1
|
Valencia JE, Feuda R, Mellott DO, Burke RD, Peter IS. Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation. BMC Biol 2021; 19:257. [PMID: 34863182 PMCID: PMC8642985 DOI: 10.1186/s12915-021-01194-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary history of cell types provides insights into how morphological and functional complexity arose during animal evolution. Photoreceptor cell types are particularly broadly distributed throughout Bilateria; however, their evolutionary relationship is so far unresolved. Previous studies indicate that ciliary photoreceptors are homologous at least within chordates, and here, we present evidence that a related form of this cell type is also present in echinoderm larvae. RESULTS Larvae of the purple sea urchin Strongylocentrotus purpuratus have photoreceptors that are positioned bilaterally in the oral/anterior apical neurogenic ectoderm. Here, we show that these photoreceptors express the transcription factor Rx, which is commonly expressed in ciliary photoreceptors, together with an atypical opsin of the GO family, opsin3.2, which localizes in particular to the cilia on the cell surface of photoreceptors. We show that these ciliary photoreceptors express the neuronal marker synaptotagmin and are located in proximity to pigment cells. Furthermore, we systematically identified additional transcription factors expressed in these larval photoreceptors and found that a majority are orthologous to transcription factors expressed in vertebrate ciliary photoreceptors, including Otx, Six3, Tbx2/3, and Rx. Based on the developmental expression of rx, these photoreceptors derive from the anterior apical neurogenic ectoderm. However, genes typically involved in eye development in bilateria, including pax6, six1/2, eya, and dac, are not expressed in sea urchin larval photoreceptors but are instead co-expressed in the hydropore canal. CONCLUSIONS Based on transcription factor expression, location, and developmental origin, we conclude that the sea urchin larval photoreceptors constitute a cell type that is likely homologous to the ciliary photoreceptors present in chordates.
Collapse
Affiliation(s)
- Jonathan E Valencia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Roberto Feuda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Present address: Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Dan O Mellott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Olivo P, Palladino A, Ristoratore F, Spagnuolo A. Brain Sensory Organs of the Ascidian Ciona robusta: Structure, Function and Developmental Mechanisms. Front Cell Dev Biol 2021; 9:701779. [PMID: 34552923 PMCID: PMC8450388 DOI: 10.3389/fcell.2021.701779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, new characters are designed by modifying pre-existing structures already present in ancient organisms. In this perspective, the Central Nervous System (CNS) of ascidian larva offers a good opportunity to analyze a complex phenomenon with a simplified approach. As sister group of vertebrates, ascidian tadpole larva exhibits a dorsal CNS, made up of only about 330 cells distributed into the anterior sensory brain vesicle (BV), connected to the motor ganglion (MG) and a caudal nerve cord (CNC) in the tail. Low number of cells does not mean, however, low complexity. The larval brain contains 177 neurons, for which a documented synaptic connectome is now available, and two pigmented organs, the otolith and the ocellus, controlling larval swimming behavior. The otolith is involved in gravity perception and the ocellus in light perception. Here, we specifically review the studies focused on the development of the building blocks of ascidians pigmented sensory organs, namely pigment cells and photoreceptor cells. We focus on what it is known, up to now, on the molecular bases of specification and differentiation of both lineages, on the function of these organs after larval hatching during pre-settlement period, and on the most cutting-edge technologies, like single cell RNAseq and genome editing CRISPR/CAS9, that, adapted and applied to Ciona embryos, are increasingly enhancing the tractability of Ciona for developmental studies, including pigmented organs formation.
