1
|
Sohail A, Bendall AJ. DLX gene expression in the developing chick pharyngeal arches and relationship to endothelin signaling and avian jaw patterning. Dev Dyn 2024; 253:255-271. [PMID: 37706631 DOI: 10.1002/dvdy.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND A hinged jaw that articulates with the skull base is a striking feature of the vertebrate head and has been greatly modified between, and within, vertebrate classes. Genes belonging to the DLX homeobox family are conserved mediators of local signaling pathways that distinguish the dorsal and ventral aspects of the first pharyngeal arch. Specifically, a subset of DLX genes are expressed in the cranial neural crest-derived mandibular ectomesenchyme in response to ventral endothelin signaling, an important step that confers the first arch with maxillary and mandibular identities. Downstream targets of DLX genes then execute the morphogenetic processes that lead to functional jaws. Identifying lineage-specific variations in DLX gene expression and the regulatory networks downstream of DLX action is necessary to understand how different kinds of jaws evolved. RESULTS Here, we describe and compare the expression of all six DLX genes in the chick pharyngeal arches, focusing on the period of active patterning in the first arch. Disruption of endothelin signaling results in the down-regulation of ventral-specific DLX genes and confirms their functional role in avian jaw patterning. CONCLUSIONS This expression resource will be important for comparative embryology and for identifying synexpression groups of DLX-regulated genes in the chick.
Collapse
Affiliation(s)
- Afshan Sohail
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Pan Y, Li S, He S, Wang G, Li C, Liu Z, Xiang M. Fgf8 P2A-3×GFP/+: A New Genetic Mouse Model for Specifically Labeling and Sorting Cochlear Inner Hair Cells. Neurosci Bull 2023; 39:1762-1774. [PMID: 37233921 PMCID: PMC10661496 DOI: 10.1007/s12264-023-01069-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/08/2023] [Indexed: 05/27/2023] Open
Abstract
The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
Collapse
Affiliation(s)
- Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Selleri L, Rijli FM. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. Nat Rev Genet 2023; 24:610-626. [PMID: 37095271 DOI: 10.1038/s41576-023-00594-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Major differences in facial morphology distinguish vertebrate species. Variation of facial traits underlies the uniqueness of human individuals, and abnormal craniofacial morphogenesis during development leads to birth defects that significantly affect quality of life. Studies during the past 40 years have advanced our understanding of the molecular mechanisms that establish facial form during development, highlighting the crucial roles in this process of a multipotent cell type known as the cranial neural crest cell. In this Review, we discuss recent advances in multi-omics and single-cell technologies that enable genes, transcriptional regulatory networks and epigenetic landscapes to be closely linked to the establishment of facial patterning and its variation, with an emphasis on normal and abnormal craniofacial morphogenesis. Advancing our knowledge of these processes will support important developments in tissue engineering, as well as the repair and reconstruction of the abnormal craniofacial complex.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| | - Filippo M Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Leyhr J, Waldmann L, Filipek-Górniok B, Zhang H, Allalou A, Haitina T. A novel cis-regulatory element drives early expression of Nkx3.2 in the gnathostome primary jaw joint. eLife 2022; 11:e75749. [PMID: 36377467 PMCID: PMC9665848 DOI: 10.7554/elife.75749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The acquisition of movable jaws was a major event during vertebrate evolution. The role of NK3 homeobox 2 (Nkx3.2) transcription factor in patterning the primary jaw joint of gnathostomes (jawed vertebrates) is well known, however knowledge about its regulatory mechanism is lacking. In this study, we report a proximal enhancer element of Nkx3.2 that is deeply conserved in most gnathostomes but undetectable in the jawless hagfish and lamprey. This enhancer is active in the developing jaw joint region of the zebrafish Danio rerio, and was thus designated as jaw joint regulatory sequence 1 (JRS1). We further show that JRS1 enhancer sequences from a range of gnathostome species, including a chondrichthyan and mammals, have the same activity in the jaw joint as the native zebrafish enhancer, indicating a high degree of functional conservation despite the divergence of cartilaginous and bony fish lineages or the transition of the primary jaw joint into the middle ear of mammals. Finally, we show that deletion of JRS1 from the zebrafish genome using CRISPR/Cas9 results in a significant reduction of early gene expression of nkx3.2 and leads to a transient jaw joint deformation and partial fusion. Emergence of this Nkx3.2 enhancer in early gnathostomes may have contributed to the origin and shaping of the articulating surfaces of vertebrate jaws.
Collapse
Affiliation(s)
- Jake Leyhr
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Laura Waldmann
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Beata Filipek-Górniok
- Science for Life Laboratory Genome Engineering Zebrafish Facility, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Hanqing Zhang
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala UniversityUppsalaSweden
- Science for Life Laboratory BioImage Informatics FacilityUppsalaSweden
| | - Amin Allalou
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala UniversityUppsalaSweden
- Science for Life Laboratory BioImage Informatics FacilityUppsalaSweden
| | - Tatjana Haitina
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
5
|
Santos-Durán GN, Ferreiro-Galve S, Mazan S, Anadón R, Rodríguez-Moldes I, Candal E. Developmental genoarchitectonics as a key tool to interpret the mature anatomy of the chondrichthyan hypothalamus according to the prosomeric model. Front Neuroanat 2022; 16:901451. [PMID: 35991967 PMCID: PMC9385951 DOI: 10.3389/fnana.2022.901451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.
