1
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
3
|
Zhang J, Liu G, Liu Y, Yang P, Xie J, Wei X. The biological functions and related signaling pathways of SPON2. Front Oncol 2024; 13:1323744. [PMID: 38264743 PMCID: PMC10803442 DOI: 10.3389/fonc.2023.1323744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Spondin-2 (SPON2), also referred to as M-spondin or DIL-1, is a member of the extracellular matrix protein family known as Mindin-F-spondin (FS). SPON2 can be used as a broad-spectrum tumor marker for more than a dozen tumors, mainly prostate cancer. Meanwhile, SPON2 is also a potential biomarker for the diagnosis of certain non-tumor diseases. Additionally, SPON2 plays a pivotal role in regulating tumor metastasis and progression. In normal tissues, SPON2 has a variety of biological functions represented by promoting growth and development and cell proliferation. This paper presents a comprehensive overview of the regulatory mechanisms, diagnostic potential as a broad-spectrum biomarker, diverse biological functions, involvement in various signaling pathways, and clinical applications of SPON2.
Collapse
Affiliation(s)
- Jingrun Zhang
- Zhongshan Clinical College, Dalian University, Dalian, China
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ge Liu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yuchen Liu
- Zhongshan Clinical College, Dalian University, Dalian, China
| | - Pei Yang
- Department of Neurology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Junyuan Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Wei
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
4
|
Knill C, Henderson EJ, Johnson C, Wah VY, Cheng K, Forster AJ, Itasaki N. Defects of the spliceosomal gene SNRPB affect osteo- and chondro-differentiation. FEBS J 2024; 291:272-291. [PMID: 37584444 DOI: 10.1111/febs.16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
Although gene splicing occurs throughout the body, the phenotype of spliceosomal defects is largely limited to specific tissues. Cerebro-costo-mandibular syndrome (CCMS) is one such spliceosomal disease, which presents as congenital skeletal dysmorphism and is caused by mutations of SNRPB gene encoding Small Nuclear Ribonucleoprotein Polypeptides B/B' (SmB/B'). This study employed in vitro cell cultures to monitor osteo- and chondro-differentiation and examined the role of SmB/B' in the differentiation process. We found that low levels of SmB/B' by knockdown or mutations of SNRPB led to suppressed osteodifferentiation in Saos-2 osteoprogenitor-like cells, which was accompanied by affected splicing of Dlx5. On the other hand, low SmB/B' led to promoted chondrogenesis in HEPM mesenchymal stem cells. Consistent with other reports, osteogenesis was promoted by the Wnt/β-catenin pathway activator and suppressed by Wnt and BMP blockers, whereas chondrogenesis was promoted by Wnt inhibitors. Suppressed osteogenic markers by SNRPB knockdown were partly rescued by Wnt/β-catenin pathway activation. Reporter analysis revealed that suppression of SNRPB results in attenuated Wnt pathway and/or enhanced BMP pathway activities. SNRPB knockdown altered splicing of TCF7L2 which impacts Wnt/β-catenin pathway activities. This work helps unravel the mechanism underlying CCMS whereby reduced expression of spliceosomal proteins causes skeletal phenotypes.
Collapse
Affiliation(s)
- Chris Knill
- Faculty of Life Sciences, University of Bristol, UK
| | | | - Craig Johnson
- Faculty of Health Sciences, University of Bristol, UK
| | - Vun Yee Wah
- Faculty of Life Sciences, University of Bristol, UK
| | - Kevin Cheng
- Faculty of Life Sciences, University of Bristol, UK
| | | | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, UK
| |
Collapse
|
5
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Cooper RBV, Kim KB, Oliver DR, Armbrecht E, Behrents RG, Montaño AM. DLX6 and MSX1 from saliva samples as potential predictors of mandibular size: A cross-sectional study. Am J Orthod Dentofacial Orthop 2023; 163:368-377. [PMID: 36494218 DOI: 10.1016/j.ajodo.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Morphologic features of the mandible are influenced by the genes of each individual. Mandible size is important to orthodontists because the mandible is the mechanism by which the lower face influences facial esthetics and dental function. To date, no biological marker has been identified that indicates eventual mandible size. This study aimed to correlate the expression of DLX5, DLX6, EDN1, HAND2, PRRX1, and MSX1 to mandible size. METHODS Fifty-nine orthodontic patients aged >6 years who had available cephalometric radiographs were studied. Patients were classified on the basis of condylion-to-gnathion measurements. Messenger RNA was isolated from saliva and subjected to real-time quantitative polymerase chain reaction. RESULTS Threshold cycle values for subjects with small mandibles (>1 standard deviation [SD] from the mean) had the least expression of DLX6 and MSX1. Threshold cycle values for subjects with large mandibles (>1 SD) had less expression of DLX6 and MSX1 than subjects within 1 SD but more than those with small mandibles. CONCLUSIONS DLX6 and MSX1 are related to mandible development and size. This finding could be used to improve treatment planning for medical and dental professionals seeking to understand the impact of genetics on bone growth.
Collapse
Affiliation(s)
- Rachel Bryn V Cooper
- Formerly, Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo currently, Private practice, Houston, Tex.
| | - Ki Beom Kim
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Donald R Oliver
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Eric Armbrecht
- Center for Health Outcomes Research, Saint Louis University, St Louis, Mo
| | - Rolf G Behrents
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Adriana M Montaño
- Departments of Pediatrics and Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St Louis, Mo.
| |
Collapse
|
7
|
Ye Q, Bhojwani A, Hu JK. Understanding the development of oral epithelial organs through single cell transcriptomic analysis. Development 2022; 149:dev200539. [PMID: 35831953 PMCID: PMC9481975 DOI: 10.1242/dev.200539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/07/2022] [Indexed: 01/29/2023]
Abstract
During craniofacial development, the oral epithelium begins as a morphologically homogeneous tissue that gives rise to locally complex structures, including the teeth, salivary glands and taste buds. How the epithelium is initially patterned and specified to generate diverse cell types remains largely unknown. To elucidate the genetic programs that direct the formation of distinct oral epithelial populations, we mapped the transcriptional landscape of embryonic day 12 mouse mandibular epithelia at single cell resolution. Our analysis identified key transcription factors and gene regulatory networks that define different epithelial cell types. By examining the spatiotemporal patterning process along the oral-aboral axis, our results propose a model in which the dental field is progressively confined to its position by the formation of the aboral epithelium anteriorly and the non-dental oral epithelium posteriorly. Using our data, we also identified Ntrk2 as a proliferation driver in the forming incisor, contributing to its invagination. Together, our results provide a detailed transcriptional atlas of the embryonic mandibular epithelium, and unveil new genetic markers and regulators that are present during the specification of various oral epithelial structures.
Collapse
Affiliation(s)
- Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jimmy K. Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Iwasaki M, Kawakami K, Wada H. Remodeling of the hyomandibular skeleton and facial nerve positioning during embryonic and postembryonic development of teleost fish. Dev Biol 2022; 489:134-145. [PMID: 35750208 DOI: 10.1016/j.ydbio.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate skeleton changes its shape during development through the activities of chondrocytes, osteoblasts and osteoclasts. Although much is known about the mechanisms for differentiation in these cells, it is less understood how they behave in a region-specific manner to acquire unique bone shapes. To address this question, we investigated the development of the hyomandibular (Hm) system in zebrafish. The Hm originates as cartilage carrying a single foramen (the Hm foramen), through which the facial (VII) nerve passes. We reveal that Schwann cells, which myelinate the VII nerve, regulate rearrangement of the chondrocytes to enlarge the Hm foramen. The Hm cartilage then becomes ossified in the perichondrium, where the marrow chondrocytes are replaced by adipocytes. Then, the bone matrix along the VII nerve is resorbed by osteoclasts, generating a gateway to the bone marrow. Subsequent movement of the VII nerve into the marrow, followed by deposition of new bone matrix, isolates the nerve from the jaw muscle insertion. Genetic ablation of osteoblasts and osteoclasts reveals specific roles of these cells during remodeling processes. Interestingly, the VII nerve relocation does not occur in medaka; instead, bone deposition distinct from those in zebrafish separates the VII nerve from the muscle insertion. Our results define novel mechanisms for skeletal remodeling, by which the bone shapes in a region- and species-specific manner.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Koichi Kawakami
- National Institute of Genetics; Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
9
|
Cesario J, Ha S, Kim J, Kataria N, Jeong J. Candidate positive targets of LHX6 and LHX8 transcription factors in the developing upper jaw. Gene Expr Patterns 2022; 43:119227. [PMID: 34861428 PMCID: PMC8930537 DOI: 10.1016/j.gep.2021.119227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Craniofacial development is controlled by a large number of genes, which interact with one another to form a complex gene regulatory network (GRN). Key components of GRN are signaling molecules and transcription factors. Therefore, identifying targets of core transcription factors is an important part of the overall efforts toward building a comprehensive and accurate model of GRN. LHX6 and LHX8 are transcription factors expressed in the oral mesenchyme of the first pharyngeal arch (PA1), and they are crucial regulators of palate and tooth development. Previously, we performed genome-wide transcriptional profiling and chromatin immunoprecipitation to identify target genes of LHX6 and LHX8 in PA1, and described a set of genes repressed by LHX. However, there has not been any discussion of the genes positively regulated by LHX6 and LHX8. In this paper, we revisited the above datasets to identify candidate positive targets of LHX in PA1. Focusing on those with known connections to craniofacial development, we performed RNA in situ hybridization to confirm the changes in expression in Lhx6;Lhx8 mutant. We also confirmed the binding of LHX6 to several putative enhancers near the candidate target genes. Together, we have uncovered novel connections between Lhx and other important regulators of craniofacial development, including Eya1, Barx1, Rspo2, Rspo3, and Wnt11.
Collapse
Affiliation(s)
| | | | | | | | - Juhee Jeong
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E. 24th Street, New York, NY, 10010, USA.
| |
Collapse
|
10
|
Dasgupta K, Cesario JM, Ha S, Asam K, Deacon LJ, Song AH, Kim J, Cobb J, Yoon JK, Jeong J. R-Spondin 3 Regulates Mammalian Dental and Craniofacial Development. J Dev Biol 2021; 9:jdb9030031. [PMID: 34449628 PMCID: PMC8395884 DOI: 10.3390/jdb9030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
Development of the teeth requires complex signaling interactions between the mesenchyme and the epithelium mediated by multiple pathways. For example, canonical WNT signaling is essential to many aspects of odontogenesis, and inhibiting this pathway blocks tooth development at an early stage. R-spondins (RSPOs) are secreted proteins, and they mostly augment WNT signaling. Although RSPOs have been shown to play important roles in the development of many organs, their role in tooth development is unclear. A previous study reported that mutating Rspo2 in mice led to supernumerary lower molars, while teeth forming at the normal positions showed no significant anomalies. Because multiple Rspo genes are expressed in the orofacial region, it is possible that the relatively mild phenotype of Rspo2 mutants is due to functional compensation by other RSPO proteins. We found that inactivating Rspo3 in the craniofacial mesenchyme caused the loss of lower incisors, which did not progress beyond the bud stage. A simultaneous deletion of Rspo2 and Rspo3 caused severe disruption of craniofacial development from early stages, which was accompanied with impaired development of all teeth. Together, these results indicate that Rspo3 is an important regulator of mammalian dental and craniofacial development.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Jeffry M. Cesario
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Sara Ha
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Kesava Asam
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Lindsay J. Deacon
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Ana H. Song
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Julie Kim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea;
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Juhee Jeong
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
- Correspondence:
| |
Collapse
|
11
|
Machado RA, Martelli-Junior H, Reis SRDA, Küchler EC, Scariot R, das Neves LT, Coletta RD. Identification of Novel Variants in Cleft Palate-Associated Genes in Brazilian Patients With Non-syndromic Cleft Palate Only. Front Cell Dev Biol 2021; 9:638522. [PMID: 34307341 PMCID: PMC8297955 DOI: 10.3389/fcell.2021.638522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
The identification of genetic risk factors for non-syndromic oral clefts is of great importance for better understanding the biological processes related to this heterogeneous and complex group of diseases. Herein we applied whole-exome sequencing to identify potential variants related to non-syndromic cleft palate only (NSCPO) in the multiethnic Brazilian population. Thirty NSCPO samples and 30 sex- and genetic ancestry-matched healthy controls were pooled (3 pools with 10 samples for each group) and subjected to whole-exome sequencing. After filtering, the functional affects, individually and through interactions, of the selected variants and genes were assessed by bioinformatic analyses. As a group, 399 variants in 216 genes related to palatogenesis/cleft palate, corresponding to 6.43%, were exclusively identified in the NSCPO pools. Among those genes are 99 associated with syndromes displaying cleft palate in their clinical spectrum and 92 previously related to cleft lip palate. The most significantly biological processes and pathways overrepresented in the NSCPO-identified genes were associated with the folic acid metabolism, highlighting the interaction between LDL receptor-related protein 6 (LRP6) and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) that interconnect two large networks. This study yields novel data on characterization of specific variants and complex processes and pathways related to NSCPO, including many variants in genes of the folate/homocysteine pathway, and confirms that variants in genes related to syndromic cleft palate and cleft lip-palate may cause NSCPO.
Collapse
Affiliation(s)
- Renato Assis Machado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP), Piracicaba, Brazil.,Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, Brazil
| | - Hercílio Martelli-Junior
- Stomatology Clinic, School of Dental, State University of Montes Claros, Montes Claros, Brazil.,Center for Rehabilitation of Craniofacial Anomalies, School of Dental, UNIFENAS - Universidade José do Rosario Vellano, Alfenas, Brazil
| | | | | | - Rafaela Scariot
- Department of Oral and Maxillofacial Surgery, School of Health Science, Federal University of Paraná, Curitiba, Brazil
| | - Lucimara Teixeira das Neves
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, Brazil.,Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB), Bauru, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP), Piracicaba, Brazil
| |
Collapse
|
12
|
Wnt-Dependent Activation of ERK Mediates Repression of Chondrocyte Fate during Calvarial Development. J Dev Biol 2021; 9:jdb9030023. [PMID: 34199092 PMCID: PMC8293402 DOI: 10.3390/jdb9030023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling regulates cell fate decisions in diverse contexts during development, and loss of Wnt signaling in the cranial mesenchyme results in a robust and binary cell fate switch from cranial bone to ectopic cartilage. The Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and Wnt signaling pathways are activated during calvarial osteoblast cell fate selection. Here, we test the hypothesis that ERK signaling is a mediator of Wnt-dependent cell fate decisions in the cranial mesenchyme. First, we show that loss of Erk1/2 in the cranial mesenchyme results in a diminished domain of osteoblast marker expression and increased expression of cartilage fate markers and ectopic cartilage formation in the frontal bone primordia. Second, we show that mesenchyme Wnt/β-catenin signaling and Wntless are required for ERK activation in calvarial osteoblasts. Third, we demonstrate that Wnt and ERK signaling pathways function together to repress SOX9 expression in mouse cranial mesenchyme. Our results demonstrate an interaction between the Wnt and ERK signaling pathways in regulating lineage selection in a subset of calvarial cells and provide new insights into Wnt-dependent cell fate decisions.
Collapse
|
13
|
Expression of R-spondins/Lgrs in development of movable craniofacial organs. Gene Expr Patterns 2021; 41:119195. [PMID: 34126267 DOI: 10.1016/j.gep.2021.119195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 01/26/2023]
Abstract
Wnt signaling plays a critical role in the development of many organs, including the major movable craniofacial organs tongue, lip, and eyelid. Four members of the R-spondin family (Rspo1-4) bind to Lgr4/5/6 to regulate the activation of Wnt signaling. However, it is not fully understood how Rspos/Lgrs regulate Wnt signaling during the development of movable craniofacial organs. To address this question, we examined the expression of Rspos, Lgrs, and Axin2 (major mediator of canonical Wnt signaling) during tongue, lip, and eyelid development. The expression of Axin2, Rspos and Lgrs was observed in many similar regions, suggesting that Rspos likely activate canonical Wnt signaling through the Lgr-dependent pathway in these regions. Lgr expression was not detected in regions where Axin2 and Rspos were expressed, suggesting that Rspos might activate canonical Wnt signaling through the Lgr-independent pathway in these regions. In addition, the expression of Rspos and Lgrs were observed in some other regions where Axin2 was not expressed, suggesting the possibility that Rspos and/or Lgrs are involved in non-canonical Wnt signaling or the Wnt-independent pathway. Thus, we identified a dynamic spatiotemporal expression pattern of Rspos and Lgrs during the development of the eyelid, tongue, and lip.
Collapse
|
14
|
Fischer M, Chander P, Kang H, Mellios N, Weick JP. Transcriptomic changes due to early, chronic intermittent alcohol exposure during forebrain development implicate WNT signaling, cell-type specification, and cortical regionalization as primary determinants of fetal alcohol syndrome. Alcohol Clin Exp Res 2021; 45:979-995. [PMID: 33682149 PMCID: PMC8643076 DOI: 10.1111/acer.14590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) due to gestational alcohol exposure represents one of the most common causes of nonheritable lifelong disability worldwide. In vitro and in vivo models have successfully recapitulated multiple facets of the disorder, including morphological and behavioral deficits, but far less is understood regarding the molecular and genetic mechanisms underlying FAS. METHODS In this study, we utilized an in vitro human pluripotent stem cell-based (hPSC) model of corticogenesis to probe the effects of early, chronic intermittent alcohol exposure on the transcriptome of first trimester-equivalent cortical neurons. RESULTS We used RNA sequencing of developing hPSC-derived neurons treated for 50 days with 50 mM ethanol and identified a relatively small number of biological pathways significantly altered by alcohol exposure. These included cell-type specification, axon guidance, synaptic function, and regional patterning, with a notable upregulation of WNT signaling-associated transcripts observed in alcohol-exposed cultures relative to alcohol-naïve controls. Importantly, this effect paralleled a shift in gene expression of transcripts associated with regional patterning, such that caudal forebrain-related transcripts were upregulated at the expense of more anterior ones. Results from H9 embryonic stem cells were largely replicated in an induced pluripotent stem cell line (IMR90-4), indicating that these patterning alterations are not cell line-specific. CONCLUSIONS We found that a major effect of chronic intermittent alcohol on the developing cerebral cortex is an overall imbalance in regionalization, with enrichment of gene expression related to the production of posterodorsal progenitors and a diminution of anteroventral progenitors. This finding parallels behavioral and morphological phenotypes observed in animal models of high-dose prenatal alcohol exposure, as well as patients with FAS.
Collapse
Affiliation(s)
- Máté Fischer
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico HSC, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Autophagy Inflammation and Metabolism (AIM) Center, University of New Mexico HSC, Albuquerque, NM, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, NM, USA.,Center for Brain Recovery and Repair, University of New Mexico HSC, Albuquerque, NM, USA.,New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM, USA
| |
Collapse
|
15
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
16
|
Jin YR, Han XH, Nishimori K, Ben-Avraham D, Oh YJ, Shim JW, Yoon JK. Canonical WNT/β-Catenin Signaling Activated by WNT9b and RSPO2 Cooperation Regulates Facial Morphogenesis in Mice. Front Cell Dev Biol 2020; 8:264. [PMID: 32457899 PMCID: PMC7225269 DOI: 10.3389/fcell.2020.00264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
The R-spondin (RSPO) family of proteins potentiate canonical WNT/β-catenin signaling and may provide a mechanism to fine-tune the strength of canonical WNT signaling. Although several in vitro studies have clearly demonstrated the potentiation of canonical WNT signaling by RSPOs, whether this potentiation actually occurs in normal development and tissue function in vivo still remains poorly understood. Here, we provide clear evidence of the potentiation of canonical WNT signaling by RSPO during mouse facial development by analyzing compound Wnt9b and Rspo2 gene knockout mice and utilizing ex vivo facial explants. Wnt9b;Rspo2 double mutant mice display facial defects and dysregulated gene expression pattern that are significantly more severe than and different from those of Wnt9b or Rspo2 null mutant mice. Furthermore, we found suggestive evidence that the LGR4/5/6 family of the RSPO receptors may play less critical roles in WNT9b:RSPO2 cooperation. Our results suggest that RSPO-induced cooperation is a key mechanism for fine-tuning canonical WNT/β-catenin signaling in mouse facial development.
Collapse
Affiliation(s)
- Yong-Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Xiang Hua Han
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Katsuhiko Nishimori
- Department of Applied Biological Chemistry, Tohoku University, Sendai, Japan
| | - Dan Ben-Avraham
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Mantoux Institute for Bioinformatics, Weizmann Institute of Science, Rehovot, Israel
| | - Youn Jeong Oh
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea.,Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea.,Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| |
Collapse
|
17
|
Jackson SR, Costa MFDM, Pastore CF, Zhao G, Weiner AI, Adams S, Palashikar G, Quansah K, Hankenson K, Herbert DR, Vaughan AE. R-spondin 2 mediates neutrophil egress into the alveolar space through increased lung permeability. BMC Res Notes 2020; 13:54. [PMID: 32019591 PMCID: PMC7001225 DOI: 10.1186/s13104-020-4930-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Objective R-spondin 2 (RSPO2) is required for lung morphogenesis, activates Wnt signaling, and is upregulated in idiopathic lung fibrosis. Our objective was to investigate whether RSPO2 is similarly important in homeostasis of the adult lung. While investigating the characteristics of bronchoalveolar lavage in RSPO2-deficient (RSPO2−/−) mice, we observed unexpected changes in neutrophil homeostasis and vascular permeability when compared to control (RSPO2+/+) mice at baseline. Here we quantify these observations to explore how tonic RSPO2 expression impacts lung homeostasis. Results Quantitative PCR (qPCR) analysis demonstrated significantly elevated myeloperoxidase (MPO) expression in bronchoalveolar lavage fluid (BALF) cells from RSPO2−/− mice. Likewise, immunocytochemical (ICC) analysis demonstrated significantly more MPO+ cells in BALF from RSPO2−/− mice compared to controls, confirming the increase of infiltrated neutrophils. We then assessed lung permeability/barrier disruption via Fluorescein Isothiocyanate (FITC)-dextran instillation and found a significantly higher dextran concentration in the plasma of RSPO2−/− mice compared to identically treated RSPO2+/+ mice. These data demonstrate that RSPO2 may be crucial for blood-gas barrier integrity and can limit neutrophil migration from circulation into alveolar spaces associated with increased lung permeability and/or barrier disruption. This study indicates that additional research is needed to evaluate RSPO2 in scenarios characterized by pulmonary edema or neutrophilia.
Collapse
Affiliation(s)
- S R Jackson
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - M F D M Costa
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - C F Pastore
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - G Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - A I Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - S Adams
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - G Palashikar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - K Quansah
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - K Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - D R Herbert
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - A E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA. .,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Brăescu R, Săvinescu SD, Tatarciuc MS, Zetu IN, Giuşcă SE, Căruntu ID. Pointing on the early stages of maxillary bone and tooth development - histological findings. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:167-174. [PMID: 32747908 PMCID: PMC7728135 DOI: 10.47162/rjme.61.1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
Although the morphological stages of tooth development, in parallel with maxillary bone construction, are known for decades, the intimate mechanisms of early development of the oral cavity structures and tooth's proper and associated tissues are still incompletely elucidated. Nowadays, the research in embryology was shifted from the morphological to the molecular and genetic approach. This new approach is accomplished by using in vivo and in vitro experimental studies performed on animal models and cell lines. The interest in the knowledge of these events at gene and molecular level is still current, aiming to sustain the progress in the endorsement of novel regenerative and restorative therapies. However, the morphological standpoint maintains its interest, because the extrapolation of the results of experimental studies in humans requires a strong confirmation. Within this context, our work aims to analyze the histological characteristics of the maxillary bone and integrated tooth germs during the early stages of embryonic development. The study group consisted in mandible fragments obtained by dissection of the cephalic extremities collected from fetuses aged from 10 to 24 weeks, after medical or spontaneous abortions. The tissue specimens were processed for the histological exam. The histoarchitectonic traits of the initial stages of mandibular bone tissue and tooth development were assessed. The results revealed the dynamics of the ossification stages, from stages of early-dispersed intramembranous ossification to the organization of the dental alveoli, incorporated step-by-step in the maxillary body, and the simultaneous presence of tooth germs with different sizes and shapes, in accordance with the development stage. Our study complements the existing data regarding the embryonic period, bringing an important contribution for the enlargement of existing morphological, visual information for maxillary bone and tooth development.
Collapse
Affiliation(s)
- Radu Brăescu
- Department of Morphofunctional Sciences I - Pathology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania; ,
| | | | | | | | | | | |
Collapse
|
19
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
20
|
Suzuki A, Yoshioka H, Summakia D, Desai NG, Jun G, Jia P, Loose DS, Ogata K, Gajera MV, Zhao Z, Iwata J. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse. BMC Genomics 2019; 20:852. [PMID: 31727022 PMCID: PMC6854646 DOI: 10.1186/s12864-019-6238-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cleft lip (CL), one of the most common congenital birth defects, shows considerable geographic and ethnic variation, with contribution of both genetic and environmental factors. Mouse genetic studies have identified several CL-associated genes. However, it remains elusive how these CL-associated genes are regulated and involved in CL. Environmental factors may regulate these genes at the post-transcriptional level through the regulation of non-coding microRNAs (miRNAs). In this study, we sought to identify miRNAs associated with CL in mice. Results Through a systematic literature review and a Mouse Genome Informatics (MGI) database search, we identified 55 genes that were associated with CL in mice. Subsequent bioinformatic analysis of these genes predicted that a total of 33 miRNAs target multiple CL-associated genes, with 20 CL-associated genes being potentially regulated by multiple miRNAs. To experimentally validate miRNA function in cell proliferation, we conducted cell proliferation/viability assays for the selected five candidate miRNAs (miR-124-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7d-5p). Overexpression of miR-124-3p, but not of the others, inhibited cell proliferation through suppression of CL-associated genes in cultured mouse embryonic lip mesenchymal cells (MELM cells) isolated from the developing mouse lip region. By contrast, miR-124-3p knockdown had no effect on MELM cell proliferation. This miRNA-gene regulatory mechanism was mostly conserved in O9–1 cells, an established cranial neural crest cell line. Expression of miR-124-3p was low in the maxillary processes at E10.5, when lip mesenchymal cells proliferate, whereas it was greatly increased at later developmental stages, suggesting that miR-124-3p expression is suppressed during the proliferation phase in normal palate development. Conclusions Our findings indicate that upregulated miR-124-3p inhibits cell proliferation in cultured lip cells through suppression of CL-associated genes. These results will have a significant impact, not only on our knowledge about lip morphogenesis, but also on the development of clinical approaches for the diagnosis and prevention of CL.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dima Summakia
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA
| | - Neha G Desai
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David S Loose
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona V Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA. .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
21
|
Nagano K. R-spondin signaling as a pivotal regulator of tissue development and homeostasis. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:80-87. [PMID: 31049116 PMCID: PMC6479641 DOI: 10.1016/j.jdsr.2019.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/04/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
R-spondins (Rspos) are cysteine-rich secreted glycoproteins which control a variety of cellular functions and are essential for embryonic development and tissue homeostasis. R-spondins (Rspo1 to 4) have high structural similarity and share 60% sequence homology. It has been shown that their cysteine-rich furin-like (FU) domain and the thrombospondin (TSP) type I repeat domain are essential for initiating downstream signaling cascades and therefore for their biological functions. Although numerous studies have unveiled their pivotal role as critical developmental regulators, the most important finding is that Rspos synergize Wnt signaling. Recent studies have identified novel receptors for Rspos, the Lgr receptors, closely related orphans of the leucin-rich repeat containing G protein-coupled receptors, and proposed that Rspos potentiate canonical Wnt signaling via these receptors. Given that Wnt signaling is one of the most important developmental signaling pathways that controls cell fate decisions and tissue development, growth and homeostasis, Rspos may function as key players for these processes as well as potential therapeutic targets. Here, I recapitulate the Wnt signaling and then outline the biological role of Rspos in tissue development and homeostasis and explore the possibility that Rspos may be used as therapeutic targets.
Collapse
Affiliation(s)
- Kenichi Nagano
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave, REB314, Boston, MA 02115, USA
| |
Collapse
|
22
|
Abstract
Jaw bones and teeth originate from the first pharyngeal arch and develop in closely related ways. Reciprocal epithelial-mesenchymal interactions are required for the early patterning and morphogenesis of both tissues. Here we review the cellular contribution during the development of the jaw bones and teeth. We also highlight signaling networks as well as transcription factors mediating tissue-tissue interactions that are essential for jaw bone and tooth development. Finally, we discuss the potential for stem cell mediated regenerative therapies to mitigate disorders and injuries that affect these organs.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
23
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
24
|
Manocha S, Farokhnia N, Khosropanah S, Bertol JW, Santiago J, Fakhouri WD. Systematic review of hormonal and genetic factors involved in the nonsyndromic disorders of the lower jaw. Dev Dyn 2019; 248:162-172. [PMID: 30576023 DOI: 10.1002/dvdy.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mandibular disorders are among the most common birth defects in humans, yet the etiological factors are largely unknown. Most of the neonates affected by mandibular abnormalities have a sequence of secondary anomalies, including airway obstruction and feeding problems, that reduce the quality of life. In the event of lacking corrective surgeries, patients with mandibular congenital disorders suffer from additional lifelong problems such as sleep apnea and temporomandibular disorders, among others. The goal of this systematic review is to gather evidence on hormonal and genetic factors that are involved in signaling pathways and interactions that are potentially associated with the nonsyndromic mandibular disorders. We found that members of FGF and BMP pathways, including FGF8/10, FGFR2/3, BMP2/4/7, BMPR1A, ACVR1, and ACVR2A/B, have a prominent number of gene-gene interactions among all identified genes in this review. Gene ontology of the 154 genes showed that the functional gene sets are involved in all aspects of cellular processes and organogenesis. Some of the genes identified by the genome-wide association studies of common mandibular disorders are involved in skeletal formation and growth retardation based on animal models, suggesting a potential direct role as genetic risk factors in the common complex jaw disorders. Developmental Dynamics 248:162-172, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srishti Manocha
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nadia Farokhnia
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sepideh Khosropanah
- Ostrow School of Dentistry, University of Southern California, California, Los Angeles
| | - Jessica W Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Joel Santiago
- Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, Jardim Brasil, Bauru, Sao Paulo, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
25
|
Hao Y, Tang S, Yuan Y, Liu R, Chen Q. Roles of FGF8 subfamily in embryogenesis and oral‑maxillofacial diseases (Review). Int J Oncol 2019; 54:797-806. [PMID: 30628659 DOI: 10.3892/ijo.2019.4677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) are diffusible polypeptides released by a variety of cell types. FGF8 subfamily members regulate embryonic development processes through controlling progenitor cell growth and differentiation, and are also functional in adults in tissue repair to maintain tissue homeostasis. FGF8 family members exhibit unique binding affinities with FGF receptors and tissue distribution patterns. Increasing evidence suggests that, by regulating multiple cellular signaling pathways, alterations in the FGF8 subfamily are involved in craniofacial development, odontogenesis, tongue development and salivary gland branching morphogenesis. Aberrant FGF signaling transduction, caused by mutations as well as abnormal expression or isoform splicing, plays an important role in the development of oral diseases. Targeting FGF8 subfamily members provides a new promising strategy for the treatment of oral diseases. The aim of this review was to summarize the aberrant regulations of FGF8 subfamily members and their potential implications in oral‑maxillofacial diseases.
Collapse
Affiliation(s)
- Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
26
|
Song G, Han M, Li Z, Gan X, Chen X, Yang J, Dong S, Yan M, Wan J, Wang Y, Huang Z, Yin Z, Zheng F. Deletion of Pr72 causes cardiac developmental defects in Zebrafish. PLoS One 2018; 13:e0206883. [PMID: 30481179 PMCID: PMC6258505 DOI: 10.1371/journal.pone.0206883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
The alpha regulator subunit B'' of protein phosphatase 2 (PPP2R3A), a regulatory subunit of protein phosphatase 2A (PP2A), was reported to present a special subcellular localization in cardiomyocytes and elevate in non-ischemia failing hearts. PPP2R3A has two transcriptions PR72 and PR130. PR72 acts as a negative regulator of the Wnt signaling cascade, while the Wnt signaling cascade plays a pivotal role in cardiac development. And PR130 was found to be involved in cardiac development of zebrafish in our previous study. Thus, to investigate the function of PR72 in heart, two stable pr72 knockout (KO) zebrafish lines were generated using Transcription Activator-Like Effector Nuclease (TALEN) technology. Homozygous pr72 KO fish struggled to survive to adulthood and exhibited cardiac developmental defects, including enlarged ventricular chambers, reduced cardiomyocytes and decreased cardiac function. And the defective sarcomere ultrastructure that affected mitochondria, I bands, Z lines, and intercalated disks was also observed. Furthermore, the abnormal heart looping was detected in mutants which could be rescued by injection with wild type pr72 mRNA. Additionally, it was found that Wnt effectors were elevated in mutants. Those indicated that deletion of pr72 in zebrafish interrupted cardiac development, probably through activation of the Wnt pathway.
Collapse
Affiliation(s)
- Guibo Song
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingjun Han
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhua Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuedong Gan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaowen Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Yang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sufang Dong
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Yan
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhuliang Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (FZ); (ZY)
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
- * E-mail: (FZ); (ZY)
| |
Collapse
|
27
|
Wang B, Yang F, Li R, Li X, Wu X, Sun Z, Zhai J, He Y, Qi J. Functional characterization of Cynoglossus semilaevis R-spondin2 and its role in muscle development during embryogenesis. Genes Genet Syst 2018; 93:181-190. [PMID: 30333384 DOI: 10.1266/ggs.18-00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
R-spondin2 (Rspo2) is a member of the R-spondin family, which plays important roles in cell proliferation, cell fate determination and organogenesis. Rspo2 exhibits important functions during embryonic development and muscle maintenance in adult human, mouse and Xenopus. In the present study, the tongue sole Cynoglossus semilaevis Rspo2 (CsRspo2) gene was isolated and characterized, and its role in muscle development during embryogenesis was studied. Our results showed that CsRspo2 expression was abundant during gastrulation and significantly high during somite formation, but then decreased markedly after hatching. CsRspo2 expression was high in brain and gill, moderate in heart, ovary and testis, and almost undetectable in muscle and other tissues. Moreover, the potential involvement of Rspo2 in muscle development was investigated. We found that overexpression of CsRspo2 mRNA in zebrafish embryos resulted in slow development and abnormal muscle formation at the embryonic stage. Our work provides a fundamental understanding of the structure and potential functions of CsRspo2 during muscle development.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Fan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Rui Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Xuemei Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Xiaolong Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Zheng Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | | | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| |
Collapse
|
28
|
Kim BB, Kim M, Park YH, Park JB. Dexamethasone Leads to Upregulation of BMP6 and ACHE Suppression of SMAD3 and ESR1 Genes in Human Mesenchymal Stem Cells. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-017-2306-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Weng M, Chen Z, Xiao Q, Li R, Chen Z. A review of FGF signaling in palate development. Biomed Pharmacother 2018; 103:240-247. [DOI: 10.1016/j.biopha.2018.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022] Open
|
30
|
Szenker-Ravi E, Altunoglu U, Leushacke M, Bosso-Lefèvre C, Khatoo M, Thi Tran H, Naert T, Noelanders R, Hajamohideen A, Beneteau C, de Sousa SB, Karaman B, Latypova X, Başaran S, Yücel EB, Tan TT, Vlaminck L, Nayak SS, Shukla A, Girisha KM, Le Caignec C, Soshnikova N, Uyguner ZO, Vleminckx K, Barker N, Kayserili H, Reversade B. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature 2018; 557:564-569. [PMID: 29769720 DOI: 10.1038/s41586-018-0118-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.
Collapse
Affiliation(s)
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Marc Leushacke
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Célia Bosso-Lefèvre
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Muznah Khatoo
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rivka Noelanders
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | | | - Sergio B de Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University Clinic of Genetics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Birsen Karaman
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Xenia Latypova
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Seher Başaran
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Esra Börklü Yücel
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Thong Teck Tan
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Lena Vlaminck
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Cédric Le Caignec
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,INSERM, UMR1238, Bone Sarcoma and Remodeling of Calcified Tissue, Université Bretagne Loire, Nantes, France
| | | | - Zehra Oya Uyguner
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Center for Medical Genetics, Ghent University, Ghent, Belgium.
| | - Nick Barker
- Institute of Medical Biology, A*STAR, Singapore, Singapore. .,Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan. .,Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey. .,Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore. .,Department of Paediatrics, National University of Singapore, Singapore, Singapore. .,Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey. .,Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore. .,Reproductive Biology Laboratory, Academic Medical Center (AMC), Amsterdam-Zuidoost, The Netherlands.
| |
Collapse
|
31
|
Suzuki A, Jun G, Abdallah N, Gajera M, Iwata J. Gene datasets associated with mouse cleft palate. Data Brief 2018; 18:655-673. [PMID: 29896534 PMCID: PMC5996166 DOI: 10.1016/j.dib.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
This article presents data on genes associated with cleft palate (CP), retrieved through both a full-text systematic review and a mouse genome informatics (MGI) database search. In order to group CP-associated genes according to function, pathway, biological process, and cellular component, the genes were analyzed using category enrichment bioinformatics tools, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). This approach provides invaluable opportunities for the identification of candidate pathways and genes in CP research.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nada Abdallah
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
32
|
Skronska-Wasek W, Gosens R, Königshoff M, Baarsma HA. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther 2018; 187:150-166. [PMID: 29458107 DOI: 10.1016/j.pharmthera.2018.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Hoeke Abele Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
Tavares ALP, Cox TC, Maxson RM, Ford HL, Clouthier DE. Negative regulation of endothelin signaling by SIX1 is required for proper maxillary development. Development 2017; 144:2021-2031. [PMID: 28455376 DOI: 10.1242/dev.145144] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Jaw morphogenesis is a complex event mediated by inductive signals that establish and maintain the distinct developmental domains required for formation of hinged jaws, the defining feature of gnathostomes. The mandibular portion of pharyngeal arch 1 is patterned dorsally by Jagged-Notch signaling and ventrally by endothelin receptor A (EDNRA) signaling. Loss of EDNRA signaling disrupts normal ventral gene expression, the result of which is homeotic transformation of the mandible into a maxilla-like structure. However, loss of Jagged-Notch signaling does not result in significant changes in maxillary development. Here we show in mouse that the transcription factor SIX1 regulates dorsal arch development not only by inducing dorsal Jag1 expression but also by inhibiting endothelin 1 (Edn1) expression in the pharyngeal endoderm of the dorsal arch, thus preventing dorsal EDNRA signaling. In the absence of SIX1, but not JAG1, aberrant EDNRA signaling in the dorsal domain results in partial duplication of the mandible. Together, our results illustrate that SIX1 is the central mediator of dorsal mandibular arch identity, thus ensuring separation of bone development between the upper and lower jaws.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy C Cox
- Department of Pediatrics (Craniofacial Medicine), University of Washington, and Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Robert M Maxson
- Department of Biochemistry and Molecular Biology and Norris Cancer Center, University of Southern California, Los Angeles, CA 87654, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
34
|
Boughner JC. Implications of Vertebrate Craniodental Evo-Devo for Human Oral Health. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:321-333. [PMID: 28251806 DOI: 10.1002/jez.b.22734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
Highly processed diets eaten by postindustrial modern human populations coincide with higher frequencies of third molar impaction, malocclusion, and temporomandibular joint disorders that affect millions of people worldwide each year. Current treatments address symptoms, not causes, because the multifactorial etiologies of these three concerns mask which factors incline certain people to malocclusion, impaction, and/or joint issues. Deep scientific curiosity about the origins of jaws and dentitions continues to yield rich insights about the developmental genetic mechanisms that underpin healthy craniodental morphogenesis and integration. Mounting evidence from evolution and development (Evo-Devo) studies suggests that function is another mechanism important to healthy craniodental integration and fit. Starting as early as weaning, softer diets and thus lower bite forces appear to relax or disrupt integration of oral tissues, alter development and growth, and catalyze impaction, malocclusion, and jaw joint disorders. How developing oral tissues respond to bite forces remains poorly understood, but biomechanical feedback seems to alter balances of local bone resorption and deposition at the tooth-bone interface as well as affect tempos and amounts of facial outgrowth. Also, behavioral changes in jaw function and parafunction contribute to degeneration and pain in joint articular cartilages and masticatory muscles. The developmental genetic contribution to craniodental misfits and disorders is undeniable but still unclear; however, at present, human diet and jaw function remain important and much more actionable clinical targets. New Evo-Devo studies are needed to explain how function interfaces with craniodental phenotypic plasticity, variation, and evolvability to yield a spectrum of healthy and mismatched dentitions and jaws.
Collapse
Affiliation(s)
- Julia C Boughner
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
35
|
Jiang J, Bertol JW, Fakhouri WD. Mandibular Explant Assay for Investigating Extrinsic Stimuli on Bone and Cartilage Development. Bio Protoc 2017; 7:e2641. [PMID: 29302607 DOI: 10.21769/bioprotoc.2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A major issue in developmental biology is to determine how embryonic tissues respond to molecular signals in a timely manner and given the position-restricted instructions during morphogenesis, of which Meckel's cartilage is a classical example. The ex-vivo explant model is a practical and convenient system that allows investigation of bone and cartilage responses to specific stimuli under a controlled manner that closely mimics the in vivo conditions. In this protocol, the explant model was applied to test whether Meckel's cartilage and surrounding tissues are responsive to the Endothelin1 (Edn1) signaling molecule and whether it would rescue the phenotype of genetic mutations. The system allows a high degree of manipulation in terms of the concentrations of exogenous compounds added to the explant, time points with regards to measuring mandibular development, and the method of application of exogenous molecules and teratogens.
Collapse
Affiliation(s)
- Jamie Jiang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica W Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
36
|
Zhu Y, Wang L, Yin F, Yu Y, Wang Y, Shepard MJ, Zhuang Z, Qin J. Probing impaired neurogenesis in human brain organoids exposed to alcohol. Integr Biol (Camb) 2017; 9:968-978. [DOI: 10.1039/c7ib00105c] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fetal brain is highly vulnerable to ethanol exposure, which can trigger various long-term neuronal disabilities and cognitive dysfunctions.
Collapse
Affiliation(s)
- Yujuan Zhu
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| | - Li Wang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- Key Laboratory of Separation Sciences for Analytical Chemistry
| | - Fangchao Yin
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| | - Yue Yu
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| | - Yaqing Wang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| | - Matthew J. Shepard
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
- National Institutes of Health
- Bethesda
- USA
- Department of Neurological Surgery
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
- National Institutes of Health
- Bethesda
- USA
| | - Jianhua Qin
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
37
|
Seelan RS, Mukhopadhyay P, Warner DR, Smolenkova IA, Pisano MM, Greene RM. Determinants of orofacial clefting II: Effects of 5-Aza-2'-deoxycytidine on gene methylation during development of the first branchial arch. Reprod Toxicol 2016; 67:100-110. [PMID: 27923600 DOI: 10.1016/j.reprotox.2016.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
Defects in development of the secondary palate, which arise from the embryonic first branchial arch (1-BA), can cause cleft palate (CP). Administration of 5-Aza-2'-deoxycytidine (AzaD), a demethylating agent, to pregnant mice on gestational day 9.5 resulted in complete penetrance of CP in fetuses. Several genes critical for normal palatogenesis were found to be upregulated in 1-BA, 12h after AzaD exposure. MethylCap-Seq (MCS) analysis identified several differentially methylated regions (DMRs) in DNA extracted from AzaD-exposed 1-BAs. Hypomethylated DMRs did not correlate with the upregulation of genes in AzaD-exposed 1-BAs. However, most DMRs were associated with endogenous retroviral elements. Expression analyses suggested that interferon signaling was activated in AzaD-exposed 1-BAs. Our data, thus, suggest that a 12-h in utero AzaD exposure demethylates and activates endogenous retroviral elements in the 1-BA, thereby triggering an interferon-mediated response. This may result in the dysregulation of key signaling pathways during palatogenesis, causing CP.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - Partha Mukhopadhyay
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - Dennis R Warner
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - Irina A Smolenkova
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - M Michele Pisano
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - Robert M Greene
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
38
|
Kalejaiye A, Giri N, Brewer CC, Zalewski CK, King KA, Adams CD, Rosenberg PS, Kim HJ, Alter BP. Otologic manifestations of Fanconi anemia and other inherited bone marrow failure syndromes. Pediatr Blood Cancer 2016; 63:2139-2145. [PMID: 27428025 DOI: 10.1002/pbc.26155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/07/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The inherited bone marrow failure syndromes (IBMFSs) are diverse disorders with syndrome-specific features; their otologic and audiologic manifestations have not been well described. Our objective was to characterize these in patients with Fanconi anemia (FA), dyskeratosis congenita (DC), Diamond-Blackfan anemia (DBA), and Shwachman-Diamond syndrome (SDS), and to determine the association between physical findings and hearing loss. METHODS Patients with an IBMFS underwent comprehensive clinical and laboratory evaluations and testing for syndrome-specific gene mutations. Hearing loss was measured by pure tone audiometry and otologic abnormalities by otomicroscopy. RESULTS Patients included 33 with FA, 37 with DC, 32 with DBA, and nine with SDS. Hearing loss was most frequent in patients with FA (45%) and DBA (14%). The most common type of hearing loss in FA was conductive (65%). Absent or hypoplastic radius, noted in 21% of the patients with FA, was associated with hearing loss in all cases. Otomicroscopy was abnormal in 66% of patients with FA. Characteristic ear abnormalities included small tympanic membrane (66%), malformed malleus (57%), aberrant tympanic bony island (48%), narrow external auditory canal (EAC) (32%), and abnormal course of chorda tympani (34%). Ear malformations were almost always associated with hearing loss. Hearing loss was rare in patients with DC and SDS. CONCLUSIONS FA is the major IBMFS with associated hearing loss, which is most commonly conductive. Radial hypoplasia or aplasia and characteristic congenital ear malformations are associated with hearing loss in patients with FA. Recognition of these syndrome-specific abnormalities should lead to earlier management of hearing loss.
