1
|
Ke M, Xu J, Ouyang Y, Chen J, Yuan D, Guo T. SUGT1 regulates the progression of ovarian cancer through the AKT/PI3K/mTOR signaling pathway. Transl Oncol 2024; 49:102088. [PMID: 39167956 PMCID: PMC11379980 DOI: 10.1016/j.tranon.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigates the expression and functional roles of SUGT1 in ovarian cancer, utilizing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Our analyses reveal that SUGT1 is significantly upregulated in ovarian cancer tissues compared to normal controls. We further explore the prognostic value of SUGT1, where elevated expression correlates with poorer patient outcomes, particularly in ovarian cancer. The functional implications of SUGT1 in cancer biology were assessed through in vitro and in vivo experiments. Gene Set Enrichment Analysis (GSEA) indicates a significant association between high SUGT1 expression and the activation of glycolytic pathways, suggesting a potential role in metabolic reprogramming. Inhibition of SUGT1 via siRNA in ovarian cancer cell lines results in decreased proliferation and increased apoptosis, along with reduced migration and invasion capabilities. Additionally, our study identifies the transcription factor ELF1 as a significant regulator of SUGT1 expression. Through promoter analysis and chromatin immunoprecipitation, we demonstrate that ELF1 directly binds to the SUGT1 promoter, enhancing its transcription. This regulatory mechanism underscores the importance of transcriptional control in cancer metabolism, providing insights into potential therapeutic targets. Our findings establish SUGT1 as a crucial player in the oncogenic processes of ovarian cancer, influencing both metabolic pathways and transcriptional regulation. This highlights its potential as a biomarker and therapeutic target in managing ovarian cancer.
Collapse
Affiliation(s)
- Miao Ke
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Xu
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ye Ouyang
- Graduate Management Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Junyu Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Donglan Yuan
- Department of Gynecology and Obstetrics, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Ting Guo
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
2
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
3
|
Hrizo SL, Eicher SL, Myers TD, McGrath I, Wodrich APK, Venkatesh H, Manjooran D, Swoger S, Gagnon K, Bruskin M, Lebedev MV, Zheng S, Vitantonio A, Kim S, Lamb ZJ, Vogt A, Ruzhnikov MRZ, Palladino MJ. Identification of protein quality control regulators using a Drosophila model of TPI deficiency. Neurobiol Dis 2021; 152:105299. [PMID: 33600953 PMCID: PMC7993632 DOI: 10.1016/j.nbd.2021.105299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Triosephosphate isomerase (TPI) deficiency (Df) is a rare recessive metabolic disorder that manifests as hemolytic anemia, locomotor impairment, and progressive neurodegeneration. Research suggests that TPI Df mutations, including the "common" TPIE105Dmutation, result in reduced TPI protein stability that appears to underlie disease pathogenesis. Drosophila with the recessive TPIsugarkill allele (a.k.a. sgk or M81T) exhibit progressive locomotor impairment, neuromuscular impairment and reduced longevity, modeling the human disorder. TPIsugarkill produces a functional protein that is degraded by the proteasome. Molecular chaperones, such as Hsp70 and Hsp90, have been shown to contribute to the regulation of TPIsugarkill degradation. In addition, stabilizing the mutant protein through chaperone modulation results in improved TPI deficiency phenotypes. To identify additional regulators of TPIsugarkill degradation, we performed a genome-wide RNAi screen that targeted known and predicted quality control proteins in the cell to identify novel factors that modulate TPIsugarkill turnover. Of the 430 proteins screened, 25 regulators of TPIsugarkill were identified. Interestingly, 10 proteins identified were novel, previously undescribed Drosophila proteins. Proteins involved in co-translational protein quality control and ribosome function were also isolated in the screen, suggesting that TPIsugarkill may undergo co-translational selection for polyubiquitination and proteasomal degradation as a nascent polypeptide. The proteins identified in this study may reveal novel pathways for the degradation of a functional, cytosolic protein by the ubiquitin proteasome system and define therapeutic pathways for TPI Df and other biomedically important diseases.
