1
|
Wen J, Charan Dash R, Zaino AM, Harrahill NJ, Calhoun JT, Dusek CO, Morel SR, Russolillo M, Kyle Hadden M. 8-Hydroxyquinoline derivatives suppress GLI1-mediated transcription through multiple mechanisms. Bioorg Chem 2023; 132:106387. [PMID: 36724660 DOI: 10.1016/j.bioorg.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway has been observed in various human malignancies. Glioma-associated oncogene transcription factor 1 (GLI1) is the ultimate effector of the canonical Hh pathway and has also been identified as a common regulator of several tumorigenic pathways prevalent in Hh-independent cancers. The anti-cancer potential of GLI1 antagonism with small molecule inhibitors has demonstrated initial promise; however, the continued development of GLI1 inhibitors is still needed. We previously identified a scaffold containing an 8-hydroxyquinoline as a promising lead GLI1 inhibitor (compound 1). To further develop this scaffold, we performed a systematic structure-activity relationship study to map the structural requirements of GLI1 inhibition by this chemotype. A series of biophysical and cellular experiments identified compound 39 as an enhanced GLI1 inhibitor with improved activity. In addition, our studies on this scaffold suggest a potential role for SRC family kinases in regulating oncogenic GLI1 transcriptional activity.
Collapse
Affiliation(s)
- Jiachen Wen
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Angela M Zaino
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Jackson T Calhoun
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Shana R Morel
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Matthew Russolillo
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States.
| |
Collapse
|
2
|
Jeng KS, Chang CF, Lin SS. Sonic Hedgehog Signaling in Organogenesis, Tumors, and Tumor Microenvironments. Int J Mol Sci 2020; 21:ijms21030758. [PMID: 31979397 PMCID: PMC7037908 DOI: 10.3390/ijms21030758] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
During mammalian embryonic development, primary cilia transduce and regulate several signaling pathways. Among the various pathways, Sonic hedgehog (SHH) is one of the most significant. SHH signaling remains quiescent in adult mammalian tissues. However, in multiple adult tissues, it becomes active during differentiation, proliferation, and maintenance. Moreover, aberrant activation of SHH signaling occurs in cancers of the skin, brain, liver, gallbladder, pancreas, stomach, colon, breast, lung, prostate, and hematological malignancies. Recent studies have shown that the tumor microenvironment or stroma could affect tumor development and metastasis. One hypothesis has been proposed, claiming that the pancreatic epithelia secretes SHH that is essential in establishing and regulating the pancreatic tumor microenvironment in promoting cancer progression. The SHH signaling pathway is also activated in the cancer stem cells (CSC) of several neoplasms. The self-renewal of CSC is regulated by the SHH/Smoothened receptor (SMO)/Glioma-associated oncogene homolog I (GLI) signaling pathway. Combined use of SHH signaling inhibitors and chemotherapy/radiation therapy/immunotherapy is therefore key in targeting CSCs.
Collapse
|
3
|
Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics. Cells 2019; 8:cells8040375. [PMID: 31027259 PMCID: PMC6523618 DOI: 10.3390/cells8040375] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality in women, only followed by lung cancer. Given the importance of BC in public health, it is essential to identify biomarkers to predict prognosis, predetermine drug resistance and provide treatment guidelines that include personalized targeted therapies. The Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. Several lines of evidence endorse the important role of canonical and non-canonical Hh signaling in BC. In this comprehensive review we discuss the role of Hh signaling in breast development and homeostasis and its contribution to tumorigenesis and progression of different subtypes of BC. We also examine the efficacy of agents targeting different components of the Hh pathway both in preclinical models and in clinical trials. The contribution of the Hh pathway in BC tumorigenesis and progression, its prognostic role, and its value as a therapeutic target vary according to the molecular, clinical, and histopathological characteristics of the BC patients. The evidence presented here highlights the relevance of the Hh signaling in BC, and suggest that this pathway is key for BC progression and metastasis.
