1
|
Valencia JE, Peter IS. Combinatorial regulatory states define cell fate diversity during embryogenesis. Nat Commun 2024; 15:6841. [PMID: 39122679 PMCID: PMC11315938 DOI: 10.1038/s41467-024-50822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cell fate specification occurs along invariant species-specific trajectories that define the animal body plan. This process is controlled by gene regulatory networks that regulate the expression of the limited set of transcription factors encoded in animal genomes. Here we globally assess the spatial expression of ~90% of expressed transcription factors during sea urchin development from embryo to larva to determine the activity of gene regulatory networks and their regulatory states during cell fate specification. We show that >200 embryonically expressed transcription factors together define >70 cell fates that recapitulate the morphological and functional organization of this organism. Most cell fate-specific regulatory states consist of ~15-40 transcription factors with similarity particularly among functionally related cell types regardless of developmental origin. Temporally, regulatory states change continuously during development, indicating that progressive changes in regulatory circuit activity determine cell fate specification. We conclude that the combinatorial expression of transcription factors provides molecular definitions that suffice for the unique specification of cell states in time and space during embryogenesis.
Collapse
Affiliation(s)
- Jonathan E Valencia
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Li J, Ma J, Chen Y, Chen S, Luo L, Cheng H. Biologically Relevant Laminin-511 Moderates the Derivation and Proliferation of Human Lens Epithelial Stem/Progenitor-Like Cells. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 39106056 PMCID: PMC11309036 DOI: 10.1167/iovs.65.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/06/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose The role of specific extracellular matrix (ECM) molecules in lens cell development and regeneration is poorly understood, as appropriate cellular models are lacking. Here, a laminin-based lens cell in vitro induction system was developed to study the role of laminin in human lens epithelial stem/progenitor cell (LES/PC) development. Methods The human embryonic stem cell-based lens induction system followed a three-stage protocol. The expression profile of laminins during lens induction was screened, and laminin-511 (LN511) was tested as a candidate substitute. LN511 induction system cellular and molecular features, including induction efficiency, transcription factor expression related to different lens development stages, ECM alterations, and Hippo/YAP signaling, were evaluated. Results LAMA5, LAMB1, and LAMC1 were highly expressed around the time of LES/PC derivation. We chose LN511 (product of LAMA5, LAMB1, and LAMC1) and found that it considerably enhanced lens cell induction efficiency, compared to that in Matrigel-coated culture, as more and larger lentoid bodies were detected. Notably, LES/PC induction efficiency improved by promoting lens specification-related transcription factor expression and cell proliferation. Transcriptome analysis revealed that compared to those with Matrigel, ECM accumulation and cell adhesion were downregulated in the LN511 system. Hippo/YAP signaling was hypoactive during LES/P-like cell generation, and small molecule inhibitors of YAP/TAZ activity upregulated LES/PC marker expression and promoted the efficiency of LES/P-like cell derivation. Conclusions The laminin isoform LN511 is a reliable substitute for the LES/P-like cell induction system, and LN511-YAP acted as efficient modulators of LES/PC derivation; this contributes to knowledge of the role of the ECM in human lens development.
Collapse
Affiliation(s)
- Jinyan Li
- Department of Ophthalmology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingyu Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yijia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hao Cheng
- Department of Ophthalmology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
4
|
Kondoh H. Multiple Cell Lineages Give Rise to a Cell Type. Results Probl Cell Differ 2024; 72:83-104. [PMID: 38509253 DOI: 10.1007/978-3-031-39027-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
It has long been assumed that a specific cell type arises following stepwise specification of cells corresponding to the branching of cell lineages. However, accumulating evidence indicates that multiple and even remote cell lineages can lead to the development of the same cells. Four examples giving different yet new insights will be discussed: skeletal muscle development from precursors with distinct initial histories of transcriptional regulation, lens cell development from remote lineages yet sharing basic transcription factors, blood cell development under intersectional pathways, and neural tissue development from cardiac precursors through the manipulation of just one component of epigenetic regulation. These examples provide flexible and nondogmatic perspectives on developmental cell regulation, fundamentally revising the old model relying on cell lineages.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
5
|
Li H, Gao L, Du J, Ma T, Li W, Ye Z, Li Z. Impacts of autophagy on the formation of organelle-free zone during the lens development. Mol Biol Rep 2023; 50:4551-4564. [PMID: 36877352 DOI: 10.1007/s11033-023-08323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
The thorough degeneration of organelles in the core of the lens is certainly a hallmark event during the lens development. Organelles degradation in the terminal differentiation process of lens fiber cells to form an organelle-free zone is critical for lens maturation and transparency. Several mechanisms have been proposed to expand our understanding of lens organelles degradation, including apoptotic pathways, the participation of ribozyme, proteolytic enzyme and phospholipase A and acyltransferase, and the newly discovered roles for autophagy. Autophagy is a lysosome-dependent degradation reaction during which the "useless" cellular components are degraded and recycled. These cellular components, such as incorrectly folded proteins, damaged organelles and other macromolecules, are first engulfed by the autophagosome before being further delivered to lysosomes for degradation. Although autophagy has been recognized involving in organelle degradation of the lens, the detailed functions remain to be discovered. Recent advances have revealed that autophagy not only plays a vital role in the intracellular quality control of the lens but is also involved in the degradation of nonnuclear organelles in the process of lens fiber cell differentiation. Herein, we first review the potential mechanisms of organelle-free zone formation, then discuss the roles of autophagy in intracellular quality control and cataract formation, and finally substantially summarize the potential involvement of autophagy in the development of organelle-free zone formation.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Jinlin Du
