; 290:11349-64. [PMID: 25773539 DOI: 10.1074/jbc.m115.643189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs.
Collapse
Affiliation(s)
- Linya You
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and
| | - Kezhi Yan
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3
| | - Jinfeng Zou
- National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Hong Zhao
- From the The Rosalind and Morris Goodman Cancer Research Center
| | | | - Morag Park
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Edwin Wang
- National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Xiang-Jiao Yang
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
31
|
The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors. PLoS Genet 2015; 11:e1005034. [PMID: 25757017 PMCID: PMC4355587 DOI: 10.1371/journal.pgen.1005034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/28/2015] [Indexed: 12/18/2022] Open
Abstract
Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis. Lysine acetylation refers to addition of the acetyl group to lysine residues after protein synthesis. Little is known about how this modification plays a role in the brain and neural stem cells. It is catalyzed by a group of enzymes known as lysine acetyltransferases. A novel epigenetic regulator called BRPF1 acts as a master activator of three different lysine acetyltransferases and also contains multiple structural domains for histone binding. In this study, we show that forebrain-specific inactivation of the mouse Brpf1 gene causes abnormal development of the dentate gyrus, a key component of the hippocampus. We trace the developmental origin to compromised neural stem cells and progenitors, and demonstrate that Brpf1 loss deregulates neuronal migration and cell cycle progression during development of the dentate gyrus. This is the first report on an epigenetic regulator whose loss has such a profound impact on the hippocampus, especially the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.
Collapse
|
32
|
Arboleda VA, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo CF, Manning MA, Kwan A, Hudgins L, Barthelemy F, Miceli MC, Quintero-Rivera F, Kantarci S, Strom SP, Deignan JL, Grody WW, Vilain E, Nelson SF. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet 2015; 96:498-506. [PMID: 25728775 DOI: 10.1016/j.ajhg.2015.01.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Naghmeh Dorrani
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA
| | - Neda Zadeh
- Division of Medical Genetics, CHOC Children's Hospital of Orange County, CA 92868, USA; Genetics Center, Orange, CA 92868, USA
| | - Mary Willis
- Department of Pediatrics, Naval Medical Center, San Diego, 92134, USA
| | - Colleen Forsyth Macmurdo
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melanie A Manning
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea Kwan
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Louanne Hudgins
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florian Barthelemy
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - M Carrie Miceli
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sibel Kantarci
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel P Strom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
You L, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development. J Biol Chem 2015; 290:7114-29. [PMID: 25568313 DOI: 10.1074/jbc.m114.635250] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo.
Collapse
Affiliation(s)
- Linya You
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3
| | - Jinfeng Zou
- the National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Hong Zhao
- From the Rosalind & Morris Goodman Cancer Research Center
| | | | - Morag Park
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3, the Department of Biochemistry, McGill University and McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Edwin Wang
- the National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Xiang-Jiao Yang
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3, the Department of Biochemistry, McGill University and McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
34
|
Iida Y, Hibiya K, Inohaya K, Kudo A. Eda/Edar signaling guides fin ray formation with preceding osteoblast differentiation, as revealed by analyses of the medaka all-fin less mutantafl. Dev Dyn 2014; 243:765-77. [DOI: 10.1002/dvdy.24120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yuuki Iida
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Kenta Hibiya
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Keiji Inohaya
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Akira Kudo
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
35
|
You L, Chen L, Penney J, Miao D, Yang XJ. Expression atlas of the multivalent epigenetic regulator Brpf1 and its requirement for survival of mouse embryos. Epigenetics 2014; 9:860-72. [PMID: 24646517 DOI: 10.4161/epi.28530] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a unique epigenetic regulator that contains multiple structural domains for recognizing different chromatin modifications. In addition, it possesses sequence motifs for forming multiple complexes with three different histone acetyltransferases, MOZ, MORF, and HBO1. Within these complexes, BRPF1 serves as a scaffold for bridging subunit interaction, stimulating acetyltransferase activity, governing substrate specificity and stimulating gene expression. To investigate how these molecular interactions are extrapolated to biological functions of BRPF1, we utilized a mouse strain containing a knock-in reporter and analyzed the spatiotemporal expression from embryos to adults. The analysis revealed dynamic expression in the extraembryonic, embryonic, and fetal tissues, suggesting important roles of Brpf1 in prenatal development. In support of this, inactivation of the mouse Brpf1 gene causes lethality around embryonic day 9.5. After birth, high expression is present in the testis and specific regions of the brain. The 4-dimensional expression atlas of mouse Brpf1 should serve as a valuable guide for analyzing its interaction with Moz, Morf, and Hbo1 in vivo, as well as for investigating whether Brpf1 functions independently of these three enzymatic epigenetic regulators.
Collapse
Affiliation(s)
- Linya You
- The Rosalind & Morris Goodman Cancer Research Center; Montreal, QC Canada; Department of Medicine; McGill University; Montreal, QC Canada
| | - Lulu Chen
- The State Key Laboratory of Reproductive Medicine; The Research Center for Bone and Stem Cells; Department of Human Anatomy; Nanjing Medical University; Nanjing, China
| | - Janice Penney
- The Rosalind & Morris Goodman Cancer Research Center; Montreal, QC Canada
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine; The Research Center for Bone and Stem Cells; Department of Human Anatomy; Nanjing Medical University; Nanjing, China
| | - Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center; Montreal, QC Canada; Department of Medicine; McGill University; Montreal, QC Canada; Department of Biochemistry; McGill University; Montreal, QC Canada; McGill University Health Center; Montreal, QC Canada
| |
Collapse
|
36
|
Poplawski A, Hu K, Lee W, Natesan S, Peng D, Carlson S, Shi X, Balaz S, Markley JL, Glass KC. Molecular insights into the recognition of N-terminal histone modifications by the BRPF1 bromodomain. J Mol Biol 2013; 426:1661-76. [PMID: 24333487 DOI: 10.1016/j.jmb.2013.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
The monocytic leukemic zinc finger (MOZ) histone acetyltransferase (HAT) acetylates free histones H3, H4, H2A, and H2B in vitro and is associated with up-regulation of gene transcription. The MOZ HAT functions as a quaternary complex with the bromodomain-PHD finger protein 1 (BRPF1), inhibitor of growth 5 (ING5), and hEaf6 subunits. BRPF1 links the MOZ catalytic subunit to the ING5 and hEaf6 subunits, thereby promoting MOZ HAT activity. Human BRPF1 contains multiple effector domains with known roles in gene transcription, as well as chromatin binding and remodeling. However, the biological function of the BRPF1 bromodomain remains unknown. Our findings reveal novel interactions of the BRPF1 bromodomain with multiple acetyllysine residues on the N-terminus of histones and show that it preferentially selects for H2AK5ac, H4K12ac, and H3K14ac. We used chemical shift perturbation data from NMR titration experiments to map the BRPF1 bromodomain ligand binding pocket and identified key residues responsible for coordination of the post-translationally modified histones. Extensive molecular dynamics simulations were used to generate structural models of bromodomain-histone ligand complexes, to analyze hydrogen bonding and other interactions, and to calculate the binding free energies. Our results outline the molecular mechanism driving binding specificity of the BRPF1 bromodomain for discrete acetyllysine residues on the N-terminal histone tails. Together, these data provide insights into how histone recognition by the bromodomain directs the biological function of BRPF1, ultimately targeting the MOZ HAT complex to chromatin substrates.
Collapse
Affiliation(s)
- Amanda Poplawski
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Kaifeng Hu
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Danni Peng
- Department of Biochemistry and Molecular Biology, Division of Basic Science Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Xiaobing Shi
- Department of Biochemistry and Molecular Biology, Division of Basic Science Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stefan Balaz
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA.