Collapse
Affiliation(s)
- Stacy L Hrizo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Biology, Slippery Rock University of Pennsylvania, Slippery Rock, PA 16057, USA
| | - Samantha L Eicher
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Tracey D Myers
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ian McGrath
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andrew P K Wodrich
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hemanth Venkatesh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel Manjooran
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sabrina Swoger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kim Gagnon
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Matthew Bruskin
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maria V Lebedev
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sherry Zheng
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ana Vitantonio
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sungyoun Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zachary J Lamb
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andreas Vogt
- Department of Computational & Systems Biology, Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maura R Z Ruzhnikov
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4
|
Allouch A, Di Primio C, Paoletti A, Lê-Bury G, Subra F, Quercioli V, Nardacci R, David A, Saïdi H, Cereseto A, Ojcius DM, Montagnac G, Niedergang F, Pancino G, Saez-Cirion A, Piacentini M, Gougeon ML, Kroemer G, Perfettini JL. SUGT1 controls susceptibility to HIV-1 infection by stabilizing microtubule plus-ends. Cell Death Differ 2020; 27:3243-3257. [PMID: 32514048 DOI: 10.1038/s41418-020-0573-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/15/2023] Open
Abstract
Understanding the viral-host cell interface during HIV-1 infection is a prerequisite for the development of innovative antiviral therapies. Here we show that the suppressor of G2 allele of skp1 (SUGT1) is a permissive factor for human immunodeficiency virus (HIV)-1 infection. Expression of SUGT1 increases in infected cells on human brain sections and in permissive host cells. We found that SUGT1 determines the permissiveness to infection of lymphocytes and macrophages by modulating the nuclear import of the viral genome. More importantly, SUGT1 stabilizes the microtubule plus-ends (+MTs) of host cells (through the modulation of microtubule acetylation and the formation of end-binding protein 1 (EB1) comets). This effect on microtubules favors HIV-1 retrograde trafficking and replication. SUGT1 depletion impairs the replication of HIV-1 patient primary isolates and mutant virus that is resistant to raltegravir antiretroviral agent. Altogether our results identify SUGT1 as a cellular factor involved in the post-entry steps of HIV-1 infection that may be targeted for new therapeutic approaches.
Collapse
Affiliation(s)
- Awatef Allouch
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, F-94805, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, F-94805, Villejuif, France.,Gustave Roussy Cancer Campus, F-94805, Villejuif, France.,Université Paris-Saclay, 114 Rue Edouard Vaillant, F-94805, Villejuif, France
| | - Cristina Di Primio
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Audrey Paoletti
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, F-94805, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, F-94805, Villejuif, France.,Gustave Roussy Cancer Campus, F-94805, Villejuif, France.,Université Paris-Saclay, 114 Rue Edouard Vaillant, F-94805, Villejuif, France
| | - Gabrielle Lê-Bury
- INSERM U1016, Institut Cochin, F-75013, Paris, France.,CNRS, UMR 8104, F-75013, Paris, France.,Université Paris Descartes, Université de Paris, F-75006, Paris, France
| | - Frédéric Subra
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94230, Cachan, France
| | - Valentina Quercioli
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Roberta Nardacci
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Via Portuense 292, I-00149, Rome, Italy
| | - Annie David
- Unité HIV, inflammation and Persistance, 28 Rue du Dr Roux, F-75015, Paris, France
| | - Héla Saïdi
- Antiviral Immunity, Biotherapy and Vaccine Unit, Institut Pasteur, 25 Rue du Dr Roux, F-75015, Paris, France
| | - Anna Cereseto
- Laboratory of Molecular Virology, Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo, I-38123, Trento, Italy
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, 94103, USA.,Université de Paris, F-75013, Paris, France
| | | | - Florence Niedergang
- INSERM U1016, Institut Cochin, F-75013, Paris, France.,CNRS, UMR 8104, F-75013, Paris, France.,Université Paris Descartes, Université de Paris, F-75006, Paris, France
| | - Gianfranco Pancino
- Unité HIV, inflammation and Persistance, 28 Rue du Dr Roux, F-75015, Paris, France
| | - Asier Saez-Cirion
- Unité HIV, inflammation and Persistance, 28 Rue du Dr Roux, F-75015, Paris, France
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Via Portuense 292, I-00149, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, I-00173, Rome, Italy
| | - Marie-Lise Gougeon
- Antiviral Immunity, Biotherapy and Vaccine Unit, Institut Pasteur, 25 Rue du Dr Roux, F-75015, Paris, France
| | - Guido Kroemer
- Université Paris Descartes, Université de Paris, F-75006, Paris, France.,INSERM U848, Gustave Roussy Cancer Campus, F-94805, Villejuif, France.,Metabolomics Platform, Gustave Roussy Cancer Campus, F-94805, Villejuif, France.,Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, F-75006, Paris, France.,Pôle de Biologie, Hôpital Européen Georges-Pompidou, AP-HP, F-75015, Paris, France.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, S-17176, Stockholm, Sweden
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, F-94805, Villejuif, France. .,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, F-94805, Villejuif, France. .,Gustave Roussy Cancer Campus, F-94805, Villejuif, France. .,Université Paris-Saclay, 114 Rue Edouard Vaillant, F-94805, Villejuif, France. .,Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, 94103, USA.