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Wen Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China. .,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Kuwata C, Maejima T, Hakamata S, Yahagi S, Matsuoka T, Tsuchiya Y. Disruption of Fetal Eye Development Caused by Insulin-induced Maternal Hypoglycemia in Rats. Reprod Toxicol 2022; 112:68-76. [PMID: 35738499 DOI: 10.1016/j.reprotox.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022]
Abstract
We previously revealed that insulin-induced severe and long-lasting maternal hypoglycemia in rats caused anophthalmia and microphthalmia in fetuses; however, it remained unclear whether hypoglycemia-induced eye anomalies were developmental retardation or disruption, and when and how they developed. Hence, we induced hypoglycemia in pregnant Sprague-Dawley rats by injecting insulin from Days 6 to 11 of pregnancy and performed periodical histopathological examination of fetal eyes from embryonic days (E)10 to 20. On E10, optic vesicle had developed normally both in the control and insulin-treated group; however, on E11, optic cup (OC) had developed in the control group but not in the insulin-treated group. On E12, neural retina (NR), retinal pigmented epithelium (RPE), lens, and presumptive cornea had been observed in the control group. In contrast, lens pit and OC with remaining space between RPE and NR had developed in the insulin-treated group. From E13 to E15, developmental disruption characterized by defects, hypoplasia, and degeneration in the retina, lens, and cornea was observed in the insulin-treated group, resulting in anophthalmia or microphthalmia on E20. Moreover, the expression of MITF and chx10, which are essential for early eye development by expressing in the presumptive retina and lens and regulating each other's expression level, was ectopic and suppressed on E11. In conclusion, insulin-induced maternal hypoglycemia caused developmental disruption, but not simple developmental retardation of fetal eyes, and its trigger might be a failure of presumptive retina and lens to interact on E11.
Collapse
Affiliation(s)
- Chiharu Kuwata
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan.
| | - Takanori Maejima
- Translational Science, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Shinobu Hakamata
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| | - Satoko Yahagi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| | - Toshiki Matsuoka
- Translational Science, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| |
Collapse
|
7
|
Lu J, An J, Wang J, Cao X, Cao Y, Huang C, Jiao S, Yan D, Lin X, Zhou X. Znhit1 Regulates p21Cip1 to Control Mouse Lens Differentiation. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35472217 PMCID: PMC9055562 DOI: 10.1167/iovs.63.4.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 01/22/2023] Open
Abstract
Purpose The transparency of the ocular lens is essential for refracting and focusing light onto the retina, and transparency is controlled by many factors and signaling pathways. Here we showed a critical role of chromatin remodeler zinc finger HIT-type containing 1 (Znhit1) in maintaining lens transparency. Methods To explore the roles of Znhit1 in lens development, the cre-loxp system was used to generate lens-specific Znhit1 knockout mice (Znhit1Mlr10-Cre; Znhit1 cKO). Morphological changes in mice lenses were examined using hematoxylin and eosin staining. RNA sequencing (RNA-seq) and assay for transposase accessible chromatin using sequencing (ATAC-seq) were applied to screen transcriptome changes. Immunofluorescence staining were performed to assess proteins distribution and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used for determining apoptosis. The mRNAs expression was examined by quantitative RT-PCR and proteins expression by Western blot. Results Lens-specific conditional knockout mice had a severe cataract, microphthalmia phenotype, and seriously abnormal lens fiber cells differentiation. Deletion of Znhit1 in the lens resulted in decreased cell proliferation and increased cell apoptosis of the lens epithelia. ATAC-seq showed that Znhit1 deficiency increased chromatin accessibility of cyclin-dependent kinase inhibitors, including p57Kip2 and p21Cip1, and upregulated the expression of these genes in mRNA and protein levels. And we also showed that loss of Znhit1 lead to lens fibrosis by upregulating the expression of p21Cip1. Conclusions Our findings suggested that Znhit1 is required for the survival of lens epithelial cells. The loss of Znhit1 leads to the overexpression of p21Cip1, further resulting in lens fibrosis, and impacted the establishment of lens transparency.
Collapse
Affiliation(s)
- Juan Lu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jianhong An
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jiawei Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xiaowen Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Chengjie Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Shiming Jiao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, China
| |
Collapse
|
8
|
Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, Zeng A, Wang S, Zhou X, Li H, Zhang Q, Mo Q, Long J, Lan F, Chen Y, Hu J. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun 2021; 12:3005. [PMID: 34021134 PMCID: PMC8139980 DOI: 10.1038/s41467-021-22782-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Defective cholesterol biosynthesis in eye lens cells is often associated with cataracts; however, how genes involved in cholesterol biosynthesis are regulated in lens cells remains unclear. Here, we show that Quaking (Qki) is required for the transcriptional activation of genes involved in cholesterol biosynthesis in the eye lens. At the transcriptome level, lens-specific Qki-deficient mice present downregulation of genes associated with the cholesterol biosynthesis pathway, resulting in a significant reduction of total cholesterol level in the eye lens. Mice with Qki depletion in lens epithelium display progressive accumulation of protein aggregates, eventually leading to cataracts. Notably, these defects are attenuated by topical sterol administration. Mechanistically, we demonstrate that Qki enhances cholesterol biosynthesis by recruiting Srebp2 and Pol II in the promoter regions of cholesterol biosynthesis genes. Supporting its function as a transcription co-activator, we show that Qki directly interacts with single-stranded DNA. In conclusion, we propose that Qki-Srebp2-mediated cholesterol biosynthesis is essential for maintaining the cholesterol level that protects lens from cataract development.
Collapse
Affiliation(s)
- Seula Shin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunfei Wang
- Clinical Science Division, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Takashi Shingu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailiang Zeng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Jilin, China
| | - Hongtao Li
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qinling Mo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
9
|
Maddala R, Gao J, Mathias RT, Lewis TR, Arshavsky VY, Levine A, Backer JM, Bresnick AR, Rao PV. Absence of S100A4 in the mouse lens induces an aberrant retina-specific differentiation program and cataract. Sci Rep 2021; 11:2203. [PMID: 33500475 PMCID: PMC7838418 DOI: 10.1038/s41598-021-81611-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
S100A4, a member of the S100 family of multifunctional calcium-binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in differentiating fiber cells of the ocular lens and that S100A4 (-/-) knockout mice develop late-onset cortical cataracts. Transcriptome profiling of lenses from S100A4 (-/-) mice revealed a robust increase in the expression of multiple photoreceptor- and Müller glia-specific genes, as well as the olfactory sensory neuron-specific gene, S100A5. This aberrant transcriptional profile is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of differentially expressed genes in S100A4 (-/-) lenses identified Crx and Nrl transcription factors as the most significant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high-density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this finding, we further documented that S100A4 (-/-) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together, our findings suggest that S100A4 suppresses the expression of retinal genes during lens differentiation plausibly via a mechanism involving changes in histone methylation.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony-Brook, NY, USA
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony-Brook, NY, USA
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Adriana Levine
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Peter IS. The function of architecture and logic in developmental gene regulatory networks. Curr Top Dev Biol 2020; 139:267-295. [PMID: 32450963 DOI: 10.1016/bs.ctdb.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An important contribution of systems biology is the insight that biological systems depend on the function of molecular interactions and not just on individual molecules. System level mechanisms are particularly important in the development of animals and plants which depends not just on transcription factors and signaling molecules, but also on regulatory circuits and gene regulatory networks (GRNs). However, since GRNs consist of transcription factors, it can be challenging to assess the function of regulatory circuits independently of the function of regulatory factors. The comparison of different GRNs offers a way to do so and leads to several observations. First, similar regulatory circuits operate in various developmental contexts and in different species, and frequently, these circuits are associated with similar developmental functions. Second, given regulatory circuits are often used at particular positions within the GRN hierarchy. Third, in some GRNs, regulatory circuits are organized in a particular order in respect to each other. And fourth, the evolution of GRNs occurs not just by co-option of regulatory genes but also by rewiring of regulatory linkages between conserved regulatory genes, indicating that the organization of interactions is important. Thus, even though in most instances the function of regulatory circuits remains to be discovered, it becomes evident that the architecture and logic of GRNs are functionally important for the control of genome activity and for the specification of the body plan.
Collapse
Affiliation(s)
- Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
11
|
Viet J, Reboutier D, Hardy S, Lachke SA, Paillard L, Gautier-Courteille C. Modeling ocular lens disease in Xenopus. Dev Dyn 2020; 249:610-621. [PMID: 31872467 PMCID: PMC7759097 DOI: 10.1002/dvdy.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ocular lens clouding is termed as cataract, which depending on the onset, is classified as congenital or age-related. Developing new cataract treatments requires new models. Thus far, Xenopus embryos have not been evaluated as a system for studying cataract. RESULTS We characterized the developmental process of lens formation in Xenopus laevis tailbuds and tadpoles, and we disrupted the orthologues of three mammalian cataract-linked genes in F0 by CRISPR/Cas9. We assessed the consequences of gene inactivation by combining external examination with histochemical analyses and functional vision assays. Inactivating the key metazoan eye development transcription factor gene pax6 produces a strong eye phenotype including an absence of eye tissue. Inactivating the genes for gap-junction protein and a nuclease, gja8 and dnase2b, produces lens defects that share several features of human cataracts, including impaired vision acuity, nuclei retention in lens fiber cells, and actin fibers disorganization. We tested the potential improvement of the visual acuity of gja8 crispant tadpoles upon treatment with the molecular chaperone 4-phenylbutyrate. CONCLUSION Xenopus is a valuable model organism to understand the molecular pathology of congenital eye defects, including cataracts, and to screen molecules with a potential to prevent or reverse cataracts.
Collapse
Affiliation(s)
- Justine Viet
- Univ Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France
| | | | - Serge Hardy
- Univ Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France
| | | |
Collapse
|
12
|
Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. PLoS Biol 2017; 15:e2004045. [PMID: 29049289 PMCID: PMC5663519 DOI: 10.1371/journal.pbio.2004045] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 10/31/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022] Open
Abstract
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. Vertebrate embryo germ layers become progressively regionalized by evolutionarily conserved molecular processes. Catching the early steps of this dynamic spatial cell diversification at the scale of the transcriptome was challenging, even with the advent of efficient RNA sequencing. We have microdissected complementary and defined areas of a single germ layer, the developing ectoderm, and explored how the transcriptome changes over time and space in the ectoderm during the differentiation of frog epidermis, neural plate, and neural crest. We have created EctoMap, a searchable interface using these regional transcriptomes, to predict the expression of the 31 thousand genes expressed in neurulae and their networks of co-expression, predictive of functional relationships. Through several examples, we illustrate how these data provide insights in development, cancer, evolution and stem cell biology.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
| | - Sofía Medina-Ruiz
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Caroline Borday
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Elsa Bernard
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Jean-Philippe Vert
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Richard M. Harland
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne H. Monsoro-Burq
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T. Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Dev Biol 2017; 426:301-324. [DOI: 10.1016/j.ydbio.2016.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/27/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
|
14
|
Krishnan J, Rohner N. Cavefish and the basis for eye loss. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150487. [PMID: 27994128 PMCID: PMC5182419 DOI: 10.1098/rstb.2015.0487] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Disruption of Rest Leads to the Early Onset of Cataracts with the Aberrant Terminal Differentiation of Lens Fiber Cells. PLoS One 2016; 11:e0163042. [PMID: 27631609 PMCID: PMC5025245 DOI: 10.1371/journal.pone.0163042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
REST (RE1-silencing transcription factor, also called Nrsf) is involved in the maintenance of the undifferentiated state of neuronal stem/progenitor cells in vitro by preventing precocious expression of neuronal genes. REST expression was then decreased in developing neurons to down-regulate neuronal genes which allow their maturation. However, the function of REST during neurogenesis in vivo remains to be elucidated because of the early embryonic lethal phenotype of conventional Rest knockout mice. In order to investigate the role of REST in ocular tissues, we generated and examined the mice evoking genetic ablation to Rest specifically to neural tissues including ocular tissue. We used a Sox1-Cre allele to excise the floxed Rest gene in the early neural tissues including the lens and retinal primordia. The resulting Rest conditional knockout (CKO) and co cntrol mice were used in comparative morphological, histological, and gene expression analyses. Rest CKO mice had an abnormal lens morphology after birth. The proliferation of lens epithelial cells was likely to be slightly reduced, and vacuoles formed without a visible increase in apoptotic cells. Although the aberrant expression of late onset cataract marker proteins was not detected, the expression of Notch signaling-related genes including a previously identified REST-target gene was up-regulated around birth, and this was followed by the down-regulated expression of lens fiber regulators such as c-Maf and Prox1. Rest CKO induces a unique cataract phenotype just after birth. Augmented Notch signaling and the down-regulated expression of lens fiber regulator genes may be responsible for this phenotype. Our results highlight the significance of REST function in lens fiber formation, which is necessary for maintaining an intact lens structure.
Collapse
|
16
|
Koenig KM, Sun P, Meyer E, Gross JM. Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii. Development 2016; 143:3168-81. [PMID: 27510978 DOI: 10.1242/dev.134254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Photoreception is a ubiquitous sensory ability found across the Metazoa, and photoreceptive organs are intricate and diverse in their structure. Although the morphology of the compound eye in Drosophila and the single-chambered eye in vertebrates have elaborated independently, the amount of conservation within the 'eye' gene regulatory network remains controversial, with few taxa studied. To better understand the evolution of photoreceptive organs, we established the cephalopod Doryteuthis pealeii as a lophotrochozoan model for eye development. Utilizing histological, transcriptomic and molecular assays, we characterize eye formation in Doryteuthis pealeii Through lineage tracing and gene expression analyses, we demonstrate that cells expressing Pax and Six genes incorporate into the lens, cornea and iris, and the eye placode is the sole source of retinal tissue. Functional assays demonstrate that Notch signaling is required for photoreceptor cell differentiation and retinal organization. This comparative approach places the canon of eye research in traditional models into perspective, highlighting complexity as a result of both conserved and convergent mechanisms.
Collapse
Affiliation(s)
- Kristen M Koenig
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Sun
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Eli Meyer
- Department of Zoology, Oregon State University, Cordley Hall 3029, Corvallis, OR 97331, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
17
|
Anand D, Lachke SA. Systems biology of lens development: A paradigm for disease gene discovery in the eye. Exp Eye Res 2016; 156:22-33. [PMID: 26992779 DOI: 10.1016/j.exer.2016.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
Over the past several decades, the biology of the developing lens has been investigated using molecular genetics-based approaches in various vertebrate model systems. These efforts, involving target gene knockouts or knockdowns, have led to major advances in our understanding of lens morphogenesis and the pathological basis of cataracts, as well as of other lens related eye defects. In particular, we now have a functional understanding of regulators such as Pax6, Six3, Sox2, Oct1 (Pou2f1), Meis1, Pnox1, Zeb2 (Sip1), Mab21l1, Foxe3, Tfap2a (Ap2-alpha), Pitx3, Sox11, Prox1, Sox1, c-Maf, Mafg, Mafk, Hsf4, Fgfrs, Bmp7, and Tdrd7 in this tissue. However, whether these individual regulators interact or their targets overlap, and the significance of such interactions during lens morphogenesis, is not well defined. The arrival of high-throughput approaches for gene expression profiling (microarrays, RNA-sequencing (RNA-seq), etc.), which can be coupled with chromatin immunoprecipitation (ChIP) or RNA immunoprecipitation (RIP) assays, along with improved computational resources and publically available datasets (e.g. those containing comprehensive protein-protein, protein-DNA information), presents new opportunities to advance our understanding of the lens tissue on a global systems level. Such systems-level knowledge will lead to the derivation of the underlying lens gene regulatory network (GRN), defined as a circuit map of the regulator-target interactions functional in lens development, which can be applied to expedite cataract gene discovery. In this review, we cover the various systems-level approaches such as microarrays, RNA-seq, and ChIP that are already being applied to lens studies and discuss strategies for assembling and interpreting these vast amounts of high-throughput information for effective dispersion to the scientific community. In particular, we discuss strategies for effective interpretation of this new information in the context of the rich knowledge obtained through the application of traditional single-gene focused experiments on the lens. Finally, we discuss our vision for integrating these diverse high-throughput datasets in a single web-based user-friendly tool iSyTE (integrated Systems Tool for Eye gene discovery) - a resource that is already proving effective in the identification and characterization of genes linked to lens development and cataract. We anticipate that application of a similar approach to other ocular tissues such as the retina and the cornea, and even other organ systems, will significantly impact disease gene discovery.
Collapse
Affiliation(s)
- Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
18
|
Jarrin M, Young L, Wu W, Girkin JM, Quinlan RA. In vivo, Ex Vivo, and In Vitro Approaches to Study Intermediate Filaments in the Eye Lens. Methods Enzymol 2016; 568:581-611. [DOI: 10.1016/bs.mie.2015.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
|
20
|
Arya P, Rainey MA, Bhattacharyya S, Mohapatra BC, George M, Kuracha MR, Storck MD, Band V, Govindarajan V, Band H. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol 2015; 408:41-55. [PMID: 26455409 DOI: 10.1016/j.ydbio.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/01/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis.
Collapse
Affiliation(s)
- Priyanka Arya
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Mark A Rainey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Sohinee Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center Omaha, NE 68198-5900, USA.
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center Omaha, NE 68198-5870, USA.
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Murali R Kuracha
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA.
| | - Venkatesh Govindarajan
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Hamid Band
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center Omaha, NE 68198-5900, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA.
| |
Collapse
|
21
|
Chauvigné F, Zapater C, Stavang JA, Taranger GL, Cerdà J, Finn RN. The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB J 2015; 29:2172-84. [PMID: 25667219 PMCID: PMC4423293 DOI: 10.1096/fj.14-267625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
Water homeostasis and the structural integrity of the vertebrate lens is partially mediated by AQP0 channels. Emerging evidence indicates that external pH may be involved in channel gating. Here we show that a tetraploid teleost, the Atlantic salmon, retains 4 aqp0 genes (aqp0a1, -0a2, -0b1, and -0b2), which are highly, but not exclusively, expressed in the lens. Functional characterization reveals that, although each paralog permeates water efficiently, the permeability is respectively shifted to the neutral, alkaline, or acidic pH in Aqp0a1, -0a2, and -0b1, whereas that of Aqp0b2 is not regulated by external pH. Mutagenesis studies demonstrate that Ser(38), His(39), and His(40) residues in the extracellular transmembrane domain of α-helix 2 facing the water pore are critical for the pH modulation of water transport. To validate these findings, we show that both zebrafish Aqp0a and -0b are functional water channels with respective pH sensitivities toward alkaline or acid pH ranges and that an N-terminal allelic variant (Ser(19)) of Aqp0b exists that abolishes water transport in Xenopus laevis oocytes. The data suggest that the alkaline pH sensitivity is a conserved trait in teleost Aqp0 a-type channels, whereas mammalian AQP0 and some teleost Aqp0 b-type channels display an acidic pH permeation preference.
Collapse
Affiliation(s)
- François Chauvigné
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Cinta Zapater
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Jon Anders Stavang
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Geir Lasse Taranger
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Joan Cerdà
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Roderick Nigel Finn
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
22
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
23
|
Khaleel SS, Andrews EH, Ung M, DiRenzo J, Cheng C. E2F4 regulatory program predicts patient survival prognosis in breast cancer. Breast Cancer Res 2014; 16:486. [PMID: 25440089 PMCID: PMC4303196 DOI: 10.1186/s13058-014-0486-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Genetic and molecular signatures have been incorporated into cancer prognosis prediction and treatment decisions with good success over the past decade. Clinically, these signatures are usually used in early-stage cancers to evaluate whether they require adjuvant therapy following surgical resection. A molecular signature that is prognostic across more clinical contexts would be a useful addition to current signatures. METHODS We defined a signature for the ubiquitous tissue factor, E2F4, based on its shared target genes in multiple tissues. These target genes were identified by chromatin immunoprecipitation sequencing (ChIP-seq) experiments using a probabilistic method. We then computationally calculated the regulatory activity score (RAS) of E2F4 in cancer tissues, and examined how E2F4 RAS correlates with patient survival. RESULTS Genes in our E2F4 signature were 21-fold more likely to be correlated with breast cancer patient survival time compared to randomly selected genes. Using eight independent breast cancer datasets containing over 1,900 unique samples, we stratified patients into low and high E2F4 RAS groups. E2F4 activity stratification was highly predictive of patient outcome, and our results remained robust even when controlling for many factors including patient age, tumor size, grade, estrogen receptor (ER) status, lymph node (LN) status, whether the patient received adjuvant therapy, and the patient's other prognostic indices such as Adjuvant! and the Nottingham Prognostic Index scores. Furthermore, the fractions of samples with positive E2F4 RAS vary in different intrinsic breast cancer subtypes, consistent with the different survival profiles of these subtypes. CONCLUSIONS We defined a prognostic signature, the E2F4 regulatory activity score, and showed it to be significantly predictive of patient outcome in breast cancer regardless of treatment status and the states of many other clinicopathological variables. It can be used in conjunction with other breast cancer classification methods such as Oncotype DX to improve clinical outcome prediction.
Collapse
Affiliation(s)
- Sari S Khaleel
- Department of Genetics, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA.
| | - Erik H Andrews
- Department of Genetics, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA.
| | - Matthew Ung
- Department of Genetics, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA.
| | - James DiRenzo
- Department of Pharmacology & Toxicology, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA.
| | - Chao Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA.
- Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03766, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03766, USA.
| |
Collapse
|
24
|
McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, Hinaux H, Jeffery WR, Keene A, Ma L, Minx P, Murphy D, O’Quin KE, Rétaux S, Rohner N, Searle SMJ, Stahl BA, Tabin C, Volff JN, Yoshizawa M, Warren WC. The cavefish genome reveals candidate genes for eye loss. Nat Commun 2014; 5:5307. [PMID: 25329095 PMCID: PMC4218959 DOI: 10.1038/ncomms6307] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction.
Collapse
Affiliation(s)
- Suzanne E. McGaugh
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 711B Rieveschl Hall, 312 College Drive, Cincinnati, Ohio 45221, USA
| | - Bronwen Aken
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Maryline Blin
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Richard Borowsky
- Department of Biology, New York University, New York, New York 10003-6688, USA
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5242, UCBL, 46 allée d’Italie, Lyon F-69364, France
| | - Hélène Hinaux
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - William R. Jeffery
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Alex Keene
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Patrick Minx
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| | - Daniel Murphy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kelly E. O’Quin
- Department of Biology, Centre College, 600 West Walnut St, Danville, Kentucky 40422, USA
| | - Sylvie Rétaux
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Nicolas Rohner
- Harvard Medical School Department of Genetics, 77 Avenue Louis Pasteur; NRB 360, Boston, Massachusetts 02115, USA
| | - Steve M. J. Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 711B Rieveschl Hall, 312 College Drive, Cincinnati, Ohio 45221, USA
| | - Cliff Tabin
- Harvard Medical School Department of Genetics, 77 Avenue Louis Pasteur; NRB 360, Boston, Massachusetts 02115, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5242, UCBL, 46 allée d’Italie, Lyon F-69364, France
| | - Masato Yoshizawa
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Wesley C. Warren
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| |
Collapse
|
25
|
Zhang Y, Zhang X, Lu H. Aberrant activation of p53 due to loss of MDM2 or MDMX causes early lens dysmorphogenesis. Dev Biol 2014; 396:19-30. [PMID: 25263199 DOI: 10.1016/j.ydbio.2014.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/28/2022]
Abstract
Although forming a heterodimer or heterooligomer is essential for MDM2 and MDMX to fully control p53 during early embryogenesis, deletion of either MDM2 or MDMX in specific tissues using the loxp-Cre system reveals phenotypic diversity during organ morphogenesis, which can be completely rescued by loss of p53, suggesting the spatiotemporal independence and specificity of the regulation of p53 by MDM2 and MDMX. In this study, we investigated the role of the MDM2-MDMX-p53 pathway in the developing lens that is a relatively independent region integrating cell proliferation, differentiation and apoptosis. Using the mice expressing Cre recombinase specifically in the lens epithelial cells (LECs) beginning at E9.5, we demonstrated that deletion of either MDM2 or MDMX induces apoptosis of LEC and reduces cell proliferation, resulting in lens developmental defect that finally progresses into aphakia. Specifically, the lens defect caused by MDM2 deletion was evident at E10, occurring earlier than that caused by MDMX deletion. These lens defects were completely rescued by loss of two alleles of p53, but not one allele of p53. These results demonstrate that both MDM2 and MDMX are required for monitoring p53 activity during lens development, and they may function independently or synergistically to control p53 and maintain normal lens morphogenesis.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology & Cell Biology, Columbia University, 635 W. 165th Street, EI902A, New York, NY 10032, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
26
|
Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. Dev Biol 2014; 395:317-330. [PMID: 25224223 DOI: 10.1016/j.ydbio.2014.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/20/2014] [Accepted: 09/05/2014] [Indexed: 01/23/2023]
Abstract
The retinal anterior homeobox (rax) gene encodes a transcription factor necessary for vertebrate eye development. rax transcription is initiated at the end of gastrulation in Xenopus, and is a key part of the regulatory network specifying anterior neural plate and retina. We describe here a Xenopus tropicalis rax mutant, the first mutant analyzed in detail from a reverse genetic screen. As in other vertebrates, this nonsense mutation results in eyeless animals, and is lethal peri-metamorphosis. Tissue normally fated to form retina in these mutants instead forms tissue with characteristics of diencephalon and telencephalon. This implies that a key role of rax, in addition to defining the eye field, is in preventing alternative forebrain identities. Our data highlight that brain and retina regions are not determined by the mid-gastrula stage but are by the neural plate stage. An RNA-Seq analysis and in situ hybridization assays for early gene expression in the mutant revealed that several key eye field transcription factors (e.g. pax6, lhx2 and six6) are not dependent on rax activity through neurulation. However, these analyses identified other genes either up- or down-regulated in mutant presumptive retinal tissue. Two neural patterning genes of particular interest that appear up-regulated in the rax mutant RNA-seq analysis are hesx1 and fezf2. These genes were not previously known to be regulated by rax. The normal function of rax is to partially repress their expression by an indirect mechanism in the presumptive retina region in wildtype embryos, thus accounting for the apparent up-regulation in the rax mutant. Knock-down experiments using antisense morpholino oligonucleotides directed against hesx1 and fezf2 show that failure to repress these two genes contributes to transformation of presumptive retinal tissue into non-retinal forebrain identities in the rax mutant.
Collapse
|
27
|
Dhouailly D, Pearton DJ, Michon F. The vertebrate corneal epithelium: From early specification to constant renewal. Dev Dyn 2014; 243:1226-41. [DOI: 10.1002/dvdy.24179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Danielle Dhouailly
- University Joseph Fourier; AGIM FRE CNRS 3405 Site Santé Centre Jean Roget La Tronche France
| | - David J. Pearton
- Oceanographic Research Institute; Marine Parade Durban South Africa
| | - Frederic Michon
- Institute of Biotechnology; Developmental Biology Program; University of Helsinki; Helsinki Finland
| |
Collapse
|
28
|
Chen WC, Pauls S, Bacha J, Elgar G, Loose M, Shimeld SM. Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity. Dev Biol 2014; 390:261-72. [PMID: 24680932 PMCID: PMC4010673 DOI: 10.1016/j.ydbio.2014.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 01/31/2023]
Abstract
Vertebrate genomes share numerous conserved non-coding elements, many of which function as enhancer elements and are hypothesised to be under evolutionary constraint due to a need to be bound by combinations of sequence-specific transcription factors. In contrast, few such conserved elements can be detected between vertebrates and their closest invertebrate relatives. Despite this lack of sequence identity, cross-species transgenesis has identified some cases where non-coding DNA from invertebrates drives reporter gene expression in transgenic vertebrates in patterns reminiscent of the expression of vertebrate orthologues. Such instances are presumed to reflect the presence of conserved suites of binding sites in the regulatory regions of invertebrate and vertebrate orthologues, such that both regulatory elements can correctly interpret the trans-activating environment. Shuffling of binding sites has been suggested to lie behind loss of sequence conservation; however this has not been experimentally tested. Here we examine the underlying basis of enhancer activity for the Ciona intestinalis βγ-crystallin gene, which drives expression in the lens of transgenic vertebrates despite the Ciona lineage predating the evolution of the lens. We construct an interactive gene regulatory network (GRN) for vertebrate lens development, allowing network interactions to be robustly catalogued and conserved network components and features to be identified. We show that a small number of binding motifs are necessary for Ciona βγ-crystallin expression, and narrow down the likely factors that bind to these motifs. Several of these overlap with the conserved core of the vertebrate lens GRN, implicating these sites in cross species function. However when we test these motifs in a transgenic vertebrate they prove to be dispensable for reporter expression in the lens. These results show that current models depicting cross species enhancer function as dependent on conserved binding sites can be overly simplistic, with sound evolutionary inference requiring detailed dissection of underlying mechanisms. Analysis of binding motifs in a Ciona enhancer that also works in vertebrate lens. Establishment of candidate transcription factors that may regulate this enhancer. Construction of a curated, interactive gene regulatory network of lens development. Public accessibility of this via a dedicated web site. Experimental test of binding motif function in cross species transgenesis.
Collapse
Affiliation(s)
- Wei-Chung Chen
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Stefan Pauls
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Jamil Bacha
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Greg Elgar
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Matthew Loose
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK.
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
29
|
Klimova L, Kozmik Z. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 2014; 141:1292-302. [PMID: 24523460 DOI: 10.1242/dev.098822] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The physical contact of optic vesicle with head surface ectoderm is an initial event triggering eye morphogenesis. This interaction leads to lens specification followed by coordinated invagination of the lens placode and optic vesicle, resulting in formation of the lens, retina and retinal pigmented epithelium. Although the role of Pax6 in early lens development has been well documented, its role in optic vesicle neuroepithelium and early retinal progenitors is poorly understood. Here we show that conditional inactivation of Pax6 at distinct time points of mouse neuroretina development has a different impact on early eye morphogenesis. When Pax6 is eliminated in the retina at E10.5 using an mRx-Cre transgene, after a sufficient contact between the optic vesicle and surface ectoderm has occurred, the lens develops normally but the pool of retinal progenitor cells gradually fails to expand. Furthermore, a normal differentiation program is not initiated, leading to almost complete disappearance of the retina after birth. By contrast, when Pax6 was inactivated at the onset of contact between the optic vesicle and surface ectoderm in Pax6(Sey/flox) embryos, expression of lens-specific genes was not initiated and neither the lens nor the retina formed. Our data show that Pax6 in the optic vesicle is important not only for proper retina development, but also for lens formation in a non-cell-autonomous manner.
Collapse
Affiliation(s)
- Lucie Klimova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14420 Prague 4, Czech Republic
| | | |
Collapse
|
30
|
Song JY, Park R, Kim JY, Hughes L, Lu L, Kim S, Johnson RL, Cho SH. Dual function of Yap in the regulation of lens progenitor cells and cellular polarity. Dev Biol 2013; 386:281-90. [PMID: 24384391 DOI: 10.1016/j.ydbio.2013.12.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Hippo-Yap signaling has been implicated in organ size determination via its regulation of cell proliferation, growth and apoptosis (Pan, 2007). The vertebrate lens comprises only two major cell types, lens progenitors and differentiated fiber cells, thereby providing a relatively simple system for studying size-controlling mechanisms. In order to investigate the role of Hippo-Yap signaling in lens size regulation, we conditionally ablated Yap in the developing mouse lens. Lens progenitor-specific deletion of Yap led to near obliteration of the lens primarily due to hypocellularity in the lens epithelium (LE) and accompanying lens fiber (LF) defects. A significantly reduced LE progenitor pool resulted mainly from failed self-renewal and increased apoptosis. Additionally, Yap-deficient lens progenitor cells precociously exited the cell cycle and expressed the LF marker, β-Crystallin. The mutant progenitor cells also exhibited multiple cellular and subcellular alterations including cell and nuclear shape change, organellar polarity disruption, and disorganized apical polarity complex and junction proteins such as Crumbs, Pals1, Par3 and ZO-1. Yap-deficient LF cells failed to anchor to the overlying LE layer, impairing their normal elongation and packaging. Furthermore, our localization study results suggest that, in the developing LE, Yap participates in the cell context-dependent transition from the proliferative to differentiation-competent state by integrating cell density information. Taken together, our results shed new light on Yap's indispensable and novel organizing role in mammalian organ size control by coordinating multiple events including cell proliferation, differentiation, and polarity.
Collapse
Affiliation(s)
- Ji Yun Song
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Jin Young Kim
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Lucinda Hughes
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Li Lu
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|
31
|
Ogura A, Yoshida MA, Moritaki T, Okuda Y, Sese J, Shimizu KK, Sousounis K, Tsonis PA. Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus. Sci Rep 2013; 3:1432. [PMID: 23478590 PMCID: PMC3594755 DOI: 10.1038/srep01432] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/19/2013] [Indexed: 01/20/2023] Open
Abstract
Coleoid cephalopods have an elaborate camera eye whereas nautiloids have primitive pinhole eye without lens and cornea. The Nautilus pinhole eye provides a unique example to explore the module of lens formation and its evolutionary mechanism. Here, we conducted an RNA-seq study of developing eyes of Nautilus and pygmy squid. First, we found that evolutionary distances from the common ancestor to Nautilus or squid are almost the same. Although most upstream eye development controlling genes were expressed in both species, six3/6 that are required for lens formation in vertebrates was not expressed in Nautilus. Furthermore, many downstream target genes of six3/6 including crystallin genes and other lens protein related genes were not expressed in Nautilus. As six3/6 and its controlling pathways are widely conserved among molluscs other than Nautilus, the present data suggest that deregulation of the six3/6 pathway led to the pinhole eye evolution in Nautilus.
Collapse
Affiliation(s)
- Atsushi Ogura
- Ochadai Academic Production, Ochanomizu University, Tokyo, 112-8610, Japan
- These authors contributed equally to this work
- Current address: Institute for Genome Research, The University of Tokushima, Tokushima, 770-8503, Japan
| | - Masa-aki Yoshida
- Ochadai Academic Production, Ochanomizu University, Tokyo, 112-8610, Japan
- These authors contributed equally to this work
- Current address: National Institute of Genetics, 1111 Yata, Mishima, Japan
| | | | - Yuki Okuda
- Department of Computer Science, Tokyo Institutes of Technology, 152-8550 Tokyo, Japan
| | - Jun Sese
- Department of Computer Science, Tokyo Institutes of Technology, 152-8550 Tokyo, Japan
| | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | - Panagiotis A. Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| |
Collapse
|
32
|
Jidigam VK, Gunhaga L. Development of cranial placodes: insights from studies in chick. Dev Growth Differ 2012; 55:79-95. [PMID: 23278869 DOI: 10.1111/dgd.12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
33
|
Jin H, Fisher M, Grainger RM. Defining progressive stages in the commitment process leading to embryonic lens formation. Genesis 2012; 50:728-40. [PMID: 22566346 DOI: 10.1002/dvg.22038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/06/2022]
Abstract
The commitment of regions of the embryo to form particular tissues or organs is a central concept in development, but the mechanisms controlling this process remain elusive. The well-studied model of lens induction is ideal for dissecting key phases of the commitment process. We find in Xenopus tropicalis, at the time of specification of the lens, i.e., when presumptive lens ectoderm (PLE) can be isolated, cultured, and will differentiate into a lens that the PLE is not yet irreversibly committed, or determined, to form a lens. When transplanted into the posterior of a host embryo lens development is prevented at this stage, while ~ 3 h later, using the same assay, determination is complete. Interestingly, we find that specified lens ectoderm, when cultured, acquires the ability to become determined without further tissue interactions. Furthermore, we show that specified PLE has a different gene expression pattern than determined PLE, and that determined PLE can maintain expression of essential regulatory genes (e.g., foxe3, mafB) in an ectopic environment, while specified PLE cannot. These observations set the stage for a detailed mechanistic study of the genes and signals controlling tissue commitment.
Collapse
Affiliation(s)
- Hong Jin
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | |
Collapse
|