Collapse
Affiliation(s)
- Gabriel N. Santos-Durán
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Susana Ferreiro-Galve
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Sylvie Mazan
- CNRS-UMR 7232, Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Paris, France
| | - Ramón Anadón
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Isabel Rodríguez-Moldes
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Eva Candal
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
- *Correspondence: Eva Candal,
| |
Collapse
|
6
|
Lukas P, Ziermann JM. Sequence of chondrocranial development in basal anurans-Let's make a cranium. Front Zool 2022; 19:17. [PMID: 35505372 PMCID: PMC9066780 DOI: 10.1186/s12983-022-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The craniofacial skeleton is an evolutionary innovation of vertebrates. Due to its complexity and importance to protect the brain and aid in essential functions (e.g., feeding), its development requires a precisely tuned sequence of chondrification and/or ossification events. The comparison of sequential patterns of cartilage formation bears important insights into the evolution of development. Discoglossus scovazzi is a basal anuran species. The comparison of its chondrocranium (cartilaginous neuro- & viscerocranium) development with other basal anurans (Xenopus laevis, Bombina orientalis) will help establishing the ancestral pattern of chondrification sequences in anurans and will serve as basis for further studies to reconstruct ancestral conditions in amphibians, tetrapods, and vertebrates. Furthermore, evolutionary patterns in anurans can be studied in the light of adaptations once the ancestral sequence is established. Results We present a comprehensive overview on the chondrocranium development of D. scovazzi. With clearing and staining, histology and 3D reconstructions we tracked the chondrification of 44 elements from the first mesenchymal Anlagen to the premetamorphic cartilaginous head skeleton and illustrate the sequential changes of the skull. We identified several anuran and discoglossoid traits of cartilage development. In D. scovazzi the mandibular, hyoid, and first branchial arch Anlagen develop first followed by stepwise addition of the branchial arches II, III, and IV. Nonetheless, there is no strict anterior to posterior chondrification pattern within the viscerocranium of D. scovazzi. Single hyoid arch elements chondrify after elements of the branchial arch and mandibular arch elements chondrify after elements of the branchial arch I. Conclusions In Osteichthyes, neurocranial elements develop in anterior to posterior direction. In the anurans investigated so far, as well as in D. scovazzi, the posterior parts of the neurocranium extend anteriorly, while the anterior parts of the neurocranium, extend posteriorly until both parts meet and fuse. Anuran cartilaginous development differs in at least two crucial traits from other gnathostomes which further supports the urgent need for more developmental investigations among this clade to understand the evolution of cartilage development in vertebrates.
Collapse
Affiliation(s)
- Paul Lukas
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.
| | - Janine M Ziermann
- Howard University College of Medicine, 520 W St NW, Washington, DC, 20059, USA.
| |
Collapse
|
7
|
Kitazawa T, Minoux M, Ducret S, Rijli FM. Different Ectopic Hoxa2 Expression Levels in Mouse Cranial Neural Crest Cells Result in Distinct Craniofacial Anomalies and Homeotic Phenotypes. J Dev Biol 2022; 10:jdb10010009. [PMID: 35225962 PMCID: PMC8883995 DOI: 10.3390/jdb10010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Providing appropriate positional identity and patterning information to distinct rostrocaudal subpopulations of cranial neural crest cells (CNCCs) is central to vertebrate craniofacial morphogenesis. Hox genes are not expressed in frontonasal and first pharyngeal arch (PA1) CNCCs, whereas a single Hox gene, Hoxa2, is necessary to provide patterning information to second pharyngeal arch (PA2) CNCCs. In frog, chick and mouse embryos, ectopic expression of Hoxa2 in Hox-negative CNCCs induced hypoplastic phenotypes of CNCC derivatives of variable severity, associated or not with homeotic transformation of a subset of PA1 structures into a PA2-like identity. Whether these different morphological outcomes are directly related to distinct Hoxa2 overexpression levels is unknown. To address this issue, we selectively induced Hoxa2 overexpression in mouse CNCCs, using a panel of mouse lines expressing different Hoxa2 ectopic expression levels, including a newly generated Hoxa2 knocked-in mouse line. While ectopic Hoxa2 expression at only 60% of its physiological levels was sufficient for pinna duplication, ectopic Hoxa2 expression at 100% of its normal level was required for complete homeotic repatterning of a subset of PA1 skeletal elements into a duplicated set of PA2-like elements. On the other hand, ectopic Hoxa2 overexpression at non-physiological levels (200% of normal levels) led to an almost complete loss of craniofacial skeletal structures. Moreover, ectopic Hoxa5 overexpression in CNCCs, while also resulting in severe craniofacial defects, did not induce homeotic changes of PA1-derived CNCCs, indicating Hoxa2 specificity in repatterning a subset of Hox-negative CNCCs. These results reconcile some discrepancies in previously published experiments and indicate that distinct subpopulations of CNCCs are differentially sensitive to ectopic levels of Hox expression.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; (T.K.); (M.M.); (S.D.)
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; (T.K.); (M.M.); (S.D.)
- INSERM UMR 1121, Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67 000 Strasbourg, France
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; (T.K.); (M.M.); (S.D.)
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; (T.K.); (M.M.); (S.D.)
- Departement Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- Correspondence:
| |
Collapse
|
8
|
Compagnucci C, Martinus K, Griffin J, Depew MJ. Programmed Cell Death Not as Sledgehammer but as Chisel: Apoptosis in Normal and Abnormal Craniofacial Patterning and Development. Front Cell Dev Biol 2021; 9:717404. [PMID: 34692678 PMCID: PMC8531503 DOI: 10.3389/fcell.2021.717404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
Coordination of craniofacial development involves an complex, intricate, genetically controlled and tightly regulated spatiotemporal series of reciprocal inductive and responsive interactions among the embryonic cephalic epithelia (both endodermal and ectodermal) and the cephalic mesenchyme — particularly the cranial neural crest (CNC). The coordinated regulation of these interactions is critical both ontogenetically and evolutionarily, and the clinical importance and mechanistic sensitivity to perturbation of this developmental system is reflected by the fact that one-third of all human congenital malformations affect the head and face. Here, we focus on one element of this elaborate process, apoptotic cell death, and its role in normal and abnormal craniofacial development. We highlight four themes in the temporospatial elaboration of craniofacial apoptosis during development, namely its occurrence at (1) positions of epithelial-epithelial apposition, (2) within intra-epithelial morphogenesis, (3) during epithelial compartmentalization, and (4) with CNC metameric organization. Using the genetic perturbation of Satb2, Pbx1/2, Fgf8, and Foxg1 as exemplars, we examine the role of apoptosis in the elaboration of jaw modules, the evolution and elaboration of the lambdoidal junction, the developmental integration at the mandibular arch hinge, and the control of upper jaw identity, patterning and development. Lastly, we posit that apoptosis uniquely acts during craniofacial development to control patterning cues emanating from core organizing centres.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Craniofacial Development, King's College London, London, United Kingdom
| | - Kira Martinus
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany
| | - John Griffin
- Department of Craniofacial Development, King's College London, London, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael J Depew
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Department of Craniofacial Development, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Hirschberger C, Sleight VA, Criswell KE, Clark SJ, Gillis JA. Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw. Mol Biol Evol 2021; 38:4187-4204. [PMID: 33905525 PMCID: PMC8476176 DOI: 10.1093/molbev/msab123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral (DV) patterning mechanisms within the developing mandibular, hyoid, and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralizing BMP and endothelin signaling pathways and their effectors, the joint markers nkx3.2 and gdf5 and prochondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, whereas differences in notch signaling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the DV axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.
Collapse
Affiliation(s)
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | | | | | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| |
Collapse
|
10
|
Stundl J, Pospisilova A, Matějková T, Psenicka M, Bronner ME, Cerny R. Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Dev Biol 2020; 467:14-29. [PMID: 32835652 DOI: 10.1016/j.ydbio.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes.
Collapse
Affiliation(s)
- Jan Stundl
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic.
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Martin Psenicka
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
11
|
López‐Romero FA, Klimpfinger C, Tanaka S, Kriwet J. Growth trajectories of prenatal embryos of the deep-sea shark Chlamydoselachus anguineus (Chondrichthyes). JOURNAL OF FISH BIOLOGY 2020; 97:212-224. [PMID: 32307702 PMCID: PMC7497067 DOI: 10.1111/jfb.14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Chlamydoselachus anguineus, Garman 1884, commonly called the frilled shark, is a deep-sea shark species occurring up to depths of 1300 m. It is assumed to represent an ancient morphotype of sharks (e.g., terminal mouth opening, more than five gill slits) and thus is often considered to represent plesiomorphic traits for sharks. Therefore, its early ontogenetic developmental traits are important for understanding the evolution of its particular phenotype. Here, we established six stages for prenatal embryos and used linear measurements and geometric morphometrics to analyse changes in shape and size as well as their timing during different embryonic stages. Our results show a change in head shape and a relocation of the mouth opening at a late stage of development. We also detected a negative allometric growth of the head and especially the eye compared to the rest of the body and a sexual dimorphism in total body length, which differs from the known data for adults. A multivariate analysis of covariance shows a significant interaction of shape related to the logarithm of centroid size and developmental stage. Geometric morphometrics results indicate that the head shape changes as a covariate of body size while not accounting for differences between sexes. The growth pattern of stages 32 and 33 indicates a shift in head shape, thus highlighting the moment in development when the jaws start to elongate anteriorly to finally achieve the adult condition of terminal mouth opening rather than retaining the early embryonic subterminal position as is typical for sharks. Thus, the antero-terminal mouth opening of the frilled shark has to be considered a derived feature.
Collapse
Affiliation(s)
| | | | - Sho Tanaka
- School of Marine Science and Technology, Faculty of Marine Science and TechnologyTokai UniversityShizuoka Shimizu‐kuJapan
| | - Jürgen Kriwet
- Department of PaleontologyUniversity of ViennaViennaAustria
| |
Collapse
|
12
|
Klimpfinger C, Kriwet J. Comparative morphology of labial cartilages in sharks (Chondrichthyes, Elasmobranchii). THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1844323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- C. Klimpfinger
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - J. Kriwet
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Kaucka M, Adameyko I. Evolution and development of the cartilaginous skull: From a lancelet towards a human face. Semin Cell Dev Biol 2019; 91:2-12. [DOI: 10.1016/j.semcdb.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022]
|
14
|
Poopalasundaram S, Richardson J, Scott A, Donovan A, Liu K, Graham A. Diminution of pharyngeal segmentation and the evolution of the amniotes. ZOOLOGICAL LETTERS 2019; 5:6. [PMID: 30788138 PMCID: PMC6369561 DOI: 10.1186/s40851-019-0123-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/05/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND The pharyngeal arches are a series of bulges found on the lateral surface of the head of vertebrate embryos, and it is within these segments that components of the later anatomy are laid down. In most vertebrates, the post-otic pharyngeal arches will form the branchial apparatus, while in amniotes these segments are believed to generate the larynx. It has been unclear how the development of these segments has been altered with the emergence of the amniotes. RESULTS In this study, we examined the development of pharyngeal arches in amniotes and show that the post-otic pharyngeal arches in this clade are greatly diminished. We find that the post-otic segments do not undergo myogenesis or skeletogenesis, but are remodelled before these processes occur. We also find that nested DLX expression, which is a feature of all the pharyngeal arches in anamniotes, is associated with the anterior segments but less so with the posterior arches in amniotes. We further show that the posterior arches of the mouse embryo fail to properly delineate, which demonstrates the lack of function of these posterior segments in later development. CONCLUSION In amniotes, there has been a loss of the ancestral "branchial" developmental programme that is a general feature of gnathostomes; myogenesis and skeletogenesis This is likely to have facilitated the emergence of the larynx as a new structure not constrained by the segmental organisation of the posterior pharyngeal region.
Collapse
Affiliation(s)
| | - Jo Richardson
- Centre for Developmental Neurobiology, King’s College London, London, UK
| | - Annabelle Scott
- Centre for Developmental Neurobiology, King’s College London, London, UK
| | - Alex Donovan
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 1UL UK
| | - Karen Liu
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 1UL UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, King’s College London, London, UK
| |
Collapse
|
15
|
Probing the origin of matching functional jaws: roles of Dlx5/6 in cranial neural crest cells. Sci Rep 2018; 8:14975. [PMID: 30297736 PMCID: PMC6175850 DOI: 10.1038/s41598-018-33207-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Gnathostome jaws derive from the first pharyngeal arch (PA1), a complex structure constituted by Neural Crest Cells (NCCs), mesodermal, ectodermal and endodermal cells. Here, to determine the regionalized morphogenetic impact of Dlx5/6 expression, we specifically target their inactivation or overexpression to NCCs. NCC-specific Dlx5/6 inactivation (NCC∆Dlx5/6) generates severely hypomorphic lower jaws that present typical maxillary traits. Therefore, differently from Dlx5/6 null-embryos, the upper and the lower jaws of NCC∆Dlx5/6 mice present a different size. Reciprocally, forced Dlx5 expression in maxillary NCCs provokes the appearance of distinct mandibular characters in the upper jaw. We conclude that: (1) Dlx5/6 activation in NCCs invariably determines lower jaw identity; (2) the morphogenetic processes that generate functional matching jaws depend on the harmonization of Dlx5/6 expression in NCCs and in distinct ectodermal territories. The co-evolution of synergistic opposing jaws requires the coordination of distinct regulatory pathways involving the same transcription factors in distant embryonic territories.
Collapse
|
16
|
Lukas P, Olsson L. Bapx1
is required for jaw joint development in amphibians. Evol Dev 2018; 20:192-206. [DOI: 10.1111/ede.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paul Lukas
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Haeckel‐Haus und BiologiedidaktikFriedrich‐Schiller‐Universität JenaJenaGermany
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Haeckel‐Haus und BiologiedidaktikFriedrich‐Schiller‐Universität JenaJenaGermany
| |
Collapse
|
17
|
Lukas P, Olsson L. Bapx1 upregulation is associated with ectopic mandibular cartilage development in amphibians. ZOOLOGICAL LETTERS 2018; 4:16. [PMID: 29942645 PMCID: PMC5998585 DOI: 10.1186/s40851-018-0101-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The emergence of novel structures during evolution is crucial for creating variation among organisms, but the underlying processes which lead to the emergence of evolutionary novelties are poorly understood. The gnathostome jaw joint is such a novelty, and the incorporation of bapx1 expression into the intermediate first pharyngeal arch may have played a major role in the evolution of this joint. Knockdown experiments revealed that loss of bapx1 function leads to the loss of the jaw joint, because Meckel's cartilage and the palatoquadrate fuse during development. We used Xenopus laevis and Ambystoma mexicanum to further investigate the function of bapx1 in amphibians. Bapx1 expression levels were upregulated through the use of Ly-294,002 and we investigated the potential consequences of the enhanced bapx1 expression in amphibians to test the hypothesized joint inducing function of bapx1. RESULTS We show that Ly-294,002 upregulates bapx1 expression in vivo. Additionally, ectopic mandibular arch derived cartilages develop after Ly-294,002 treatment. These ectopic cartilages are dorsoventrally oriented rods situated lateral to the palatoquadrate. The development of these additional cartilages did not change the muscular arrangement of mandibular arch-derived muscles. CONCLUSIONS Development of additional mandibular cartilages is not unusual in larval anurans. Therefore, changes in the bapx1 expression during evolution may have been the reason for the development of several additional cartilages in the larval anuran jaw. Furthermore, our observations imply a joint-promoting function of bapx1, which further substantiates its hypothetical role in the evolution of the gnathostome jaw joint.
Collapse
Affiliation(s)
- Paul Lukas
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Erbertstr. 1, 07743 Jena, Germany
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Erbertstr. 1, 07743 Jena, Germany
| |
Collapse
|
18
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Basal Hypothalamus: Molecular Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2018; 12:17. [PMID: 29593505 PMCID: PMC5861214 DOI: 10.3389/fnana.2018.00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 02/21/2018] [Indexed: 11/30/2022] Open
Abstract
The hypothalamus is a key integrative center of the vertebrate brain. To better understand its ancestral morphological organization and evolution, we previously analyzed the segmental organization of alar subdivisions in the catshark Scyliorhinus canicula, a cartilaginous fish and thus a basal representative of gnathostomes (jawed vertebrates). With the same aim, we deepen here in the segmental organization of the catshark basal hypothalamus by revisiting previous data on ScOtp, ScDlx2/5, ScNkx2.1, ScShh expression and Shh immunoreactivity jointly with new data on ScLhx5, ScEmx2, ScLmx1b, ScPitx2, ScPitx3a, ScFoxa1, ScFoxa2 and ScNeurog2 expression and proliferating cell nuclear antigen (PCNA) immunoreactivity. Our study reveals a complex genoarchitecture for chondrichthyan basal hypothalamus on which a total of 21 microdomains were identified. Six belong to the basal acroterminal region, the rostral-most point of the basal neural tube; seven are described in the tuberal region (Tu/RTu); four in the perimamillar region (PM/PRM) and four in the mamillar one (MM/RM). Interestingly, the same set of genes does not necessarily describe the same microdomains in mice, which in part contributes to explain how forebrain diversity is achieved. This study stresses the importance of analyzing data from basal vertebrates to better understand forebrain diversity and hypothalamic evolution.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Arnaud Menuet
- UMR7355, CNRS, University of Orleans, Orleans, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, Banyuls-sur-Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Van Otterloo E, Li H, Jones KL, Williams T. AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning. Development 2018; 145:dev157438. [PMID: 29229773 PMCID: PMC5825845 DOI: 10.1242/dev.157438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
The evolution of a hinged moveable jaw with variable morphology is considered a major factor behind the successful expansion of the vertebrates. DLX homeobox transcription factors are crucial for establishing the positional code that patterns the mandible, maxilla and intervening hinge domain, but how the genes encoding these proteins are regulated remains unclear. Herein, we demonstrate that the concerted action of the AP-2α and AP-2β transcription factors within the mouse neural crest is essential for jaw patterning. In the absence of these two proteins, the hinge domain is lost and there are alterations in the size and patterning of the jaws correlating with dysregulation of homeobox gene expression, with reduced levels of Emx, Msx and Dlx paralogs accompanied by an expansion of Six1 expression. Moreover, detailed analysis of morphological features and gene expression changes indicate significant overlap with various compound Dlx gene mutants. Together, these findings reveal that the AP-2 genes have a major function in mammalian neural crest development, influencing patterning of the craniofacial skeleton via the DLX code, an effect that has implications for vertebrate facial evolution, as well as for human craniofacial disorders.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Fish JL. Evolvability of the vertebrate craniofacial skeleton. Semin Cell Dev Biol 2017; 91:13-22. [PMID: 29248471 DOI: 10.1016/j.semcdb.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Abstract
The skull is a vertebrate novelty. Morphological adaptations of the skull are associated with major evolutionary transitions, including the shift to a predatory lifestyle and the ability to masticate while breathing. These adaptations include the chondrocranium, dermatocranium, articulated jaws, primary and secondary palates, internal choanae, the middle ear, and temporomandibular joint. The incredible adaptive diversity of the vertebrate skull indicates an underlying bauplan that promotes evolvability. Comparative studies in craniofacial development suggest that the craniofacial bauplan includes three secondary organizers, two that are bilaterally placed at the Hinge of the developing jaw, and one situated in the midline of the developing face (the FEZ). These organizers regulate tissue interactions between the cranial neural crest, the neuroepithelium, and facial and pharyngeal epithelia that regulate the development and evolvability of the craniofacial skeleton.
Collapse
Affiliation(s)
- Jennifer L Fish
- University of Massachusetts Lowell, Department of Biological Sciences, 198 Riverside St., Olsen Hall 619, Lowell, MA 01854, U.S.A..
| |
Collapse
|
21
|
Askary A, Xu P, Barske L, Bay M, Bump P, Balczerski B, Bonaguidi MA, Crump JG. Genome-wide analysis of facial skeletal regionalization in zebrafish. Development 2017; 144:2994-3005. [PMID: 28705894 DOI: 10.1242/dev.151712] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022]
Abstract
Patterning of the facial skeleton involves the precise deployment of thousands of genes in distinct regions of the pharyngeal arches. Despite the significance for craniofacial development, how genetic programs drive this regionalization remains incompletely understood. Here we use combinatorial labeling of zebrafish cranial neural crest-derived cells (CNCCs) to define global gene expression along the dorsoventral axis of the developing arches. Intersection of region-specific transcriptomes with expression changes in response to signaling perturbations demonstrates complex roles for Endothelin 1 (Edn1) signaling in the intermediate joint-forming region, yet a surprisingly minor role in ventralmost regions. Analysis of co-variance across multiple sequencing experiments further reveals clusters of co-regulated genes, with in situ hybridization confirming the domain-specific expression of novel genes. We then created loss-of-function alleles for 12 genes and uncovered antagonistic functions of two new Edn1 targets, follistatin a (fsta) and emx2, in regulating cartilaginous joints in the hyoid arch. Our unbiased discovery and functional analysis of genes with regional expression in zebrafish arch CNCCs reveals complex regulation by Edn1 and points to novel candidates for craniofacial disorders.
Collapse
Affiliation(s)
- Amjad Askary
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Pengfei Xu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Lindsey Barske
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell Bay
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul Bump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Bartosz Balczerski
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael A Bonaguidi
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
22
|
Square T, Jandzik D, Romášek M, Cerny R, Medeiros DM. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Dev Biol 2017; 427:219-229. [DOI: 10.1016/j.ydbio.2016.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 11/20/2016] [Indexed: 01/30/2023]
|
23
|
Boughner JC. Implications of Vertebrate Craniodental Evo-Devo for Human Oral Health. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:321-333. [PMID: 28251806 DOI: 10.1002/jez.b.22734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
Highly processed diets eaten by postindustrial modern human populations coincide with higher frequencies of third molar impaction, malocclusion, and temporomandibular joint disorders that affect millions of people worldwide each year. Current treatments address symptoms, not causes, because the multifactorial etiologies of these three concerns mask which factors incline certain people to malocclusion, impaction, and/or joint issues. Deep scientific curiosity about the origins of jaws and dentitions continues to yield rich insights about the developmental genetic mechanisms that underpin healthy craniodental morphogenesis and integration. Mounting evidence from evolution and development (Evo-Devo) studies suggests that function is another mechanism important to healthy craniodental integration and fit. Starting as early as weaning, softer diets and thus lower bite forces appear to relax or disrupt integration of oral tissues, alter development and growth, and catalyze impaction, malocclusion, and jaw joint disorders. How developing oral tissues respond to bite forces remains poorly understood, but biomechanical feedback seems to alter balances of local bone resorption and deposition at the tooth-bone interface as well as affect tempos and amounts of facial outgrowth. Also, behavioral changes in jaw function and parafunction contribute to degeneration and pain in joint articular cartilages and masticatory muscles. The developmental genetic contribution to craniodental misfits and disorders is undeniable but still unclear; however, at present, human diet and jaw function remain important and much more actionable clinical targets. New Evo-Devo studies are needed to explain how function interfaces with craniodental phenotypic plasticity, variation, and evolvability to yield a spectrum of healthy and mismatched dentitions and jaws.
Collapse
Affiliation(s)
- Julia C Boughner
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Quintana-Urzainqui I, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2016; 10:113. [PMID: 27932958 PMCID: PMC5121248 DOI: 10.3389/fnana.2016.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
The hypothalamus is an important physiologic center of the vertebrate brain involved in the elaboration of individual and species survival responses. To better understand the ancestral organization of the alar hypothalamus we revisit previous data on ScOtp, ScDlx2/5, ScTbr1, ScNkx2.1 expression and Pax6 immunoreactivity jointly with new data on ScNeurog2, ScLhx9, ScLhx5, and ScNkx2.8 expression, in addition to immunoreactivity to serotonin (5-HT) and doublecortin (DCX) in the catshark Scyliorhinus canicula, a key species for this purpose since cartilaginous fishes are basal representatives of gnathostomes (jawed vertebrates). Our study revealed a complex genoarchitecture for the chondrichthyan alar hypothalamus. We identified terminal (rostral) and peduncular (caudal) subdivisions in the prosomeric paraventricular and subparaventricular areas (TPa/PPa and TSPa/PSPa, respectively) evidenced by the expression pattern of developmental genes like ScLhx5 (TPa) and immunoreactivity against Pax6 (PSPa) and 5-HT (PPa and PSPa). Dorso-ventral subdivisions were only evidenced in the SPa (SPaD, SPaV; respectively) by means of Pax6 and ScNkx2.8 (respectively). Interestingly, ScNkx2.8 expression overlaps over the alar-basal boundary, as Nkx2.2 does in other vertebrates. Our results reveal evidences for the existence of different groups of tangentially migrated cells expressing ScOtp, Pax6, and ScDlx2. The genoarchitectonic comparative analysis suggests alternative interpretations of the rostral-most alar plate in prosomeric terms and reveals a conserved molecular background for the vertebrate alar hypothalamus likely acquired before/during the agnathan-gnathostome transition, on which Otp, Pax6, Lhx5, and Neurog2 are expressed in the Pa while Dlx and Nkx2.2/Nkx2.8 are expressed in the SPa.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Arnaud Menuet
- CNRS, UMR 7355, University of Orleans Orleans, France
| | - Idoia Quintana-Urzainqui
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de CompostelaSantiago de Compostela, Spain; Centre for Integrative Physiology, University of EdinburghEdinburgh, UK
| | - Sylvie Mazan
- Sorbonne Universités, UPMC, CNRS UMR7232 Biologie Intégrative des Organismes Marins, Observatoire Océanologique Banyuls sur Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
25
|
Celá P, Buchtová M, Veselá I, Fu K, Bogardi JP, Song Y, Barlow A, Buxton P, Medalová J, Francis-West P, Richman JM. BMP signaling regulates the fate of chondro-osteoprogenitor cells in facial mesenchyme in a stage-specific manner. Dev Dyn 2016; 245:947-62. [PMID: 27264541 DOI: 10.1002/dvdy.24422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/12/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. RESULTS A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. CONCLUSIONS These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petra Celá
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Marcela Buchtová
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Iva Veselá
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Kathy Fu
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Philippe Bogardi
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Yiping Song
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Barlow
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Paul Buxton
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Jirina Medalová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Philippa Francis-West
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Joy M Richman
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
27
|
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet 2016; 12:e1005967. [PMID: 27058748 PMCID: PMC4825933 DOI: 10.1371/journal.pgen.1005967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. The exquisite functions of the vertebrate face require the precise formation of its underlying bones. Remarkably, many of the genes required to shape the facial skeleton are the same from fish to man. In this study, we use the powerful zebrafish system to understand how the skeletal components of the face acquire different shapes during development. To do so, we analyze a series of mutants that disrupt patterning of the facial skeleton, and then assess how the genes affected in these mutants control cell fate in skeletal progenitor cells. From these genetic studies, we found that several pathways converge to control when and where progenitor cells commit to a cartilage fate, thus controlling the size and shape of cartilage templates for the later-arising bones. Our work thus reveals how regulating the timing of when progenitor cells make skeleton helps to shape the bones of the zebrafish face. As mutations in many of the genes studied are implicated in human craniofacial defects, differences in the timing of progenitor cell differentiation may also explain the wonderful diversity of human faces.
Collapse
|
28
|
Havstad JC, Assis LC, Rieppel O. The semaphorontic view of homology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:578-87. [PMID: 26175214 PMCID: PMC5034804 DOI: 10.1002/jez.b.22634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/14/2015] [Indexed: 01/02/2023]
Abstract
The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra-organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter-species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity--ontogenetic (through development) and phylogenetic (via shared evolutionary history)--break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (-state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (-states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy.
Collapse
Affiliation(s)
- Joyce C. Havstad
- Philosopher‐in‐ResidenceScience & EducationThe Field MuseumChicagoIllinois
| | - Leandro C.S. Assis
- Departamento de Botânica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Olivier Rieppel
- Center for Integrative ResearchScience & EducationThe Field MuseumChicagoIllinois
| |
Collapse
|
29
|
Bhullar BAS, Morris ZS, Sefton EM, Tok A, Tokita M, Namkoong B, Camacho J, Burnham DA, Abzhanov A. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution 2015; 69:1665-77. [PMID: 25964090 DOI: 10.1111/evo.12684] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 12/17/2022]
Abstract
The avian beak is a key evolutionary innovation whose flexibility has permitted birds to diversify into a range of disparate ecological niches. We approached the problem of the mechanism behind this innovation using an approach bridging paleontology, comparative anatomy, and experimental developmental biology. First, we used fossil and extant data to show the beak is distinctive in consisting of fused premaxillae that are geometrically distinct from those of ancestral archosaurs. To elucidate underlying developmental mechanisms, we examined candidate gene expression domains in the embryonic face: the earlier frontonasal ectodermal zone (FEZ) and the later midfacial WNT-responsive region, in birds and several reptiles. This permitted the identification of an autapomorphic median gene expression region in Aves. To test the mechanism, we used inhibitors of both pathways to replicate in chicken the ancestral amniote expression. Altering the FEZ altered later WNT responsiveness to the ancestral pattern. Skeletal phenotypes from both types of experiments had premaxillae that clustered geometrically with ancestral fossil forms instead of beaked birds. The palatal region was also altered to a more ancestral phenotype. This is consistent with the fossil record and with the tight functional association of avian premaxillae and palate in forming a kinetic beak.
Collapse
Affiliation(s)
- Bhart-Anjan S Bhullar
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138. .,Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th St., Anatomy 306, Chicago, Illinois, 60637. .,Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut, 06520. .,Peabody Museum of Natural History, Yale University, P.O. Box 208109, New Haven, Connecticut, 06520.
| | - Zachary S Morris
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Elizabeth M Sefton
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138.,Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts, 02138
| | - Atalay Tok
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Bumjin Namkoong
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Jasmin Camacho
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - David A Burnham
- Biodiversity Institute and Natural History Museum, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, Kansas, 66045
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138. .,Current address: Department of Life Sciences, Imperial College London, Silwood Park Campus Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom. .,Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom.
| |
Collapse
|
30
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
31
|
Kitazawa T, Fujisawa K, Narboux-Nême N, Arima Y, Kawamura Y, Inoue T, Wada Y, Kohro T, Aburatani H, Kodama T, Kim KS, Sato T, Uchijima Y, Maeda K, Miyagawa-Tomita S, Minoux M, Rijli FM, Levi G, Kurihara Y, Kurihara H. Distinct effects of Hoxa2 overexpression in cranial neural crest populations reveal that the mammalian hyomandibular-ceratohyal boundary maps within the styloid process. Dev Biol 2015; 402:162-74. [PMID: 25889273 DOI: 10.1016/j.ydbio.2015.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Most gnathostomata craniofacial structures derive from pharyngeal arches (PAs), which are colonized by cranial neural crest cells (CNCCs). The anteroposterior and dorsoventral identities of CNCCs are defined by the combinatorial expression of Hox and Dlx genes. The mechanisms associating characteristic Hox/Dlx expression patterns with the topology and morphology of PAs derivatives are only partially known; a better knowledge of these processes might lead to new concepts on the origin of taxon-specific craniofacial morphologies and of certain craniofacial malformations. Here we show that ectopic expression of Hoxa2 in Hox-negative CNCCs results in distinct phenotypes in different CNCC subpopulations. Namely, while ectopic Hoxa2 expression is sufficient for the morphological and molecular transformation of the first PA (PA1) CNCC derivatives into the second PA (PA2)-like structures, this same genetic alteration does not provoke the transformation of derivatives of other CNCC subpopulations, but severely impairs their development. Ectopic Hoxa2 expression results in the transformation of the proximal Meckel's cartilage and of the malleus, two ventral PA1 CNCCs derivatives, into a supernumerary styloid process (SP), a PA2-derived mammalian-specific skeletal structure. These results, together with experiments to inactivate and ectopically activate the Edn1-Dlx5/6 pathway, indicate a dorsoventral PA2 (hyomandibular/ceratohyal) boundary passing through the middle of the SP. The present findings suggest context-dependent function of Hoxa2 in CNCC regional specification and morphogenesis, and provide novel insights into the evolution of taxa-specific patterning of PA-derived structures.
Collapse
Affiliation(s)
- Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kou Fujisawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nicolas Narboux-Nême
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris Cedex 05, France
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yumiko Kawamura
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tsuyoshi Inoue
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Youichiro Wada
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takahide Kohro
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Department of Translational Research for Healthcare and Clinical Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Ki-Sung Kim
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Sato
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kazuhiro Maeda
- Division of Cardiovascular Development and Differentiation, Medical Research Institute, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sachiko Miyagawa-Tomita
- Division of Cardiovascular Development and Differentiation, Medical Research Institute, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculté de chirurgie dentaire, 1, place de l'hôpital, 67 000 Strasbourg, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4056 Basel, Switzerland
| | - Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris Cedex 05, France
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan; Institute for Biology and Mathematics of Dynamical Cell Processes (iBMath), The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan.
| |
Collapse
|
32
|
Santos-Durán GN, Menuet A, Lagadec R, