1
|
Kim RT, Whited JL. Putative epithelial-mesenchymal transitions during salamander limb regeneration: Current perspectives and future investigations. Ann N Y Acad Sci 2024; 1540:89-103. [PMID: 39269330 PMCID: PMC11471381 DOI: 10.1111/nyas.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Previous studies have implicated epithelial-mesenchymal transition (EMT) in salamander limb regeneration. In this review, we describe putative roles for EMT during each stage of limb regeneration in axolotls and other salamanders. We hypothesize that EMT and EMT-like gene expression programs may regulate three main cellular processes during limb regeneration: (1) keratinocyte migration during wound closure; (2) transient invasion of the stump by epithelial cells undergoing EMT; and (3) use of EMT-like programs by non-epithelial blastemal progenitor cells to escape the confines of their niches. Finally, we propose nontraditional roles for EMT during limb regeneration that warrant further investigation, including alternative EMT regulators, stem cell activation, and fibrosis induced by aberrant EMT.
Collapse
Affiliation(s)
- Ryan T Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Takeuchi T, Matsubara H, Minamitani F, Satoh Y, Tozawa S, Moriyama T, Maruyama K, Suzuki KIT, Shigenobu S, Inoue T, Tamura K, Agata K, Hayashi T. Newt Hoxa13 has an essential and predominant role in digit formation during development and regeneration. Development 2022; 149:274659. [DOI: 10.1242/dev.200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The 5′Hox genes play crucial roles in limb development and specify regions in the proximal-distal axis of limbs. However, there is no direct genetic evidence that Hox genes are essential for limb development in non-mammalian tetrapods or for limb regeneration. Here, we produced single to quadruple Hox13 paralog mutants using the CRISPR/Cas9 system in newts (Pleurodeles waltl), which have strong regenerative capacities, and also produced germline mutants. We show that Hox13 genes are essential for digit formation in development, as in mice. In addition, Hoxa13 has a predominant role in digit formation, unlike in mice. The predominance is probably due to the restricted expression pattern of Hoxd13 in limb buds and the strong dependence of Hoxd13 expression on Hoxa13. Finally, we demonstrate that Hox13 genes are also necessary for digit formation in limb regeneration. Our findings reveal that the general function of Hox13 genes is conserved between limb development and regeneration, and across taxa. The predominance of Hoxa13 function both in newt limbs and fish fins, but not in mouse limbs, suggests a potential contribution of Hoxa13 function in fin-to-limb transition.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Division of Developmental Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Haruka Matsubara
- Division of Developmental Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Fumina Minamitani
- Division of Developmental Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yukio Satoh
- Division of Developmental Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Sayo Tozawa
- Division of Developmental Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Tomoki Moriyama
- Division of Developmental Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kohei Maruyama
- Division of Developmental Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Ken-ichi T. Suzuki
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, Toyoshima-Ku, Tokyo 171-8588, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Toyoshima-Ku, Tokyo 171-8588, Japan
| | - Toshinori Hayashi
- Division of Developmental Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
3
|
Yin X, Wu Y, Zhang S, Zhang T, Zhang G, Wang J. Transcriptomic profile of leg muscle during early growth and development in Haiyang yellow chicken. Arch Anim Breed 2021; 64:405-416. [PMID: 34584942 PMCID: PMC8461557 DOI: 10.5194/aab-64-405-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle growth and development from embryo to
adult consists of a series of carefully regulated changes in gene
expression. This study aimed to identify candidate genes involved in chicken
growth and development and to investigate the potential regulatory
mechanisms of early growth in Haiyang yellow chicken. RNA sequencing was
used to compare the transcriptomes of chicken muscle tissues at four
developmental stages. In total, 6150 differentially expressed genes (DEGs)
(|fold change| ≥ 2; false discovery rate (FDR) ≤ 0.05) were detected by
pairwise comparison in female chickens. Functional analysis showed that the
DEGs were mainly involved in the processes of muscle growth and development
and cell differentiation. Many of the DEGs, such as MSTN,
MYOD1, MYF6, MYF5, and IGF1, were
related to chicken growth and development. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that
the DEGs were significantly enriched in four pathways related to growth and
development: extracellular matrix
(ECM)–receptor interaction, focal adhesion, tight junction, and
insulin signalling pathways. A total of 42 DEGs assigned to these pathways
are potential candidate genes for inducing the differences in growth among
the four development stages, such as MYH1A, EGF, MYLK2,
MYLK4, and LAMB3. This study identified a
range of genes and several pathways that may be involved in regulating early
growth.
Collapse
Affiliation(s)
- Xuemei Yin
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, China
| | - Yulin Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Shanshan Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Wang MH, Hsu CL, Wu CH, Chiou LL, Tsai YT, Lee HS, Lin SP. Timing Does Matter: Nerve-Mediated HDAC1 Paces the Temporal Expression of Morphogenic Genes During Axolotl Limb Regeneration. Front Cell Dev Biol 2021; 9:641987. [PMID: 34041236 PMCID: PMC8143519 DOI: 10.3389/fcell.2021.641987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 12/04/2022] Open
Abstract
Sophisticated axolotl limb regeneration is a highly orchestrated process that requires highly regulated gene expression and epigenetic modification patterns at precise positions and timings. We previously demonstrated two waves of post-amputation expression of a nerve-mediated repressive epigenetic modulator, histone deacetylase 1 (HDAC1), at the wound healing (3 days post-amputation; 3 dpa) and blastema formation (8 dpa onward) stages in juvenile axolotls. Limb regeneration was profoundly inhibited by local injection of an HDAC inhibitor, MS-275, at the amputation sites. To explore the transcriptional response of post-amputation axolotl limb regeneration in a tissue-specific and time course-dependent manner after MS-275 treatment, we performed transcriptome sequencing of the epidermis and soft tissue (ST) at 0, 3, and 8 dpa with and without MS-275 treatment. Gene Ontology (GO) enrichment analysis of each coregulated gene cluster revealed a complex array of functional pathways in both the epidermis and ST. In particular, HDAC activities were required to inhibit the premature elevation of genes related to tissue development, differentiation, and morphogenesis. Further validation by Q-PCR in independent animals demonstrated that the expression of 5 out of 6 development- and regeneration-relevant genes that should only be elevated at the blastema stage was indeed prematurely upregulated at the wound healing stage when HDAC1 activity was inhibited. WNT pathway-associated genes were also prematurely activated under HDAC1 inhibition. Applying a WNT inhibitor to MS-275-treated amputated limbs partially rescued HDAC1 inhibition, resulting in blastema formation defects. We propose that post-amputation HDAC1 expression is at least partially responsible for pacing the expression timing of morphogenic genes to facilitate proper limb regeneration.
Collapse
Affiliation(s)
- Mu-Hui Wang
- College of Bioresources and Agriculture, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Ling Chiou
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Yi-Tzang Tsai
- College of Bioresources and Agriculture, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Shu Lee
- College of Bioresources and Agriculture, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shau-Ping Lin
- College of Bioresources and Agriculture, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Center of Systems Biology, National Taiwan University, Taipei, Taiwan.,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Arenas Gómez CM, Echeverri K. Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Curr Top Dev Biol 2021; 145:235-275. [PMID: 34074531 PMCID: PMC8186737 DOI: 10.1016/bs.ctdb.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salamanders are recognized for their ability to regenerate a broad range of tissues. They have also have been used for hundreds of years for classical developmental biology studies because of their large accessible embryos. The range of tissues these animals can regenerate is fascinating, from full limbs to parts of the brain or heart, a potential that is missing in humans. Many promising research efforts are working to decipher the molecular blueprints shared across the organisms that naturally have the capacity to regenerate different tissues and organs. Salamanders are an excellent example of a vertebrate that can functionally regenerate a wide range of tissue types. In this review, we outline some of the significant insights that have been made that are aiding in understanding the cellular and molecular mechanisms of tissue regeneration in salamanders and discuss why salamanders are a worthy model in which to study regenerative biology and how this may benefit research fields like regenerative medicine to develop therapies for humans in the future.
Collapse
Affiliation(s)
- Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States.
| |
Collapse
|
6
|
Choi IY, Lim H, Cho HJ, Oh Y, Chou BK, Bai H, Cheng L, Kim YJ, Hyun S, Kim H, Shin JH, Lee G. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. eLife 2020; 9:e46981. [PMID: 32011235 PMCID: PMC6996923 DOI: 10.7554/elife.46981] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Generation of skeletal muscle cells with human pluripotent stem cells (hPSCs) opens new avenues for deciphering essential, but poorly understood aspects of transcriptional regulation in human myogenic specification. In this study, we characterized the transcriptional landscape of distinct human myogenic stages, including OCT4::EGFP+ pluripotent stem cells, MSGN1::EGFP+ presomite cells, PAX7::EGFP+ skeletal muscle progenitor cells, MYOG::EGFP+ myoblasts, and multinucleated myotubes. We defined signature gene expression profiles from each isolated cell population with unbiased clustering analysis, which provided unique insights into the transcriptional dynamics of human myogenesis from undifferentiated hPSCs to fully differentiated myotubes. Using a knock-out strategy, we identified TWIST1 as a critical factor in maintenance of human PAX7::EGFP+ putative skeletal muscle progenitor cells. Our data revealed a new role of TWIST1 in human skeletal muscle progenitors, and we have established a foundation to identify transcriptional regulations of human myogenic ontogeny (online database can be accessed in http://www.myogenesis.net/).