| |
Collapse
|
37
|
Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ-TIF2 fusion. Int J Hematol 2013; 99:21-31. [PMID: 24258712 DOI: 10.1007/s12185-013-1466-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 11/03/2013] [Accepted: 11/05/2013] [Indexed: 01/28/2023]
Abstract
Chromosomal translocations that involve the monocytic leukemia zinc finger (MOZ) gene are typically associated with human acute myeloid leukemia (AML) and often predict a poor prognosis. Overexpression of HOXA9, HOXA10, and MEIS1 was observed in AML patients with MOZ fusions. To assess the functional role of HOX upregulation in leukemogenesis by MOZ-TIF2, we focused on bromodomain-PHD finger protein 1 (BRPF1), a component of the MOZ complex that carries out histone acetylation for generating and maintaining proper epigenetic programs in hematopoietic cells. Immunoprecipitation analysis showed that MOZ-TIF2 forms a stable complex with BRPF1, and chromatin immunoprecipitation analysis showed that MOZ-TIF2 and BRPF1 interact with HOX genes in MOZ-TIF2-induced AML cells. Depletion of BRPF1 decreased the MOZ localization on HOX genes, resulting in loss of transformation ability induced by MOZ-TIF2. Furthermore, mutant MOZ-TIF2 engineered to lack histone acetyltransferase activity was incapable of deregulating HOX genes as well as initiating leukemia. These data indicate that MOZ-TIF2/BRPF1 complex upregulates HOX genes mediated by MOZ-dependent histone acetylation, leading to the development of leukemia. We suggest that activation of BRPF1/HOX pathway through MOZ HAT activity is critical for MOZ-TIF2 to induce AML.
Collapse
|
38
|
Klein BJ, Lalonde ME, Côté J, Yang XJ, Kutateladze TG. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics 2013; 9:186-93. [PMID: 24169304 DOI: 10.4161/epi.26792] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MOZ/MORF complexes represent an example of a chromatin-binding assembly whose recruitment to specific genomic regions and activity can be fine-tuned by posttranslational modifications of histones. Here we detail the structures and biological functions of epigenetic readers present in the four core subunits of the MOZ/MORF complexes, highlight the imperative role of combinatorial readout by the multiple readers, and discuss new research directions to advance our understanding of histone acetylation.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Marie-Eve Lalonde
- Laval University Cancer Research Center; Hôtel-Dieu de Québec (CHUQ); Quebec City, QC Canada
| | - Jacques Côté
- Laval University Cancer Research Center; Hôtel-Dieu de Québec (CHUQ); Quebec City, QC Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center; Departments of Medicine, Biochemistry, and Anatomy & Cell Biology; McGill University; Montréal, QC Canada
| | - Tatiana G Kutateladze
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| |
Collapse
|
39
|
Bensimon-Brito A, Cardeira J, Cancela ML, Huysseune A, Witten PE. Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation. BMC DEVELOPMENTAL BIOLOGY 2012; 12:28. [PMID: 23043290 PMCID: PMC3517302 DOI: 10.1186/1471-213x-12-28] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/03/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND In chondrichthyans, basal osteichthyans and tetrapods, vertebral bodies have cartilaginous anlagen that subsequently mineralize (chondrichthyans) or ossify (osteichthyans). Chondrocytes that form the vertebral centra derive from somites. In teleost fish, vertebral centrum formation starts in the absence of cartilage, through direct mineralization of the notochord sheath. In a second step, the notochord is surrounded by somite-derived intramembranous bone. In several small teleost species, including zebrafish (Danio rerio), even haemal and neural arches form directly as intramembranous bone and only modified caudalmost arches remain cartilaginous. This study compares initial patterns of mineralization in different regions of the vertebral column in zebrafish. We ask if the absence or presence of cartilaginous arches influences the pattern of notochord sheath mineralization. RESULTS To reveal which cells are involved in mineralization of the notochord sheath we identify proliferating cells, we trace mineralization on the histological level and we analyze cell ultrastructure by TEM. Moreover, we localize proteins and genes that are typically expressed by skeletogenic cells such as Collagen type II, Alkaline phosphatase (ALP) and Osteocalcin (Oc). Mineralization of abdominal and caudal vertebrae starts with a complete ring within the notochord sheath and prior to the formation of the bony arches. In contrast, notochord mineralization of caudal fin centra starts with a broad ventral mineral deposition, associated with the bases of the modified cartilaginous arches. Similar, arch-related, patterns of mineralization occur in teleosts that maintain cartilaginous arches throughout the spine.Throughout the entire vertebral column, we were able to co-localize ALP-positive signal with chordacentrum mineralization sites, as well as Collagen II and Oc protein accumulation in the mineralizing notochord sheath. In the caudal fin region, ALP and Oc signals were clearly produced both by the notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1). CONCLUSIONS If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.
Collapse
|
40
|
Yan K, Wu CJ, Pelletier N, Yang XJ. Reconstitution of active and stoichiometric multisubunit lysine acetyltransferase complexes in insect cells. Methods Mol Biol 2012; 809:445-464. [PMID: 22113293 DOI: 10.1007/978-1-61779-376-9_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein lysine acetyltransferases (KATs) catalyze acetylation of the ε-amino group on a specific lysine residue, and this posttranslational modification is important for regulating the function and activities of thousands of proteins in diverse organisms from bacteria to humans. Interestingly, many known KATs exist in multisubunit complexes and complex formation is important for their proper structure, function, and regulation. Thus, it is necessary to reconstitute enzymatically active complexes for studying the relationship between subunits and determining structures of the complexes. Due to inherent limitations of bacterial and mammalian expression systems, baculovirus-mediated protein expression in insect cells has proven useful for assembling such multisubunit complexes. Related to this, we have adopted such an approach for reconstituting active tetrameric complexes of monocytic leukemia zinc (MOZ, finger protein, recently renamed MYST3 or KAT6A) and MOZ-related factor (MORF, also known as MYST4 or KAT6B), two KATs directly linked to development of leukemia and self-renewal of stem cells. Herein, we use these complexes as examples to describe the related procedures. Similar methods have been used for reconstituting active complexes of histone deacetylases, lysine demethylases, and ubiquitin ligases, so this simple approach can be adapted for molecular dissection of various multisubunit complexes.
Collapse
Affiliation(s)
- Kezhi Yan
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
41
|
The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood 2011; 118:2443-53. [DOI: 10.1182/blood-2011-01-331892] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The histone acetyltransferases (HATs) of the MYST family include TIP60, HBO1, MOZ/MORF, and MOF and function in multisubunit protein complexes. Bromodomain-containing protein 1 (BRD1), also known as BRPF2, has been considered a subunit of the MOZ/MORF H3 HAT complex based on analogy with BRPF1 and BRPF3. However, its physiologic function remains obscure. Here we show that BRD1 forms a novel HAT complex with HBO1 and regulates erythropoiesis. Brd1-deficient embryos showed severe anemia because of impaired fetal liver erythropoiesis. Biochemical analyses revealed that BRD1 bridges HBO1 and its activator protein, ING4. Genome-wide mapping in erythroblasts demonstrated that BRD1 and HBO1 largely colocalize in the genome and target key developmental regulator genes. Of note, levels of global acetylation of histone H3 at lysine 14 (H3K14) were profoundly decreased in Brd1-deficient erythroblasts and depletion of Hbo1 similarly affected H3K14 acetylation. Impaired erythropoiesis in the absence of Brd1 accompanied reduced expression of key erythroid regulator genes, including Gata1, and was partially restored by forced expression of Gata1. Our findings suggest that the Hbo1-Brd1 complex is the major H3K14 HAT required for transcriptional activation of erythroid developmental regulator genes.
Collapse
|
42
|
Darias MJ, Mazurais D, Koumoundouros G, Le Gall MM, Huelvan C, Desbruyeres E, Quazuguel P, Cahu CL, Zambonino-Infante JL. Imbalanced dietary ascorbic acid alters molecular pathways involved in skeletogenesis of developing European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2011; 159:46-55. [PMID: 21281732 DOI: 10.1016/j.cbpa.2011.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 12/20/2022]
Abstract
The influence of dietary ascorbic acid (AA) on growth and morphogenesis during the larval development of European sea bass (Dicentrarchus labrax) was evaluated until 45days post hatching. Diets incorporated 0, 5, 15, 30, 50 or 400mg AA per kg diet to give AA-0, AA-5, AA-15, AA-30, AA-50 and AA-400 dietary treatments, respectively. Dietary AA levels lower than 15mg/kg reduced larval growth and survival was affected in specimens fed diets devoid of AA. Globally, disruption of the expression of genes involved in AA and calcium absorption in the intestine (SVCT-1, TRPV-6), skeletogenesis (BMP-4, IGF-1, RARγ) and bone mineralization (VDRβ, osteocalcin) were observed in groups fed doses lower and higher than 50mg AA/kg diet. Such disturbances detected at molecular level were associated with disruptions of the ossification process and the appearance of skeletal abnormalities.
Collapse
Affiliation(s)
- Maria J Darias
- Ifremer Marine Fish Nutrition Team, Nutrition Aquaculture and Genomics Research Unit, UMR 1067, Ifremer, Technopole Brest-Iroise, BP 70, 29280 Plouzané, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cheung N, So CWE. Transcriptional and epigenetic networks in haematological malignancy. FEBS Lett 2011; 585:2100-11. [DOI: 10.1016/j.febslet.2011.03.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
|
44
|
Moriyama A, Inohaya K, Maruyama K, Kudo A. Bef medaka mutant reveals the essential role of c-myb in both primitive and definitive hematopoiesis. Dev Biol 2010; 345:133-43. [PMID: 20621080 DOI: 10.1016/j.ydbio.2010.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/10/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
Vertebrate hematopoiesis is characterized by two evolutionally conserved phases of development, i.e., primitive hematopoiesis, which is a transient phenomenon in the early embryo, and definitive hematopoiesis, which takes place in the later stages. Beni fuji (bef) was originally isolated as a medaka mutant that has an apparently reduced number of erythrocytes in its peripheral blood. Positional cloning revealed that the bef mutant has a nonsense mutation in the c-myb gene. Previous studies have shown that c-myb is essential for definitive hematopoiesis, and c-myb is now widely used as a marker gene for the onset of definitive hematopoiesis. To analyze the phenotypes of the bef mutant, we performed whole-mount in situ hybridization with gene markers of hematopoietic cells. The bef embryos showed decreased expression of alpha-globin and l-plastin, and a complete loss of mpo1 and rag1 expression, suggesting that the bef embryos had defects not only in erythrocytes but also in other myeloid cells, which indicates that their definitive hematopoiesis was aberrant. Interestingly, we observed a diminution in the number of primitive erythrocytes and a delay in the emergence of primitive macrophages in the bef embryos. These results suggest that c-myb also functions in the primitive hematopoiesis, potentially demonstrating a link between primitive and definitive hematopoiesis.
Collapse
Affiliation(s)
- Akemi Moriyama
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
45
|
Sasado T, Tanaka M, Kobayashi K, Sato T, Sakaizumi M, Naruse K. The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences. Exp Anim 2010; 59:13-23. [PMID: 20224166 DOI: 10.1538/expanim.59.13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Medaka (Oryzias latipes) is a small freshwater teleost fish that serves as a model vertebrate organism in various fields of biology including development, genetics, toxicology and evolution. The recent completion of the medaka genome sequencing project has promoted the use of medaka as a comparative and complementary material for research on other vertebrates such as zebrafish, sticklebacks, mice, and humans. The Japanese government has supported the development of Medaka Bioresources since 2002. The second term of the Medaka Bioresource Project started in 2007. The National Institute for Basic Biology and Niigata University were selected as the core organizations for this project. More than 400 strains including more than 300 spontaneous and induced mutants, 8 inbred lines, 21 transgenic lines, 20 medaka-related species and 66 wild stock lines of medaka are now being provided to the scientific community and educational non-profit organizations. In addition to these live fish, NBRP Medaka is also able to provide cDNA/EST clones such as full-length cDNA and BAC/fosmid clones covering 90% of the medaka genome. All these resources can be found on the NBRP Medaka website (http://shigen.lab.nig.ac.jp/medaka/), and users can order any resource using the shopping cart system. We believe these resources will facilitate the further use of medaka and help to promote new findings for this vertebrate species.
Collapse
Affiliation(s)
- Takao Sasado
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | | | | | |
Collapse
|