Collapse
|
4
|
Monkkonen T, Lewis MT. New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:315-332. [PMID: 28624497 PMCID: PMC5567999 DOI: 10.1016/j.bbcan.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The Hedgehog signaling network regulates organogenesis, cell fate, proliferation, survival, and stem cell self-renewal in many mammalian tissues. Aberrant activation of the Hedgehog signaling network is present in ~25% of all cancers, including breast. Altered expression of Hedgehog network genes in the mammary gland can elicit phenotypes at many stages of development. However, synthesizing a cohesive mechanistic model of signaling at different stages of development has been difficult. Emerging data suggest that this difficulty is due, in part, to non-canonical and tissue compartment-specific (i.e., epithelial, versus stromal, versus systemic) functions of Hedgehog network components. With respect to systemic functions, Hedgehog network genes regulate development of endocrine organs that impinge on mammary gland development extrinsically. These new observations offer insight into previously conflicting data, and have bearing on the potential for anti-Hedgehog therapeutics in the treatment of breast cancer.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; University of California, San Francisco, Dept. of Pathology, 513 Parnassus Ave., San Francisco, CA 94118, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Li X, Jie Q, Zhang H, Zhao Y, Lin Y, Du J, Shi J, Wang L, Guo K, Li Y, Wang C, Gao B, Huang Q, Liu J, Yang L, Luo Z. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:101-111. [DOI: 10.1016/j.pbiomolbio.2016.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
6
|
Habib JG, O'Shaughnessy JA. The hedgehog pathway in triple-negative breast cancer. Cancer Med 2016; 5:2989-3006. [PMID: 27539549 PMCID: PMC5083752 DOI: 10.1002/cam4.833] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/26/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Treatment of triple‐negative breast cancer (TNBC) remains challenging due to the underlying heterogeneity of this disease coupled with the lack of predictive biomarkers and effective targeted therapies. Intratumoral heterogeneity, particularly enrichment for breast cancer stem cell‐like subpopulations, has emerged as a leading hypothesis for systemic therapy resistance and clinically aggressive course of poor prognosis TNBC. A growing body of literature supports the role of the stem cell renewal Hedgehog (Hh) pathway in breast cancer. Emerging preclinical data also implicate Hh signaling in TNBC pathogenesis. Herein, we review the evidence for a pathophysiologic role of Hh signaling in TNBC and explore mechanisms of crosstalk between the Hh pathway and other key signaling networks as well as their potential implications for Hh‐targeted interventions in TNBC.
Collapse
Affiliation(s)
- Joyce G Habib
- Baylor Charles A. Sammons Cancer Center, Dallas, Texas
| | - Joyce A O'Shaughnessy
- Baylor Charles A. Sammons Cancer Center, Dallas, Texas.
- Texas Oncology, Dallas, Texas.
| |
Collapse
|
7
|
Fleet A, Lee JPY, Tamachi A, Javeed I, Hamel PA. Activities of the Cytoplasmic Domains of Patched-1 Modulate but Are Not Essential for the Regulation of Canonical Hedgehog Signaling. J Biol Chem 2016; 291:17557-68. [PMID: 27325696 DOI: 10.1074/jbc.m116.731745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
The Hedgehog (Hh) pathway is a highly conserved signaling cascade crucial for cell fate determination during embryogenesis. Response to the Hh ligands is mediated by the receptor Patched-1 (Ptch1), a 12-pass transmembrane glycoprotein. Despite its essential role in Hh signaling and its activity as a tumor suppressor, Ptch1 remains largely uncharacterized. We demonstrate here that Ptch1 binds to itself to form oligomeric structures. Oligomerization is mediated by two distinct, structurally disordered, intracellular domains spanning amino acids 584-734 ("middle loop") and 1162-1432 (C terminus). However, oligomerization is not required for Ptch1-dependent regulation of the canonical Hh pathway operating through Smo. Expression of a mutant protein that deletes both regions represses the Hh pathway and responds to the addition of Hh ligand independent of its inability to bind other factors such as Smurf2. Additionally, deletion of the cytoplasmic middle loop domain generates a Ptch1 mutant that, despite binding to Hh ligand, constitutively suppresses Hh signaling and increases the length of primary cilia. Constitutive activity because of deletion of this region is reversed by further deletion of specific sequences in the cytoplasmic C-terminal domain. These data reveal an interaction between the cytoplasmic domains of Ptch1 and that these domains modulate Ptch1 activity but are not essential for regulation of the Hh pathway.