Collapse
Affiliation(s)
- Paola Olivo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Antonio Palladino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
3
|
Gunawan M, Low C, Neo K, Yeo S, Ho C, Barathi VA, Chan AS, Sharif NA, Kageyama M. The Role of Autophagy in Chemical Proteasome Inhibition Model of Retinal Degeneration. Int J Mol Sci 2021; 22:ijms22147271. [PMID: 34298888 PMCID: PMC8303873 DOI: 10.3390/ijms22147271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/27/2023] Open
Abstract
We recently demonstrated that chemical proteasome inhibition induced inner retinal degeneration, supporting the pivotal roles of the ubiquitin–proteasome system in retinal structural integrity maintenance. In this study, using beclin1-heterozygous (Becn1-Het) mice with autophagic dysfunction, we tested our hypothesis that autophagy could be a compensatory retinal protective mechanism for proteasomal impairment. Despite the reduced number of autophagosome, the ocular tissue morphology and intraocular pressure were normal. Surprisingly, Becn1-Het mice experienced the same extent of retinal degeneration as was observed in wild-type mice, following an intravitreal injection of a chemical proteasome inhibitor. Similarly, these mice equally responded to other chemical insults, including endoplasmic reticulum stress inducer, N-methyl-D-aspartate, and lipopolysaccharide. Interestingly, in cultured neuroblastoma cells, we found that the mammalian target of rapamycin-independent autophagy activators, lithium chloride and rilmenidine, rescued these cells against proteasome inhibition-induced death. These results suggest that Becn1-mediated autophagy is not an effective intrinsic protective mechanism for retinal damage induced by insults, including impaired proteasomal activity; furthermore, autophagic activation beyond normal levels is required to alleviate the cytotoxic effect of proteasomal inhibition. Further studies are underway to delineate the precise roles of different forms of autophagy, and investigate the effects of their activation in rescuing retinal neurons under various pathological conditions.
Collapse
Affiliation(s)
- Merry Gunawan
- Santen-SERI Open Innovation Centre, 20 College Road, The Academia, Singapore 169856, Singapore; (M.G.); (C.L.); (K.N.)
| | - Choonbing Low
- Santen-SERI Open Innovation Centre, 20 College Road, The Academia, Singapore 169856, Singapore; (M.G.); (C.L.); (K.N.)
| | - Kurt Neo
- Santen-SERI Open Innovation Centre, 20 College Road, The Academia, Singapore 169856, Singapore; (M.G.); (C.L.); (K.N.)
| | - Siawey Yeo
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, 20 College Road, The Academia, Singapore 169856, Singapore; (S.Y.); (V.A.B.)
| | - Candice Ho
- Singapore Eye Research Institute, 20 College Road, The Academia, Singapore 169856, Singapore; (C.H.); (A.S.C.)
| | - Veluchamy A. Barathi
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, 20 College Road, The Academia, Singapore 169856, Singapore; (S.Y.); (V.A.B.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anita Sookyee Chan
- Singapore Eye Research Institute, 20 College Road, The Academia, Singapore 169856, Singapore; (C.H.); (A.S.C.)
| | - Najam A. Sharif
- Global Alliance and External Research, Santen Inc., Emeryville, CA 94608, USA;
| | - Masaaki Kageyama
- Santen-SERI Open Innovation Centre, 20 College Road, The Academia, Singapore 169856, Singapore; (M.G.); (C.L.); (K.N.)
- Correspondence:
| |
Collapse
|
4
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
5
|
Ritter RA, Ulrich CH, Brzezinska BN, Shah VV, Zamora MJ, Kelly LE, El-Hodiri HM, Sater AK. miR-199 plays both positive and negative regulatory roles in Xenopus eye development. Genesis 2020; 58:e23354. [PMID: 31909537 DOI: 10.1002/dvg.23354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022]
Abstract
To investigate microRNA (miR) functions in early eye development, we asked whether eye field transcription factors (EFTFs) are targets of miR-dependent regulation in Xenopus embryos. Argonaute (AGO) ribonucleoprotein complexes, including miRs and targeted mRNAs, were coimmunoprecipitated from transgenic embryos expressing myc-tagged AGO under the control of the rax1 promoter; mRNAs for all EFTFs coimmunoprecipitated with Ago in late neurulae. Computational predictions of miR binding sites within EFTF 3'UTRs identified miR-199a-3p ("miR-199") as a candidate regulator of EFTFs, and miR-199 was shown to regulate rax1 in vivo. Targeted overexpression of miR-199 led to small eyes, a reduction in EFTF expression, and reduced cell proliferation. Inhibition of interactions between mir-199 and the rax1 3'UTR reversed the small eye phenotype. Although targeted knockdown of miR-199 left the eye field intact, it reduced optic cup outgrowth and disrupted eye formation. Computational identification of candidate miR-199 targets within the Xenopus transcriptome led to the identification of ptk7 as a candidate regulator. Targeted overexpression of ptk7 resulted in abnormal optic cup formation and a reduction or loss of eye development, recapitulating the range of eye phenotypes seen following miR-199 knockdown. Our results indicate that miR-199 plays both positive and negative regulatory roles in eye development.
Collapse
Affiliation(s)
- Ruth A Ritter
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Christina H Ulrich
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Bogna N Brzezinska
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Vrutant V Shah
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Melissa J Zamora
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Lisa E Kelly
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Heithem M El-Hodiri
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| |
Collapse
|
6
|
The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner. Mol Vis 2019; 25:165-173. [PMID: 30820152 PMCID: PMC6386513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/21/2019] [Indexed: 10/26/2022] Open
Abstract
Purpose The evolutionarily conserved retinal homeobox (Rax) transcription factor is essential for normal eye development in all vertebrates. Despite Rax's biologic significance, the molecular mechanisms underlying Rax molecular function as a transcriptional regulator are poorly defined. The rax gene encodes a conserved octapeptide motif (OP) near the N-terminus and several conserved regions in the C-terminus of unknown function, including the orthopedia, aristaless, rax (OAR) domain and the RX domain. The purpose of this study is to investigate the contribution of these conserved domains in Rax function. Methods N-and C-terminal deletion and point mutations were generated in Xenopus laevis rax.L (previously known as Rx1A) using PCR-based methods. We examined the ability of mutated Rax to transactivate a reporter gene consisting of a portion of a rax target gene promoter (from the Xenopus rhodopsin gene) fused to a firefly luciferase coding region and transfected into human embryonic kidney 293T (HEK293T) cells. Portions of the Rax C-terminal region were also assayed for transactivation activity in the context of a heterologous DNA binding domain with an appropriate reporter gene. Results Full-length Rax weakly activated the reporter. Deletion of the Rax C-terminus increased Rax activity, suggesting that the C-terminus functions to repress Rax activity. Further deletion eventually resulted in a decrease in activity, suggesting that the C-terminal region also can function to enhance Rax activity. Deletion or mutation of the OP motif resulted in a slight decrease in Rax activity. Mutation or deletion of the N-terminal OP motif resulted in a mild decrease in activity and dampened the activity levels of the C-terminal deletions. Further, fusion of the C-terminus of Rax to a heterologous DNA binding domain enhanced transactivation. Conclusions The present data indicate that the C-terminus of Rax can function to repress or activate transcription in a context-dependent manner. These data support our hypothesis that the highly conserved OAR domain, in combination with other regulatory elements in the Rax C-terminus, coordinates Rax activity, perhaps through functional interaction with the N-terminal OP motif. Taken together, these data provide insight into the structural features that regulate Rax activity.
Collapse
|
7
|
Oonuma K, Kusakabe TG. Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona. Dev Biol 2018; 445:245-255. [PMID: 30502325 DOI: 10.1016/j.ydbio.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
Abstract
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| |
Collapse
|
8
|
Pan Y, Kelly LE, El-Hodiri HM. Identification of retinal homeobox (rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway. Dev Dyn 2018; 247:1199-1210. [PMID: 30311321 DOI: 10.1002/dvdy.24679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The retinal homeobox (rx/rax) gene is a transcription factor expressed in the developing eye field that is necessary for normal eye development. rax is necessary for retinal specification and stem cell development. The genetic program of early retinal development, including rax expression, can be induced in naïve ectoderm by activation of insulin-like growth factor (IGF) signaling. We have undertaken a microarray-based approach to identify rax-dependent IGF-induced genes. RESULTS We identified 21 IGF-induced genes that exhibit at least a two-fold decrease in expression when rax expression is knocked down. Ten of these genes were expressed in the developing eye, eight were expressed in the ciliary marginal zone of the mature tadpole retina, and four could significantly rescue the rax knockdown phenotype. One of these, the nei endonuclease VIII-like 3 (neil3) gene, rescued the rax knockdown phenotype to a remarkable degree. We found that neil3 is necessary for normal retinal lamination and retinal neuron differentiation. CONCLUSIONS We have identified neil3 as a component of the rax genetic pathway necessary for normal retinal progenitor cell development. neil3 is involved in the base excision DNA repair pathway, suggesting that this pathway is essential for normal rax-dependent progenitor cell development in the mature retina. Developmental Dynamics 247:1199-1210, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Pan
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio
| | - Lisa E Kelly
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio
| | - Heithem M El-Hodiri
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
Rodgers HM, Huffman VJ, Voronina VA, Lewandoski M, Mathers PH. The role of the Rx homeobox gene in retinal progenitor proliferation and cell fate specification. Mech Dev 2018; 151:18-29. [PMID: 29665410 PMCID: PMC5972075 DOI: 10.1016/j.mod.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
The Retinal homeobox gene (Rx; also Rax) plays a crucial role in the early development of the vertebrate eye. Germline deletion of Rx in mice results in the failure of optic vesicle formation, leading to anophthalmia. Recent research using conditional mouse knockout models provides some clues to the role of Rx in eye development following optic vesicle formation. However, the functions of Rx in embryonic retinogenesis are still not fully understood. We investigated the function of Rx in the mouse neural retina using a conditional knockout where the Pax6α-Cre driver deletes Rx activity in early retinal progenitors. The deletion of Rx activity causes a loss of retinal lamination, a depletion of retinal progenitors, and a change in retinal cell fate in our conditional knockout model. The deletion of Rx leads to an absence of late-born retinal neurons (rods and bipolar cells) and Müller glia at postnatal ages, as well as a loss of the early-born cone photoreceptors. Decreased BrdU labeling in the Rx-deleted portion of the retina suggests a loss of retinal progenitors via early cell cycle exit, which likely prevents the formation of late-born cells. As early-born cells, cone photoreceptors should not be as affected by early cell cycle exit of retinal progenitors. However, embryonic cone photoreceptor labeling is also markedly reduced in Rx-deleted retinas. Together these data demonstrate the importance of Rx for retinal progenitor proliferation and a specific requirement of Rx for cone formation in mice.
Collapse
Affiliation(s)
- H M Rodgers
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - V J Huffman
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Potomac State College of West Virginia University, Keyser, WV 26726, United States; Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - V A Voronina
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Laboratory of Cancer and Developmental Biology, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, United States; Biochemistry and Molecular Biology Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - M Lewandoski
- Laboratory of Cancer and Developmental Biology, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, United States
| | - P H Mathers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
10
|
Musser JM, Arendt D. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution. Dev Biol 2017; 431:26-35. [DOI: 10.1016/j.ydbio.2017.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/09/2023]
|
11
|
Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations. Sci Rep 2017; 7:9064. [PMID: 28831107 PMCID: PMC5567291 DOI: 10.1038/s41598-017-09276-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
Ocular coloboma is a common eye malformation arising from incomplete closure of the human optic fissure during development. Multiple genetic mutations contribute to the disease process, showing extensive genetic heterogeneity and complexity of coloboma spectrum diseases. In this study, we aimed to unravel the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis. The subjects were recruited and underwent specialized ophthalmologic clinical examination. A combination of whole exome sequencing (WES), homozygosity mapping, and comprehensive variant analyses was performed to uncover the causative mutation. Only one homozygous mutation (c.113 T > C, p.I38T) in RAX gene survived our strict variant filtering process, consistent with an autosomal recessive inheritance pattern. This mutation segregated perfectly in the family and is located in a highly conserved functional domain. Crystal structure modeling indicated that I38T affected the protein structure. We describe a patient from a consanguineous Chinese family with unusual coloboma, proven to harbor a novel RAX mutation (c.113 T > C, p.I38T, homozygous), expanding the phenotypic variability of ocular coloboma and RAX mutations.
Collapse
|
12
|
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina. PLoS One 2017; 12:e0176905. [PMID: 28829770 PMCID: PMC5568747 DOI: 10.1371/journal.pone.0176905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.
Collapse
|
13
|
Pan Y, Comiskey DF, Kelly LE, Chandler DS, El-Hodiri HM. Regulation of photoreceptor gene transcription via a highly conserved transcriptional regulatory element by vsx gene products. Mol Vis 2016; 22:1421-1428. [PMID: 28003732 PMCID: PMC5166794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The photoreceptor conserved element-1 (PCE-1) sequence is found in the transcriptional regulatory regions of many genes expressed in photoreceptors. The retinal homeobox (Rx or Rax) gene product functions by binding to PCE-1 sites. However, other transcriptional regulators have also been reported to bind to PCE-1. One of these, vsx2, is expressed in retinal progenitor and bipolar cells. The purpose of this study is to identify Xenopus laevis vsx gene products and characterize vsx gene product expression and function with respect to the PCE-1 site. METHODS X. laevis vsx gene products were amplified with PCR. Expression patterns were determined with in situ hybridization using whole or sectioned X. laevis embryos and digoxigenin- or fluorescein-labeled antisense riboprobes. DNA binding characteristics of the vsx gene products were analyzed with electrophoretic mobility shift assays (EMSAs) using in vitro translated proteins and radiolabeled oligonucleotide probes. Gene transactivation assays were performed using luciferase-based reporters and in vitro transcribed effector gene products, injected into X. laevis embryos. RESULTS We identified one vsx1 and two vsx2 gene products. The two vsx2 gene products are generated by alternate mRNA splicing. We verified that these gene products are expressed in the developing retina and that expression resolves into distinct cell types in the mature retina. Finally, we found that vsx gene products can bind the PCE-1 site in vitro and that the two vsx2 isoforms have different gene transactivation activities. CONCLUSIONS vsx gene products are expressed in the developing and mature neural retina. vsx gene products can bind the PCE-1 site in vitro and influence the expression of a rhodopsin promoter-luciferase reporter gene. The two isoforms of vsx have different gene transactivation activities in this reporter gene system.
Collapse
Affiliation(s)
- Yi Pan
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Daniel F. Comiskey
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH,Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, OH,Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, OH
| | - Lisa E. Kelly
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Dawn S. Chandler
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH,Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, OH,Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, OH,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH
| | - Heithem M. El-Hodiri
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH,Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
14
|
Kelly LE, Martinez-De Luna RI, El-Hodiri HM. Autoregulation of retinal homeobox (rax) gene promoter activity through a highly conserved genomic element. Genesis 2016; 54:562-567. [PMID: 27696680 DOI: 10.1002/dvg.22983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 11/05/2022]
Abstract
The Retinal homeobox (rax) gene is expressed in vertebrate retinal progenitor and stem cells and is essential for retinal development. In frogs, rax is expressed in the ciliary marginal zone (CMZ), a region containing retinal progenitor and stem cells at the anterior of the eye. Little is known regarding regulation of rax transcription and regulation of transcription of rax targets. We found that three ultra-conserved genomic elements (UCEs) flanking the rax coding region regulate expression of a rax promoter-GFP transgene in Xenopus tadpoles. One of these elements, UCE1, regulates expression of the transgene in the dorsal CMZ. UCE1 contains a Rax binding site, PCE-1. We demonstrate that rax regulates expression of the transgene through the PCE-1 site found in UCE1. Therefore, rax transcription in the CMZ is controlled, in part, by autoregulatory mechanisms.
Collapse
Affiliation(s)
- Lisa E Kelly
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Reyna I Martinez-De Luna
- Graduate Program in Molecular, Cellular, and Developmental Biology, College of Biological Sciences, Columbus, Ohio, USA
| | - Heithem M El-Hodiri
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Graduate Program in Molecular, Cellular, and Developmental Biology, College of Biological Sciences, Columbus, Ohio, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Pinto CL, Kalasekar SM, McCollum CW, Riu A, Jonsson P, Lopez J, Swindell EC, Bouhlatouf A, Balaguer P, Bondesson M, Gustafsson JÅ. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development. Mol Cell Endocrinol 2016; 419:29-43. [PMID: 26427652 PMCID: PMC4684448 DOI: 10.1016/j.mce.2015.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/05/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development.
Collapse
Affiliation(s)
- Caroline Lucia Pinto
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Sharanya Maanasi Kalasekar
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Anne Riu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Philip Jonsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Justin Lopez
- Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA
| | - Eric C Swindell
- Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA
| | - Abdel Bouhlatouf
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier 1, 34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier 1, 34298 Montpellier, France
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Huddinge, Sweden
| |
Collapse
|
16
|
Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina. Mol Cell Biol 2015; 35:2583-96. [PMID: 25986607 DOI: 10.1128/mcb.00048-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/10/2015] [Indexed: 12/11/2022] Open
Abstract
The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina.
Collapse
|
17
|
Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD. The role of homeobox genes in retinal development and disease. Dev Biol 2014; 393:195-208. [PMID: 25035933 DOI: 10.1016/j.ydbio.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022]
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are critical for development of many organ systems, including the brain and eye. During retinogenesis, homeodomain-containing transcription factors, which are encoded by homeobox genes, play essential roles in the regionalization and patterning of the optic neuroepithelium, specification of retinal progenitors and differentiation of all seven of the retinal cell classes that derive from a common progenitor. Homeodomain transcription factors control retinal cell fate by regulating the expression of target genes required for retinal progenitor cell fate decisions and for terminal differentiation of specific retinal cell types. The essential role of homeobox genes during retinal development is demonstrated by the number of human eye diseases, including colobomas and anophthalmia, which are attributed to homeobox gene mutations. In the following review, we highlight the role of homeodomain transcription factors during retinogenesis and regulation of their gene targets. Understanding the complexities of vertebrate retina development will enhance our ability to drive differentiation of specific retinal cell types towards novel cell-based replacement therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Jamie L Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Qi Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Vanessa I Pinto
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Jeffrey T Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Institute, Winnipeg, MB, Canada R2H 2A6
| | - David D Eisenstat
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada T6G 1C9.
| |
Collapse
|
18
|
Giudetti G, Giannaccini M, Biasci D, Mariotti S, Degl'innocenti A, Perrotta M, Barsacchi G, Andreazzoli M. Characterization of the Rx1-dependent transcriptome during early retinal development. Dev Dyn 2014; 243:1352-61. [PMID: 24801179 DOI: 10.1002/dvdy.24145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The transcription factor Rx1, also known as Rax, controls key properties of retinal precursors including migration behavior, proliferation, and maintenance of multipotency. However, Rx1 effector genes are largely unknown. RESULTS To identify genes controlled by Rx1 in early retinal precursors, we compared the transcriptome of Xenopus embryos overexpressing Rx1 to that of embryos in which Rx1 was knocked-down. In particular, we selected 52 genes coherently regulated, i.e., actived in Rx1 gain of function and repressed in Rx1 loss of function experiments, or vice versa. RT-qPCR and in situ hybridization confirmed the trend of regulation predicted by microarray data for the selected genes. Most of the genes upregulated by Rx1 are coexpressed with this transcription factor, while downregulated genes are either not expressed or expressed at very low levels in the early developing retina. Putative direct Rx1 target genes, activated by GR-Rx1 in the absence of protein synthesis, include Ephrin B1 and Sh2d3c, an interactor of ephrinB1 receptor, which represent candidate novel effectors for the migration promoting activity of Rx1. CONCLUSIONS This study identifies previously undescribed Rx1 regulated genes mainly involved in transcription regulation, cell migration/adhesion, and cell proliferation that contribute to delineate the molecular mechanisms underlying Rx1 activities.
Collapse
Affiliation(s)
- Guido Giudetti
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Schulte JE, O'Brien CS, Conte MA, O'Quin KE, Carleton KL. Interspecific variation in Rx1 expression controls opsin expression and causes visual system diversity in African cichlid fishes. Mol Biol Evol 2014; 31:2297-308. [PMID: 24859246 DOI: 10.1093/molbev/msu172] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying natural phenotypic diversity are key to understanding evolution and speciation. Cichlid fishes are among the most speciose vertebrates and an ideal model for identifying genes controlling species differences. Cichlids have diverse visual sensitivities that result from species expressing subsets of seven cichlid cone opsin genes. We previously identified a quantitative trait locus (QTL) that tunes visual sensitivity by varying SWS2A (short wavelength sensitive 2A) opsin expression in a genetic cross between two Lake Malawi cichlid species. Here, we identify Rx1 (retinal and anterior neural fold homeobox) as the causative gene for the QTL using fine mapping and RNAseq in retinal transcriptomes. Rx1 is differentially expressed between the parental species and correlated with SWS2A expression in the F2 progeny. Expression of Rx1 and SWS2A is also correlated in a panel of 16 Lake Malawi cichlid species. Association mapping in this panel identified a 413-bp deletion located 2.5-kb upstream of the Rx1 translation start site that is correlated with decreased Rx1 expression. This deletion explains 62% of the variance in SWS2A expression across 53 cichlid species in 29 genera. The deletion occurs in both the sand and rock-dwelling cichlid clades, suggesting that it is an ancestral polymorphism. Our finding supports the hypothesis that mixing and matching of ancestral polymorphisms can explain the diversity of present day cichlid phenotypes.
Collapse
Affiliation(s)
- Jane E Schulte
- Department of Biology, University of Maryland, College Park
| | | | | | - Kelly E O'Quin
- Department of Biology, University of Maryland, College Park
| | | |
Collapse
|
20
|
Asaoka Y, Hata S, Namae M, Furutani-Seiki M, Nishina H. The Hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in zebrafish. PLoS One 2014; 9:e97365. [PMID: 24828882 PMCID: PMC4020862 DOI: 10.1371/journal.pone.0097365] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
The precise regulation of numbers and types of neurons through control of cell cycle exit and terminal differentiation is an essential aspect of neurogenesis. The Hippo signaling pathway has recently been identified as playing a crucial role in promoting cell cycle exit and terminal differentiation in multiple types of stem cells, including in retinal progenitor cells. When Hippo signaling is activated, the core Mst1/2 kinases activate the Lats1/2 kinases, which in turn phosphorylate and inhibit the transcriptional cofactor Yap. During mouse retinogenesis, overexpression of Yap prolongs progenitor cell proliferation, whereas inhibition of Yap decreases this proliferation and promotes retinal cell differentiation. However, to date, it remains unknown how the Hippo pathway affects the differentiation of distinct neuronal cell types such as photoreceptor cells. In this study, we investigated whether Hippo signaling regulates retinogenesis during early zebrafish development. Knockdown of zebrafish mst2 induced early embryonic defects, including altered retinal pigmentation and morphogenesis. Similar abnormal retinal phenotypes were observed in zebrafish embryos injected with a constitutively active form of yap [(yap (5SA)]. Loss of Yap's TEAD-binding domain, two WW domains, or transcription activation domain attenuated the retinal abnormalities induced by yap (5SA), indicating that all of these domains contribute to normal retinal development. Remarkably, yap (5SA)-expressing zebrafish embryos displayed decreased expression of transcription factors such as otx5 and crx, which orchestrate photoreceptor cell differentiation by activating the expression of rhodopsin and other photoreceptor cell genes. Co-immunoprecipitation experiments revealed that Rx1 is a novel interacting partner of Yap that regulates photoreceptor cell differentiation. Our results suggest that Yap suppresses the differentiation of photoreceptor cells from retinal progenitor cells by repressing Rx1-mediated transactivation of photoreceptor cell genes during zebrafish retinogenesis.
Collapse
Affiliation(s)
- Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (YA); (HN)
| | - Shoji Hata
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Misako Namae
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Furutani-Seiki
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (YA); (HN)
| |
Collapse
|
21
|
Reks SE, McIlvain V, Zhuo X, Knox BE. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors. BMC Mol Biol 2014; 15:4. [PMID: 24499263 PMCID: PMC3937059 DOI: 10.1186/1471-2199-15-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 02/01/2014] [Indexed: 12/02/2022] Open
Abstract
Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription.
Collapse
Affiliation(s)
| | | | | | - Barry E Knox
- Departments of Neuroscience & Physiology, Ophthalmology and Biochemistry & Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
22
|
Tosches MA, Arendt D. The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 2013; 23:1080-9. [PMID: 24080363 DOI: 10.1016/j.conb.2013.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022]
Abstract
The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | |
Collapse
|
23
|
Rath MF, Rohde K, Klein DC, Møller M. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance. Neurochem Res 2013; 38:1100-12. [PMID: 23076630 PMCID: PMC3570627 DOI: 10.1007/s11064-012-0906-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/19/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience and Pharmacology, Panum Institute 24.2, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | | | | | | |
Collapse
|
24
|
An essential role for RAX homeoprotein and NOTCH-HES signaling in Otx2 expression in embryonic retinal photoreceptor cell fate determination. J Neurosci 2012; 31:16792-807. [PMID: 22090505 DOI: 10.1523/jneurosci.3109-11.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanisms underlying cell fate determination from common progenitors in the vertebrate CNS remain elusive. We previously reported that the OTX2 homeoprotein regulates retinal photoreceptor cell fate determination. While Otx2 transactivation is a pivotal process for photoreceptor cell fate determination, its transactivation mechanism in the retina is unknown. Here, we identified an evolutionarily conserved Otx2 enhancer of ∼500 bp, named embryonic enhancer locus for photoreceptor Otx2 transcription (EELPOT), which can recapitulate initial Otx2 expression in the embryonic mouse retina. We found that the RAX homeoprotein interacts with EELPOT to transactivate Otx2, mainly in the final cell cycle of retinal progenitors. Conditional inactivation of Rax results in downregulation of Otx2 expression in vivo. We also showed that NOTCH-HES signaling negatively regulates EELPOT to suppress Otx2 expression. These results suggest that the integrated activity of cell-intrinsic and -extrinsic factors on EELPOT underlies the molecular basis of photoreceptor cell fate determination in the embryonic retina.
Collapse
|
25
|
El-Hodiri HM, Pan Y, Kelly LE. In vivo functional analysis of transcription factor: response element interaction using transgenic Xenopus laevis. Methods Mol Biol 2012; 884:41-51. [PMID: 22688697 DOI: 10.1007/978-1-61779-848-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Analysis of transcription factor-target interactions in vivo is important to the study of transcriptional regulation of gene expression. A key experiment involves analysis of the functional interaction between a trans-acting factor and its corresponding cis-acting element in the context of a target promoter in vivo. We describe a method for this analysis in transgenic Xenopus tadpoles in which expression of the trans-acting factor is knocked down using an shRNA-mediated approach.
Collapse
Affiliation(s)
- Heithem M El-Hodiri
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | | | | |
Collapse
|
26
|
Rohde K, Klein DC, Møller M, Rath MF. Rax : developmental and daily expression patterns in the rat pineal gland and retina. J Neurochem 2011; 118:999-1007. [PMID: 21749377 DOI: 10.1111/j.1471-4159.2011.07385.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retina and anterior neural fold homeobox (Rax) gene encodes a transcription factor essential for vertebrate eye development. Recent microarray studies indicate that Rax is expressed in the adult rat pineal gland and retina. The present study reveals that Rax expression levels in the rat change significantly during retinal development with a peak occurring at embryonic day 18, whereas Rax expression in the pineal is relatively delayed and not detectable until embryonic day 20. In both tissues, Rax is expressed throughout postnatal development into adulthood. In the mature rat pineal gland, the abundance of Rax transcripts increases 2-fold during the light period with a peak occurring at dusk. These findings are consistent with the evidence that Rax is of functional importance in eye development and suggest a role of Rax in the developing pineal gland. In addition, it would appear possible that Rax contributes to phenotype maintenance in the mature retina and pineal gland and may facilitate 24-h changes in the pineal transcriptome.
Collapse
Affiliation(s)
- Kristian Rohde
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
27
|
Martinez-De Luna RI, Kelly LE, El-Hodiri HM. The Retinal Homeobox (Rx) gene is necessary for retinal regeneration. Dev Biol 2011; 353:10-8. [PMID: 21334323 DOI: 10.1016/j.ydbio.2011.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 01/21/2023]
Abstract
The Retinal Homeobox (Rx) gene is essential for vertebrate eye development. Rx function is required for the specification and maintenance of retinal progenitor cells (RPCs). Loss of Rx function leads to a lack of eye development in a variety of species. Here we show that Rx function is also necessary during retinal regeneration. We performed a thorough characterization of retinal regeneration after partial retinal resection in pre-metamorphic Xenopus laevis. We show that after injury the wound is repopulated with retinal progenitor cells (RPCs) that express Rx and other RPC marker genes. We used an shRNA-based approach to specifically silence Rx expression in vivo in tadpoles. We found that loss of Rx function results in impaired retinal regeneration, including defects in the cells that repopulate the wound and the RPE at the wound site. We show that the regeneration defects can be rescued by provision of exogenous Rx. These results demonstrate for the first time that Rx, in addition to being essential during retinal development, also functions during retinal regeneration.
Collapse
Affiliation(s)
- Reyna I Martinez-De Luna
- Graduate Program in Molecular, Cellular, and Developmental Biology, College of Biological Sciences, Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
28
|
Martinez-de Luna RI, Moose HE, Kelly LE, Nekkalapudi S, El-Hodiri HM. Regulation of retinal homeobox gene transcription by cooperative activity among cis-elements. Gene 2010; 467:13-24. [PMID: 20627122 DOI: 10.1016/j.gene.2010.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/29/2010] [Accepted: 07/06/2010] [Indexed: 12/23/2022]
Abstract
The retinal homeobox (Rx/rax) gene is essential for the development of the eye. Rax is among the earliest genes expressed during eye development, beginning in the prospective eye fields in the anterior neural plate. Additionally Rax expression persists in retinal progenitor cells and in differentiated photoreceptors. We have isolated and characterized a 2.8 kb genomic DNA fragment that regulates expression of Rax in the developing and maturing retina. We have discovered and characterized cis-acting elements that function to specifically control spatial and temporal Rax expression during retinal development. We have found that the regulation of Rax2A promoter activity requires cooperative interactions between positive and negative regulatory elements. Further, a highly conserved genomic element containing SOX, OTX, and POU transcription factor binding sites is necessary but not sufficient for promoter activity in retinal progenitor or stem cells. Finally, a putative binding element for forkhead transcription factors is necessary for promoter activity and can cooperate with other cis-acting elements to drive Rax2A promoter activity.
Collapse
Affiliation(s)
- Reyna I Martinez-de Luna
- Graduate Program in Molecular, Cellular, and Developmental Biology, College of Biological Sciences, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|