Collapse
Affiliation(s)
| | - Neelam Giri
- National Cancer Institute, National Institutes of Health, Rockville, Maryland.
| | - Carmen C Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Christopher K Zalewski
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Kelly A King
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Charleen D Adams
- University of Washington School of Public Health, Seattle, Washington
| | - Philip S Rosenberg
- National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - H Jeffrey Kim
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.,Medstar Georgetown University Hospital, Washington, District of Columbia
| | - Blanche P Alter
- National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
39
|
Determinants of orofacial clefting I: Effects of 5-Aza-2'-deoxycytidine on cellular processes and gene expression during development of the first branchial arch. Reprod Toxicol 2016; 67:85-99. [PMID: 27915011 DOI: 10.1016/j.reprotox.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022]
Abstract
In this study, we identify gene targets and cellular events mediating the teratogenic action(s) of 5-Aza-2'-deoxycytidine (AzaD), an inhibitor of DNA methylation, on secondary palate development. Exposure of pregnant mice (on gestation day (GD) 9.5) to AzaD for 12h resulted in the complete penetrance of cleft palate (CP) in fetuses. Analysis of cells of the embryonic first branchial arch (1-BA), in fetuses exposed to AzaD, revealed: 1) significant alteration in expression of genes encoding several morphogenetic factors, cell cycle inhibitors and regulators of apoptosis; 2) a decrease in cell proliferation; and, 3) an increase in apoptosis. Pyrosequencing of selected genes, displaying pronounced differential expression in AzaD-exposed 1-BAs, failed to reveal significant alterations in CpG methylation levels in their putative promoters or gene bodies. CpG methylation analysis suggested that the effects of AzaD on gene expression were likely indirect.
Collapse
|
40
|
The role of R-spondins and their receptors in bone metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:93-100. [DOI: 10.1016/j.pbiomolbio.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
|
41
|
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev Biol 2016; 420:11-31. [PMID: 27713057 DOI: 10.1016/j.ydbio.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
During the development of the vertebrate feeding apparatus, a variety of complicated cellular and molecular processes participate in the formation and integration of individual skeletal elements. The molecular mechanisms regulating the formation of skeletal primordia and their development into specific morphological structures are tightly controlled by a set of interconnected signalling pathways. Some of these pathways, such as Bmp, Hedgehog, Notch and Wnt, are long known for their pivotal roles in craniofacial skeletogenesis. Studies addressing the functional details of their components and downstream targets, the mechanisms of their interactions with other signals as well as their potential roles in adaptive morphological divergence, are currently attracting considerable attention. An increasing number of signalling pathways that had previously been described in different biological contexts have been shown to be important in the regulation of jaw skeletal development and morphogenesis. In this review, I provide an overview of signalling pathways involved in trophic skeletogenesis emphasizing studies of the most species-rich group of vertebrates, the teleost fish, which through their evolutionary history have undergone repeated episodes of spectacular trophic diversification.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
| |
Collapse
|
42
|
Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles. Int J Mol Sci 2016; 17:ijms17040582. [PMID: 27104524 PMCID: PMC4849038 DOI: 10.3390/ijms17040582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
R-spondin proteins are novel Wnt/β-catenin agonists, which signal through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR) 4/5/6 and substantially enhance Wnt/β-catenin activity. R-spondins are reported to function in embryonic development. They also play important roles in stem cell functions in adult tissues, such as the intestine and mammary glands, which largely rely on Wnt/β-catenin signaling. However, in the skin epithelium and hair follicles, the information about R-spondins is deficient, although the expressions and functions of their receptors, LGR4/5/6, have already been studied in detail. In the present study, highly-enriched expression of the R-spondin family genes (Rspo1/2/3/4) in the hair follicle dermal papilla is revealed. Expression of Rspo1 in the dermal papilla is specifically and prominently upregulated before anagen entry, and exogenous recombinant R-spondin1 protein injection in mid-telogen leads to precocious anagen entry. Moreover, R-spondin1 activates Wnt/β-catenin signaling in cultured bulge stem cells in vitro, changing their fate determination without altering the cell proliferation. Our pioneering study uncovers a role of R-spondin1 in the activation of cultured hair follicle stem cells and the regulation of hair cycle progression, shedding new light on the governance of Wnt/β-catenin signaling in skin biology and providing helpful clues for future treatment of hair follicle disorders.
Collapse
|
43
|
Tavares ALP, Artinger KB, Clouthier DE. Regulating Craniofacial Development at the 3' End: MicroRNAs and Their Function in Facial Morphogenesis. Curr Top Dev Biol 2015; 115:335-75. [PMID: 26589932 DOI: 10.1016/bs.ctdb.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defects in craniofacial development represent a majority of observed human birth defects, occurring at a rate as high as 1:800 live births. These defects often occur due to changes in neural crest cell (NCC) patterning and development and can affect non-NCC-derived structures due to interactions between NCCs and the surrounding cell types. Proper craniofacial development requires an intricate array of gene expression networks that are tightly controlled spatiotemporally by a number of regulatory mechanisms. One of these mechanisms involves the action of microRNAs (miRNAs), a class of noncoding RNAs that repress gene expression by binding to miRNA recognition sequences typically located in the 3' UTR of target mRNAs. Recent evidence illustrates that miRNAs are crucial for vertebrate facial morphogenesis, with changes in miRNA expression leading to facial birth defects, including some in complex human syndromes such as 22q11 (DiGeorge Syndrome). In this review, we highlight the current understanding of miRNA biogenesis, the roles of miRNAs in overall craniofacial development, the impact that loss of miRNAs has on normal development and the requirement for miRNAs in the development of specific craniofacial structures, including teeth. From these studies, it is clear that miRNAs are essential for normal facial development and morphogenesis, and a potential key in establishing new paradigms for repair and regeneration of facial defects.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
44
|
Funato N, Nakamura M, Yanagisawa H. Molecular basis of cleft palates in mice. World J Biol Chem 2015; 6:121-138. [PMID: 26322171 PMCID: PMC4549757 DOI: 10.4331/wjbc.v6.i3.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis.
Collapse
|
45
|
Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121575. [PMID: 26339586 PMCID: PMC4538314 DOI: 10.1155/2015/121575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/03/2015] [Accepted: 04/10/2015] [Indexed: 01/27/2023]
Abstract
Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.
Collapse
|
46
|
Price KE, Haddad Y, Fakhouri WD. Analysis of the Relationship Between Micrognathia and Cleft Palate: A Systematic Review. Cleft Palate Craniofac J 2015; 53:e34-44. [PMID: 25658963 DOI: 10.1597/14-238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To gather data from relevant experimental and observational studies to determine the relationship between micrognathia and cleft palate. The goal is to raise awareness and motivate clinicians to consider the cause and effect relationship when confronted with patients with cleft palate, even if there is no clearly noticeable mandibular abnormality. Design Several electronic databases were systematically examined to find articles for this review, using search terms including "cleft palate," "micrognathia," "tongue," and "airway obstruction." PubMed was the source of all the articles chosen to be included. Exclusion criteria included case reports, articles focused on treatment options, and articles only tangentially related to cleft palate and/or micrognathia. Results A total of 930 articles were screened for relevance, and 82 articles were chosen for further analysis. Evidence gathered in this review includes a variety of etiological factors that are causative or associated with both micrognathia and cleft palate. Observational studies relating the two abnormalities are also included. Much of the included literature recognizes a cause-and-effect relationship between micrognathia and cleft palate. Conclusion On the basis of the published data, we suggest that micrognathia does induce cleft palate in humans and animals. With knowledge of this causative relationship, clinicians should consider the importance of gathering cephalometric data on the mandibles and tongues of patients presenting with isolated cleft palate to determine whether they have micrognathia as well. With more data, patterns may emerge that could give insight into the complex etiology of nonsyndromic cleft palate.
Collapse
|
47
|
Tatsumi Y, Takeda M, Matsuda M, Suzuki T, Yokoi H. TALEN-mediated mutagenesis in zebrafish reveals a role for r-spondin 2 in fin ray and vertebral development. FEBS Lett 2014; 588:4543-50. [PMID: 25448983 DOI: 10.1016/j.febslet.2014.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022]
Abstract
R-spondin (Rspo) encodes a multi-domain protein that modulates the Wnt-signaling pathway. Two distinct rspo2 zebrafish mutants were generated by TALEN-mediated mutagenesis: a null mutant, rspo2(null), lacking all functional domains, and a hypomorphic mutant, rspo2(tsp), lacking the two N-terminal domains. Mutants were analyzed mainly for abnormalities in the skeletal system. Fin ray skeletons were formed normally in the rspo2(tsp) mutants, but were absent from the rspo2(null) mutants. Hypoplasia of the neural/hemal arches and ribs was observed in both mutants. Thus, the two rspo2 mutants help to identify the functions of Rspo2 in skeletogenesis, as well as functional differences among multiple Rspo2 domains.
Collapse
Affiliation(s)
- Yoshiaki Tatsumi
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Moe Takeda
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Tohru Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | - Hayato Yokoi
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
48
|
Alexander C, Piloto S, Le Pabic P, Schilling TF. Wnt signaling interacts with bmp and edn1 to regulate dorsal-ventral patterning and growth of the craniofacial skeleton. PLoS Genet 2014; 10:e1004479. [PMID: 25058015 PMCID: PMC4109847 DOI: 10.1371/journal.pgen.1004479] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 05/16/2014] [Indexed: 11/25/2022] Open
Abstract
Craniofacial development requires signals from epithelia to pattern skeletogenic neural crest (NC) cells, such as the subdivision of each pharyngeal arch into distinct dorsal (D) and ventral (V) elements. Wnt signaling has been implicated in many aspects of NC and craniofacial development, but its roles in D-V arch patterning remain unclear. To address this we blocked Wnt signaling in zebrafish embryos in a temporally-controlled manner, using transgenics to overexpress a dominant negative Tcf3, (dntcf3), (Tg(hsp70I:tcf3-GFP), or the canonical Wnt inhibitor dickkopf1 (dkk1), (Tg(hsp70i:dkk1-GFP) after NC migration. In dntcf3 transgenics, NC cells in the ventral arches of heat-shocked embryos show reduced proliferation, expression of ventral patterning genes (hand2, dlx3b, dlx5a, msxe), and ventral cartilage differentiation (e.g. lower jaws). These D-V patterning defects resemble the phenotypes of zebrafish embryos lacking Bmp or Edn1 signaling, and overexpression of dntcf3 dramatically reduces expression of a subset of Bmp receptors in the arches. Addition of ectopic BMP (or EDN1) protein partially rescues ventral development and expression of dlx3b, dlx5a, and msxe in Wnt signaling-deficient embryos, but surprisingly does not rescue hand2 expression. Thus Wnt signaling provides ventralizing patterning cues to arch NC cells, in part through regulation of Bmp and Edn1 signaling, but independently regulates hand2. Similarly, heat-shocked dkk1+ embryos exhibit ventral arch reductions, but also have mandibular clefts at the ventral midline not seen in dntcf3+ embryos. Dkk1 is expressed in pharyngeal endoderm, and cell transplantation experiments reveal that dntcf3 must be overexpressed in pharyngeal endoderm to disrupt D-V arch patterning, suggesting that distinct endodermal roles for Wnts and Wnt antagonists pattern the developing skeleton. Craniofacial abnormalities are among the most common birth defects. Understanding the molecular mechanisms underlying craniofacial disorders is crucial for developing treatment strategies. Much of the craniofacial skeleton arises from specialized embryonic structures known as pharyngeal arches. Patterning of these arches requires precise spatial and temporal expression of multiple genes, which is coordinated between tissues by secreted signals. Wnts are secreted ligands expressed throughout the pharyngeal arches yet their role in craniofacial patterning remains unclear. In this study we examine the role of Wnts in craniofacial patterning using transgenic zebrafish to inhibit downstream Wnt signaling. We show that Wnt signaling deficient embryos have lower jaw specific defects, which strongly resembles loss-of-function phenotypes in both the Bmp and Edn1 signaling pathways. Through rescue experiments we find that Wnts are upstream regulators of both Bmp and Edn1 signaling. We thus have uncovered a crucial requirement for Wnt signaling in craniofacial patterning.
Collapse
Affiliation(s)
- Courtney Alexander
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Sarah Piloto
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Pierre Le Pabic
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Okano J, Udagawa J, Shiota K. Roles of retinoic acid signaling in normal and abnormal development of the palate and tongue. Congenit Anom (Kyoto) 2014; 54:69-76. [PMID: 24666225 DOI: 10.1111/cga.12049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/26/2013] [Indexed: 02/02/2023]
Abstract
Palatogenesis involves various developmental events such as growth, elevation, elongation and fusion of opposing palatal shelves. Extrinsic factors such as mouth opening and subsequent tongue withdrawal are also needed for the horizontal elevation of palate shelves. Failure of any of these steps can lead to cleft palate, one of the most common birth defects in humans. It has been shown that retinoic acid (RA) plays important roles during palate development, but excess RA causes cleft palate in fetuses of both rodents and humans. Thus, the coordinated regulation of retinoid metabolism is essential for normal palatogenesis. The endogenous RA level is determined by the balance of RA-synthesizing (retinaldehyde dehydrogenases: RALDHs) and RA-degrading enzymes (CYP26s). Cyp26b1 is a key player in normal palatogenesis. In this review, we discuss recent progress in the study of the pathogenesis of RA-induced cleft palate, with special reference to the regulation of endogenous RA levels by RA-degrading enzymes.
Collapse
Affiliation(s)
- Junko Okano
- Department of Anatomy and Cell Biology, Shiga University of Medical Science, Otsu
| | | | | |
Collapse
|
50
|
Kawasaki M, Porntaveetus T, Kawasaki K, Oommen S, Otsuka-Tanaka Y, Hishinuma M, Nomoto T, Maeda T, Takubo K, Suda T, Sharpe PT, Ohazama A. R-spondins/Lgrs expression in tooth development. Dev Dyn 2014; 243:844-51. [PMID: 24616052 DOI: 10.1002/dvdy.24124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tooth development is highly regulated in mammals and it is regulated by networks of signaling pathways (e. g. Tnf, Wnt, Shh, Fgf and Bmp) whose activities are controlled by the balance between ligands, activators, inhibitors and receptors. The members of the R-spondin family are known as activators of Wnt signaling, and Lgr4, Lgr5, and Lgr6 have been identified as receptors for R-spondins. The role of R-spondin/Lgr signaling in tooth development, however, remains unclear. RESULTS We first carried out comparative in situ hybridization analysis of R-spondins and Lgrs, and identified their dynamic spatio-temporal expression in murine odontogenesis. R-spondin2 expression was found both in tooth germs and the tooth-less region, the diastema. We further examined tooth development in R-spondin2 mutant mice, and although molars and incisors exhibited no significant abnormalities, supernumerary teeth were observed in the diastema. CONCLUSIONS R-spondin/Lgr signaling is thus involved in tooth development.
Collapse
Affiliation(s)
- Maiko Kawasaki
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, United Kingdom; Division of Bio-Prosthodontics, Department of Oral Health Science, Course for Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|