Collapse
Affiliation(s)
- Andrew Fleet
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jennifer P Y Lee
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Aaliya Tamachi
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Imaan Javeed
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paul A Hamel
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Okolowsky N, Furth PA, Hamel PA. Oestrogen receptor-alpha regulates non-canonical Hedgehog-signalling in the mammary gland. Dev Biol 2014; 391:219-29. [PMID: 24769368 DOI: 10.1016/j.ydbio.2014.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/22/2014] [Accepted: 04/10/2014] [Indexed: 02/06/2023]
Abstract
Mesenchymal dysplasia (mes) mice harbour a truncation in the C-terminal region of the Hh-ligand receptor, Patched-1 (mPtch1). While the mes variant of mPtch1 binds to Hh-ligands with an affinity similar to that of wild type mPtch1 and appears to normally regulate canonical Hh-signalling via smoothened, the mes mutation causes, among other non-lethal defects, a block to mammary ductal elongation at puberty. We demonstrated previously Hh-signalling induces the activation of Erk1/2 and c-src independently of its control of smo activity. Furthermore, mammary epithelial cell-directed expression of an activated allele of c-src rescued the block to ductal elongation in mes mice, albeit with delayed kinetics. Given that this rescue was accompanied by an induction in estrogen receptor-alpha (ERα) expression and that complex regulatory interactions between ERα and c-src are required for normal mammary gland development, it was hypothesized that expression of ERα would also overcome the block to mammary ductal elongation at puberty in the mes mouse. We demonstrate here that conditional expression of ERα in luminal mammary epithelial cells on the mes background facilitates ductal morphogenesis with kinetics similar to that of the MMTV-c-src(Act) mice. We demonstrate further that Erk1/2 is activated in primary mammary epithelial cells by Shh-ligand and that this activation is blocked by the inhibitor of c-src, PP2, is partially blocked by the ERα inhibitor, ICI 182780 but is not blocked by the smo-inhibitor, SANT-1. These data reveal an apparent Hh-signalling cascade operating through c-src and ERα that is required for mammary gland morphogenesis at puberty.
Collapse
Affiliation(s)
- Nadia Okolowsky
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Priscilla A Furth
- Lombardi Comprehensive Cancer Center, Departments of Oncology and Medicine, Georgetown University, Washington, DC, USA
| | - Paul A Hamel
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
9
|
Harvey MC, Fleet A, Okolowsky N, Hamel PA. Distinct effects of the mesenchymal dysplasia gene variant of murine Patched-1 protein on canonical and non-canonical Hedgehog signaling pathways. J Biol Chem 2014; 289:10939-10949. [PMID: 24570001 DOI: 10.1074/jbc.m113.514844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hedgehog (Hh) signaling requires regulation of the receptor Patched-1 (Ptch1), which, in turn, regulates Smoothened activity (canonical Hh signaling) as well as other non-canonical signaling pathways. The mutant Ptch1 allele mesenchymal dysplasia (mes), which truncates the Ptch1 C terminus, produces a limited spectrum of developmental defects in mice as well as deregulation of canonical Hh signaling in some, but not all, affected tissues. Paradoxically, mes suppresses canonical Hh signaling and binds to Hh ligands with an affinity similar to wild-type mouse Ptch1 (mPtch1). We characterized the distinct activities of the mes variant of mPtch1 mediating Hh signaling through both canonical and non-canonical pathways. We demonstrated that mPtch1 bound c-src in an Hh-regulated manner. Stimulation with Sonic Hedgehog (Shh) of primary mammary mesenchymal cells from wild-type and mes animals activated Erk1/2. Although Shh activated c-src in wild-type cells, c-src was constitutively activated in mes mesenchymal cells. Transient assays showed that wild-type mPtch1, mes, or mPtch1 lacking the C terminus repressed Hh signaling in Ptch1-deficient mouse embryo fibroblasts and that repression was reversed by Shh, revealing that the C terminus was dispensable for mPtch1-dependent regulation of canonical Hh signaling. In contrast to these transient assays, constitutively high levels of mGli1 but not mPtch1 were present in primary mammary mesenchymal cells from mes mice, whereas the expression of mPtch1 was similarly induced in both mes and wild-type cells. These data define a novel signal transduction pathway involving c-src that is activated by the Hh ligands and reveals the requirement for the C terminus of Ptch in regulation of canonical and non-canonical Hh signaling pathways.
Collapse
Affiliation(s)
- Malcolm C Harvey
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andrew Fleet
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nadia Okolowsky
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paul A Hamel
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|