Collapse
Affiliation(s)
- In Young Choi
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Department of Medicine, Graduate SchoolKyung Hee UniversitySeoulRepublic of Korea
| | - Hotae Lim
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- College of Veterinary MedicineChungbuk National UniversityChungbukRepublic of Korea
| | - Hyeon Jin Cho
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Yohan Oh
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Bin-Kuan Chou
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Division of Hematology, Department of MedicineJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Hao Bai
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Division of Hematology, Department of MedicineJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Linzhao Cheng
- Division of Hematology, Department of MedicineJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Yong Jun Kim
- Department of Pathololgy, College of MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - SangHwan Hyun
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- College of Veterinary MedicineChungbuk National UniversityChungbukRepublic of Korea
| | - Hyesoo Kim
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Department of NeurologyJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Gabsang Lee
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Department of NeurologyJohns Hopkins University, School of MedicineBaltimoreUnited States
- The Solomon H. Synder Department of NeuroscienceJohns Hopkins University, School of MedicineBaltimoreUnited States
| |
Collapse
|
7
|
Ma L, Zhang Z, Dong K, Ma Y. TWIST1 Alleviates Hypoxia-induced Damage of Trophoblast Cells by inhibiting mitochondrial apoptosis pathway. Exp Cell Res 2019; 385:111687. [DOI: 10.1016/j.yexcr.2019.111687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
|
8
|
Epithelial to mesenchymal transition is mediated by both TGF-β canonical and non-canonical signaling during axolotl limb regeneration. Sci Rep 2019; 9:1144. [PMID: 30718780 PMCID: PMC6362101 DOI: 10.1038/s41598-018-38171-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023] Open
Abstract
Axolotls have the amazing ability to regenerate. When compared to humans, axolotls display a very fast wound closure, no scarring and are capable to replace lost appendages perfectly. Understanding the signaling mechanism leading to this perfect healing is a key step to help develop regenerative treatments for humans. In this paper, we studied cellular pathways leading to axolotl limb regeneration. We focus on the wound closure phase where keratinocytes migrate to close the lesion site and how epithelial to mesenchymal transitions are involved in this process. We observe a correlation between wound closure and EMT marker expression. Functional analyses using pharmacological inhibitors showed that the TGF-β/SMAD (canonical) and the TGF-β/p38/JNK (non-canonical) pathways play a role in the rate to which the keratinocytes can migrate. When we treat the animals with a combination of inhibitors blocking both canonical and non-canonical TGF-β pathways, it greatly reduced the rate of wound closure and had significant effects on certain known EMT genes.
Collapse
|
9
|
Tsai SL, Baselga-Garriga C, Melton DA. Blastemal progenitors modulate immune signaling during early limb regeneration. Development 2019; 146:146/1/dev169128. [PMID: 30602532 DOI: 10.1242/dev.169128] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Blastema formation, a hallmark of limb regeneration, requires proliferation and migration of progenitors to the amputation plane. Although blastema formation has been well described, the transcriptional programs that drive blastemal progenitors remain unknown. We transcriptionally profiled dividing and non-dividing cells in regenerating stump tissues, as well as the wound epidermis, during early axolotl limb regeneration. Our analysis revealed unique transcriptional signatures of early dividing cells and, unexpectedly, repression of several core developmental signaling pathways in early regenerating stump tissues. We further identify an immunomodulatory role for blastemal progenitors through interleukin 8 (IL-8), a highly expressed cytokine in subpopulations of early blastemal progenitors. Ectopic il-8 expression in non-regenerating limbs induced myeloid cell recruitment, while IL-8 knockdown resulted in defective myeloid cell retention during late wound healing, delaying regeneration. Furthermore, the il-8 receptor cxcr-1/2 was expressed in myeloid cells, and inhibition of CXCR-1/2 signaling during early stages of limb regeneration prevented regeneration. Altogether, our findings suggest that blastemal progenitors are active early mediators of immune support, and identify CXCR-1/2 signaling as an important immunomodulatory pathway during the initiation of regeneration.