| |
Collapse
|
5
|
Link N, Chung H, Jolly A, Withers M, Tepe B, Arenkiel BR, Shah PS, Krogan NJ, Aydin H, Geckinli BB, Tos T, Isikay S, Tuysuz B, Mochida GH, Thomas AX, Clark RD, Mirzaa GM, Lupski JR, Bellen HJ. Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Dev Cell 2019; 51:713-729.e6. [PMID: 31735666 DOI: 10.1016/j.devcel.2019.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/19/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
The apical Par complex, which contains atypical protein kinase C (aPKC), Bazooka (Par-3), and Par-6, is required for establishing polarity during asymmetric division of neuroblasts in Drosophila, and its activity depends on L(2)gl. We show that loss of Ankle2, a protein associated with microcephaly in humans and known to interact with Zika protein NS4A, reduces brain volume in flies and impacts the function of the Par complex. Reducing Ankle2 levels disrupts endoplasmic reticulum (ER) and nuclear envelope morphology, releasing the kinase Ballchen-VRK1 into the cytosol. These defects are associated with reduced phosphorylation of aPKC, disruption of Par-complex localization, and spindle alignment defects. Importantly, removal of one copy of ballchen or l(2)gl suppresses Ankle2 mutant phenotypes and restores viability and brain size. Human mutational studies implicate the above-mentioned genes in microcephaly and motor neuron disease. We suggest that NS4A, ANKLE2, VRK1, and LLGL1 define a pathway impinging on asymmetric determinants of neural stem cell division.
Collapse
Affiliation(s)
- Nichole Link
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyunglok Chung
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; MD/PhD Medical Scientist Training Program and MHG Graduate program, BCM, Houston, TX 77030, USA
| | - Marjorie Withers
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Burak Tepe
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Priya S Shah
- Department of Chemical Engineering and Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hatip Aydin
- Center of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Bilgen B Geckinli
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Tos
- Department of Medical Genetics, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep, Turkey
| | - Beyhan Tuysuz
- Department of Pediatrics, Istanbul University-Cerrahpasa, Medical Faculty, Istanbul, Turkey
| | - Ganesh H Mochida
- Division of Genetics and Genomics, Department of Pediatrics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ajay X Thomas
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA; Section of Child Neurology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Robin D Clark
- Division of Medical Genetics, Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Department of Pediatrics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; MD/PhD Medical Scientist Training Program and MHG Graduate program, BCM, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Huang J, Wang H. Hsp83/Hsp90 Physically Associates with Insulin Receptor to Promote Neural Stem Cell Reactivation. Stem Cell Reports 2018; 11:883-896. [PMID: 30245208 PMCID: PMC6178561 DOI: 10.1016/j.stemcr.2018.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) have the ability to exit quiescence and reactivate in response to physiological stimuli. In the Drosophila brain, insulin receptor (InR)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway triggers NSC reactivation. However, intrinsic mechanisms that control the InR/PI3K/Akt pathway during reactivation remain unknown. Here, we have identified heat shock protein 83 (Hsp83/Hsp90), a molecular chaperone, as an intrinsic regulator of NSC reactivation. Hsp83 is both necessary and sufficient for NSC reactivation by promoting the activation of InR pathway in larval brains in the presence of dietary amino acids. Both Hsp83 and its co-chaperone Cdc37 physically associate with InR. Finally, reactivation defects observed in brains depleted of hsp83 were rescued by over-activation of the InR/PI3K/Akt pathway, suggesting that Hsp83 functions upstream of the InR/PI3K/Akt pathway during NSC reactivation. Given the conservation of Hsp83 and the InR pathway, our finding may provide insights into the molecular mechanisms underlying mammalian NSC reactivation. Hsp83/Hsp90 and its co-chaperone Cdc37 are required for NSC reactivation Hsp83 overexpression results in premature NSC reactivation on fed condition Hsp83 and Cdc37 physically associate with InR Hsp83 and Cdc37 are required for the activation of InR pathway in NSCs
Collapse
Affiliation(s)
- Jiawen Huang
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
7
|
Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease. Handb Exp Pharmacol 2017; 243:249-269. [PMID: 27787716 DOI: 10.1007/164_2016_82] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An important hallmark of cardiac failure is abnormal second messenger signaling due to impaired synthesis and catabolism of cyclic adenosine 3',5'- monophosphate (cAMP) and cyclic guanosine 3',5'- monophosphate (cGMP). Their dysregulation, altered intracellular targeting, and blunted responsiveness to stimulating pathways all contribute to pathological remodeling, muscle dysfunction, reduced cell survival and metabolism, and other abnormalities. Therapeutic enhancement of either cyclic nucleotides can be achieved by stimulating their synthesis and/or by suppressing members of the family of cyclic nucleotide phosphodiesterases (PDEs). The heart expresses seven of the eleven major PDE subtypes - PDE1, 2, 3, 4, 5, 8, and 9. Their differential control over cAMP and cGMP signaling in various cell types, including cardiomyocytes, provides intriguing therapeutic opportunities to counter heart disease. This review examines the roles of these PDEs in the failing and hypertrophied heart and summarizes experimental and clinical data that have explored the utility of targeted PDE inhibition.
Collapse
|
8
|
Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway. Curr Opin Cell Biol 2017; 48:1-9. [PMID: 28364663 DOI: 10.1016/j.ceb.2017.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
Abstract
Cell polarity regulation is critical for defining membrane domains required for the establishment and maintenance of the apical-basal axis in epithelial cells (apico-basal polarity), asymmetric cell divisions, planar organization of tissues (planar cell polarity), and the formation of the front-rear axis in cell migration (front-rear polarity). In the vinegar fly, Drosophila melanogaster, cell polarity regulators also interact with the Hippo tissue growth control signaling pathway. In this review we survey the recent Drosophila literature linking cell polarity regulators with the Hippo pathway in epithelial tissue growth, neural stem cell asymmetric divisions and in cell migration in physiological and tumorigenic settings.
Collapse
|
9
|
Abstract
In the fruit fly, Drosophila melanogaster, mono-allelic expression of AMPK-α, -β, and -γ yields a single heterotrimeric energy sensor that regulates cellular and whole-body energetic homeostasis. The genetic simplicity of Drosophila, with only a single gene for each subunit, makes the fruit fly an appealing organism for elucidating the effects of AMPK mutations on signaling pathways and phenotypes. In addition, Drosophila presents researchers with an opportunity to use straightforward genetic approaches to elucidate metabolic signaling pathways that contain a level of complexity similar to that observed in mammalian pathways. Just as in mammals, however, the regulatory realm of AMPK function extends beyond metabolic rates and lipid metabolism. Indeed, experiments using Drosophila have shown that AMPK may exert protective effects with regard to life span and neurodegeneration. This chapter addresses a few of the research areas in which Drosophila has been used to elucidate the physiological functions of AMPK. In doing so, this chapter provides a primer for basic Drosophila nomenclature, thereby eliminating a communication barrier that persists for AMPK researchers trained in mammalian genetics.
Collapse
Affiliation(s)
- Sarah E Sinnett
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, NC, USA.
| | - Jay E Brenman
- Department of Cell Biology and Physiology, Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Novosylna O, Jurewicz E, Pydiura N, Goral A, Filipek A, Negrutskii B, El'skaya A. Translation elongation factor eEF1A1 is a novel partner of a multifunctional protein Sgt1. Biochimie 2015; 119:137-45. [DOI: 10.1016/j.biochi.2015.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/31/2015] [Indexed: 11/29/2022]
|
11
|
Kim GE, Ross JL, Xie C, Su KN, Zaha VG, Wu X, Palmeri M, Ashraf M, Akar JG, Russell KS, Akar FG, Young LH. LKB1 deletion causes early changes in atrial channel expression and electrophysiology prior to atrial fibrillation. Cardiovasc Res 2015; 108:197-208. [PMID: 26378152 PMCID: PMC4571838 DOI: 10.1093/cvr/cvv212] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 12/19/2022] Open
Abstract
AIMS Liver kinase B1 (LKB1) is a protein kinase that activates the metabolic regulator AMP-activated protein kinase (AMPK) and other related kinases. Deletion of LKB1 in mice leads to cardiomyopathy and atrial fibrillation (AF). However, the specific role of the LKB1 pathway in early atrial biology remains unknown. Thus, we investigated whether LKB1 deletion altered atrial channel expression and electrophysiological function in a cardiomyocyte-specific knockout mouse model. METHODS AND RESULTS We performed a systematic comparison of αMHC-Cre LKB1(fl/fl) and littermate LKB1(fl/fl) male mice. This included analysis of gene expression, histology, and echocardiography, as well as cellular and tissue-level electrophysiology using patch-clamp recordings in vitro, optical mapping ex vivo, and ECG recordings in vivo. At postnatal day 1, atrial depolarization was prolonged, and Nav1.5 and Cx40 expression were markedly down-regulated in MHC-Cre LKB1(fl/fl) mice. Inward sodium current density was significantly decreased in MHC-Cre LKB1(fl/fl) neonatal atrial myocytes. Subsequently, additional alterations in atrial channel expression, atrial fibrosis, and spontaneous onset of AF developed by 2 weeks of age. In adult mice, abnormalities of interatrial conduction and bi-atrial electrical coupling were observed, likely promoting the perpetuation of AF. Mice with AMPK-inactivated hearts demonstrated modest overlap in channel expression with MHC-Cre LKB1(fl/fl) hearts, but retained normal structure, electrophysiological function and contractility. CONCLUSIONS Deletion of LKB1 causes early defects in atrial channel expression, action potential generation and conduction, which precede widespread atrial remodelling, fibrosis and AF. LKB1 is critical for normal atrial growth and electrophysiological function.
Collapse
Affiliation(s)
- Grace E Kim
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Jenna L Ross
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Chaoqin Xie
- Cardiovascular Research Center, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Kevin N Su
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Vlad G Zaha
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Xiaohong Wu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Monica Palmeri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mohammed Ashraf
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Joseph G Akar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Kerry S Russell
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Fadi G Akar
- Cardiovascular Research Center, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Lawrence H Young
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Gailite I, Aerne BL, Tapon N. Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system. Proc Natl Acad Sci U S A 2015; 112:E5169-78. [PMID: 26324895 PMCID: PMC4577147 DOI: 10.1073/pnas.1505512112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo (Hpo) pathway is a highly conserved tumor suppressor network that restricts developmental tissue growth and regulates stem cell proliferation and differentiation. At the heart of the Hpo pathway is the progrowth transcriptional coactivator Yorkie [Yki-Yes-activated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) in mammals]. Yki activity is restricted through phosphorylation by the Hpo/Warts core kinase cascade, but increasing evidence indicates that core kinase-independent modes of regulation also play an important role. Here, we examine Yki regulation in the Drosophila larval central nervous system and uncover a Hpo/Warts-independent function for the tumor suppressor kinase liver kinase B1 (LKB1) and its downstream effector, the energy sensor AMP-activated protein kinase (AMPK), in repressing Yki activity in the central brain/ventral nerve cord. Although the Hpo/Warts core cascade restrains Yki in the optic lobe, it is dispensable for Yki target gene repression in the late larval central brain/ventral nerve cord. Thus, we demonstrate a dramatically different wiring of Hpo signaling in neighboring cell populations of distinct developmental origins in the central nervous system.
Collapse
Affiliation(s)
- Ieva Gailite
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Birgit L Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| |
Collapse
|
13
|
Abstract
The exact mechanisms underlying the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV) are unclear. In the present study, we provide evidence that mTOR regulates the opening and closing of the lysosomal channel responsible for MLIV through phosphorylation. Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca2+ efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.
Collapse
|
14
|
The oncogenic role of the cochaperone Sgt1. Oncogenesis 2015; 4:e149. [PMID: 25985210 PMCID: PMC4450263 DOI: 10.1038/oncsis.2015.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Sgt1/Sugt1, a cochaperone of Hsp90, is involved in several cellular activities including Cullin E3 ubiqutin ligase activity. The high level of Sgt1 expression in colorectal and gastric tumors suggests that Sgt1 is involved in tumorigenesis. Here, we report that Sgt1 is overexpressed in colon, breast and lung tumor tissues and in Ewing sarcoma and rhabdomyosarcoma xenografts. We also found that Sgt1 heterozygous knockout resulted in suppressed Hras-mediated transformation in vitro and tumor formation in p53−/− mouse embryonic fibroblast cells and significantly increased survival of p53−/− mice. Moreover, depletion of Sgt1 inhibited the growth of Ewing sarcoma and rhabdomyosarcoma cells and destabilized EWS-FLI1 and PAX3-FOXO1 oncogenic fusion proteins, respectively, which are required for cellular growth. Our results suggest that Sgt1 contributes to cancer development by stabilizing oncoproteins and that Sgt1 is a potential therapeutic target.
Collapse
|
15
|
Swick LL, Kazgan N, Onyenwoke RU, Brenman JE. Isolation of AMP-activated protein kinase (AMPK) alleles required for neuronal maintenance in Drosophila melanogaster. Biol Open 2013; 2:1321-3. [PMID: 24337116 PMCID: PMC3863416 DOI: 10.1242/bio.20136775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The maintenance of energetic homeostasis in the face of limited available nutrients is a complex problem faced by all organisms. One important mechanism to maintain energetic homeostasis involves the activation of the energy sensor AMP-activated protein kinase (AMPK). AMPK is a cell-autonomous energy sensor that is highly sensitive to and regulated by the ATP to ADP and ATP to AMP ratios. However, the genetic analysis of AMPK signaling in vertebrates has been complicated by the existence of multiple redundant AMPK subunits. Here, we describe the identification of mutations in the single Drosophila melanogaster AMPK catalytic subunit (AMPKα) and their implications for neural maintenance and integrity. This article provides a citation replacement for previously published ampkα alleles, transgenes and neuronal phenotypes, which remain accurate; however, they were used in a previously published study that has subsequently been retracted (Mirouse et al., 2013).
Collapse
Affiliation(s)
- Lance L Swick
- Department of Cell Biology and Physiology, and Neuroscience Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
16
|
Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 2013; 13:172-83. [PMID: 23388617 DOI: 10.1038/nrc3461] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For decades, lower-model organisms such as Drosophila melanogaster have often provided the first glimpse into the mechanism of action of human cancer-related proteins, thus making a substantial contribution to elucidating the molecular basis of the disease. More recently, D. melanogaster strains that are engineered to recapitulate key aspects of specific types of human cancer have been paving the way for the future role of this 'workhorse' of biomedical research, helping to further investigate the process of malignancy, and serving as platforms for therapeutic drug discovery.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- IRB-Barcelona, c/Baldiri Reixac 10-12, Barcelona, Spain. gonzalez@ irbbarcelona.org
| |
Collapse
|
17
|
Lai SL, Miller MR, Robinson KJ, Doe CQ. The Snail family member Worniu is continuously required in neuroblasts to prevent Elav-induced premature differentiation. Dev Cell 2013; 23:849-57. [PMID: 23079601 DOI: 10.1016/j.devcel.2012.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/17/2012] [Accepted: 09/12/2012] [Indexed: 11/17/2022]
Abstract
Snail family transcription factors are best known for regulating epithelial-mesenchymal transition (EMT). The Drosophila Snail family member Worniu is specifically transcribed in neural progenitors (neuroblasts) throughout their lifespan, and worniu mutants show defects in neuroblast delamination (a form of EMT). However, the role of Worniu in neuroblasts beyond their formation is unknown. We performed RNA-seq on worniu mutant larval neuroblasts and observed reduced cell-cycle transcripts and increased neural differentiation transcripts. Consistent with these genomic data, worniu mutant neuroblasts showed a striking delay in prophase/metaphase transition by live imaging and increased levels of the conserved neuronal differentiation splicing factor Elav. Reducing Elav levels significantly suppressed the worniu mutant phenotype. We conclude that Worniu is continuously required in neuroblasts to maintain self-renewal by promoting cell-cycle progression and inhibiting premature differentiation.
Collapse
Affiliation(s)
- Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
18
|
Caenorhabditis elegans PIG-1/MELK acts in a conserved PAR-4/LKB1 polarity pathway to promote asymmetric neuroblast divisions. Genetics 2012; 193:897-909. [PMID: 23267054 DOI: 10.1534/genetics.112.148106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Asymmetric cell divisions produce daughter cells with distinct sizes and fates, a process important for generating cell diversity during development. Many Caenorhabditis elegans neuroblasts, including the posterior daughter of the Q cell (Q.p), divide to produce a larger neuron or neuronal precursor and a smaller cell that dies. These size and fate asymmetries require the gene pig-1, which encodes a protein orthologous to vertebrate MELK and belongs to the AMPK-related family of kinases. Members of this family can be phosphorylated and activated by the tumor suppressor kinase LKB1, a conserved polarity regulator of epithelial cells and neurons. In this study, we present evidence that the C. elegans orthologs of LKB1 (PAR-4) and its partners STRAD (STRD-1) and MO25 (MOP-25.2) regulate the asymmetry of the Q.p neuroblast division. We show that PAR-4 and STRD-1 act in the Q lineage and function genetically in the same pathway as PIG-1. A conserved threonine residue (T169) in the PIG-1 activation loop is essential for PIG-1 activity, consistent with the model that PAR-4 (or another PAR-4-regulated kinase) phosphorylates and activates PIG-1. We also demonstrate that PIG-1 localizes to centrosomes during cell divisions of the Q lineage, but this localization does not depend on T169 or PAR-4. We propose that a PAR-4-STRD-1 complex stimulates PIG-1 kinase activity to promote asymmetric neuroblast divisions and the generation of daughter cells with distinct fates. Changes in cell fate may underlie many of the abnormal behaviors exhibited by cells after loss of PAR-4 or LKB1.
Collapse
|
19
|
Eastburn DJ, Zegers MM, Mostov KE. Scrib regulates HGF-mediated epithelial morphogenesis and is stabilized by Sgt1-HSP90. J Cell Sci 2012; 125:4147-57. [PMID: 22623728 DOI: 10.1242/jcs.108670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Scribble was originally identified as a Drosophila protein that regulates epithelial polarity and formation of the basolateral surface. The mammalian orthologue, Scrib, is evolutionarily conserved, but does not appear to be necessary for apical-basolateral epithelial polarity. Instead, it is implicated in the regulation of cell survival, protein trafficking, adhesion and migration. A key issue is to understand the molecular pathway by which Scrib participates in these processes. We have investigated Scrib using a three-dimensional epithelial cell culture system. We show a novel association between the leucine-rich repeat domain of Scrib and the co-chaperone Sgt1 and demonstrate that these proteins are necessary for epithelial morphogenesis and tubulogenesis following hepatocyte growth factor (HGF) stimulation. The molecular chaperone HSP90 is also required for Sgt1 association with Scrib, and both Sgt1 and HSP90 are needed to ensure proper Scrib protein levels. Furthermore, reduced Scrib stability, following inhibition of Sgt1-HSP90, lowers the cellular abundance of the Scrib-βPix-PAK complex. Inhibition of any member of this complex, Scrib, βPix or PAK, is sufficient to block HGF-mediated epithelial morphogenesis. The identification of Scrib as an Sgt1-HSP90 client protein required for three-dimensional cell migration suggests that chaperone-mediated regulation of polarity protein stability and homeostasis is an unappreciated mechanism underlying dynamic rearrangements during morphogenesis.
Collapse
Affiliation(s)
- Dennis J Eastburn
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|