Collapse
Affiliation(s)
- Stephanie L Tsai
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Clara Baselga-Garriga
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Vieira WA, McCusker CD. Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues. Int J Mol Sci 2018; 19:E3752. [PMID: 30486286 PMCID: PMC6321600 DOI: 10.3390/ijms19123752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Disease of, or trauma to, the human jaw account for thousands of reconstructive surgeries performed every year. One of the most popular and successful treatment options in this context involves the transplantation of bone tissue from a different anatomical region into the affected jaw. Although, this method has been largely successful, the integration of the new bone into the existing bone is often imperfect, and the integration of the host soft tissues with the transplanted bone can be inconsistent, resulting in impaired function. Unlike humans, several vertebrate species, including fish and amphibians, demonstrate remarkable regenerative capabilities in response to jaw injury. Therefore, with the objective of identifying biological targets to promote and engineer improved outcomes in the context of jaw reconstructive surgery, we explore, compare and contrast the natural mechanisms of endogenous jaw and limb repair and regeneration in regenerative model organisms. We focus on the role of different cell types as they contribute to the regenerating structure; how mature cells acquire plasticity in vivo; the role of positional information in pattern formation and tissue integration, and limitations to endogenous regenerative and repair mechanisms.
Collapse
Affiliation(s)
- Warren A Vieira
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Catherine D McCusker
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
11
|
Sandoval-Guzmán T, Currie JD. The journey of cells through regeneration. Curr Opin Cell Biol 2018; 55:36-41. [PMID: 30031323 DOI: 10.1016/j.ceb.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 10/28/2022]
Abstract
The process of building an organ, appendage, or organism requires the precise coordination of cells in space and time. Regeneration of those same tissues adds an additional element of complexity, emerging from the chaos of disease or injury to build a mass of progenitors from mature tissue. Translating insights from natural examples of tissue regeneration into engineered regenerative therapies requires a deep understanding of the journey of a cell directly following injury to its contribution to functional, scaled replacement tissue. Here we step through the chronological phases of regeneration and highlight emerging work that brings us closer to elucidating the unique intrinsic and extrinsic properties of cells during epimorphic regeneration.
Collapse
Affiliation(s)
- Tatiana Sandoval-Guzmán
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| | - Joshua D Currie
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
12
|
Bai S, Li D, Xu L, Duan H, Yuan J, Wei M. Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1 +/- mice. J Transl Med 2018; 16:103. [PMID: 29665811 PMCID: PMC5905175 DOI: 10.1186/s12967-018-1454-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/16/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Saethre-Chotzen syndrome is an autosomal dominantly inherited disorder caused by mutations in the twist family basic helix-loop-helix transcription factor 1 (TWIST1) gene. Surgical procedures are frequently required to reduce morphological and functional defects in patients with Saethre-Chotzen syndrome. Therefore, the development of noninvasive procedures to treat Saethre-Chotzen syndrome is critical. We identified that periostin, which is an extracellular matrix protein that plays an important role in both bone and connective tissues, is downregulated in craniosynostosis patients. METHODS We aimed to verify the effects of different concentrations (0, 50, 100, and 200 μg/l) of recombinant mouse periostin in Twist1+/- mice (a mouse model of Saethre-Chotzen syndrome) coronal suture cells in vitro and in vivo. Cell proliferation, migration, and osteogenic differentiation were observed and detected. Twist1+/- mice were also injected with recombinant mouse periostin to verify the treatment effects. RESULTS Cell Counting Kit-8 results showed that recombinant mouse periostin inhibited the proliferation of suture-derived cells in a time- and concentration-dependent manner. Cell migration was also suppressed when treated with recombinant mouse periostin. Real-time quantitative PCR and Western blotting results suggested that messenger ribonucleic acid and protein expression of alkaline phosphatase, bone sialoprotein, collagen type I, and osteocalcin were all downregulated after treatment with recombinant mouse periostin. However, the expression of Wnt-3a, Wnt-1, and β-catenin were upregulated. The in vivo results demonstrated that periostin-treated Twist1+/- mice showed patent coronal sutures in comparison with non-treated Twist1+/- mice which have coronal craniosynostosis. CONCLUSION Our results suggest that recombinant mouse periostin can inhibit coronal suture cell proliferation and migration and suppress osteogenic differentiation of suture-derived cells via Wnt canonical signaling, as well as ameliorate coronal suture fusion in Twist1+/- mice.
Collapse
Affiliation(s)
- Shanshan Bai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Dong Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Liang Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Huichuan Duan
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Jie Yuan
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Min Wei
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
13
|
Abstract
Humans and other mammals are limited in their natural abilities to regenerate lost body parts. By contrast, many salamanders are highly regenerative and can spontaneously replace lost limbs even as adults. Because salamander limbs are anatomically similar to human limbs, knowing how they regenerate should provide important clues for regenerative medicine. Although interest in understanding the mechanics of this process has never wavered, until recently researchers have been vexed by seemingly impenetrable logistics of working with these creatures at a molecular level. Chief among the problems has been the very large size of salamander genomes, and not a single salamander genome has been fully sequenced to date. Recently the enormous gap in sequence information has been bridged by approaches that leverage mRNA as the starting point. Together with functional experimentation, these data are rapidly enabling researchers to finally uncover the molecular mechanisms underpinning the astonishing biological process of limb regeneration.
Collapse
Affiliation(s)
- Brian J Haas
- Broad Institute of Massachusetts Institute of Technology(MIT) and Harvard, Klarman Cell Observatory, 415 Main Street, Cambridge, MA 02142, USA.
| | - Jessica L Whited
- Harvard Medical School, Harvard Stem Cell Institute, and Brigham and Women's Hospital Department of Orthopedic Surgery, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Regeneration: Lessons from the Lizard. INNOVATIONS IN MOLECULAR MECHANISMS AND TISSUE ENGINEERING 2016. [DOI: 10.1007/978-3-319-44996-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Roensch K, Tazaki A, Chara O, Tanaka EM. Progressive specification rather than intercalation of segments during limb regeneration. Science 2013; 342:1375-9. [PMID: 24337297 DOI: 10.1126/science.1241796] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An amputated salamander limb regenerates the correct number of segments. Models explaining limb regeneration were largely distinct from those for limb development, despite the presence of common patterning molecules. Intercalation has been an important concept to explain salamander limb regeneration, but clear evidence supporting or refuting this model was lacking. In the intercalation model, the first blastema cells acquire fingertip identity, creating a gap in positional identity that triggers regeneration of the intervening region from the stump. We used HOXA protein analysis and transplantation assays to show that axolotl limb blastema cells acquire positional identity in a proximal-to-distal sequence. Therefore, intercalation is not the primary mechanism for segment formation during limb regeneration in this animal. Patterning in development and regeneration uses similar mechanisms.
Collapse
Affiliation(s)
- Kathleen Roensch
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | | | | | | |
Collapse
|
16
|
Anversa P, Leri A. Innate regeneration in the aging heart: healing from within. Mayo Clin Proc 2013; 88:871-83. [PMID: 23910414 PMCID: PMC3936323 DOI: 10.1016/j.mayocp.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
Abstract
The concept of the heart as a terminally differentiated organ incapable of replacing damaged myocytes has been at the center of cardiovascular research and therapeutic development for the past 50 years. The progressive decline in myocyte number as a function of age and the formation of scarred tissue after myocardial infarction have been interpreted as irrefutable proofs of the postmitotic characteristic of the heart. However, emerging evidence supports a more dynamic view of the heart in which cell death and renewal are vital components of the remodeling process that governs cardiac homeostasis, aging, and disease. The identification of dividing myocytes in the adult and senescent heart raises the important question concerning the origin of these newly formed cells. In vitro and in vivo findings strongly suggest that replicating myocytes derive from lineage determination of resident primitive cells, supporting the notion that cardiomyogenesis is controlled by activation and differentiation of a stem cell compartment. It is the current view that the myocardium is an organ permissive of tissue regeneration mediated by exogenous and endogenous progenitor cells.
Collapse
Affiliation(s)
- Piero Anversa
- Department of Anesthesia, Department of Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | | |
Collapse
|
17
|
Siegel AL, Gurevich DB, Currie PD. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. FEBS J 2013; 280:4074-88. [PMID: 23607511 DOI: 10.1111/febs.12300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type.
Collapse
Affiliation(s)
- Ashley L Siegel
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
18
|
Knapp D, Schulz H, Rascon CA, Volkmer M, Scholz J, Nacu E, Le M, Novozhilov S, Tazaki A, Protze S, Jacob T, Hubner N, Habermann B, Tanaka EM. Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 2013; 8:e61352. [PMID: 23658691 PMCID: PMC3641036 DOI: 10.1371/journal.pone.0061352] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 03/12/2013] [Indexed: 01/08/2023] Open
Abstract
Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression - early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation.
Collapse
Affiliation(s)
- Dunja Knapp
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Technical University Dresden, DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Herbert Schulz
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Cynthia Alexander Rascon
- Technical University Dresden, DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Michael Volkmer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Juliane Scholz
- Technical University Dresden, DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Eugen Nacu
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Technical University Dresden, DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Mu Le
- Technical University Dresden, DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Sergey Novozhilov
- Technical University Dresden, DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Akira Tazaki
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Technical University Dresden, DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Stephanie Protze
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tina Jacob
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Norbert Hubner
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Bianca Habermann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Elly M. Tanaka
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Technical University Dresden, DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|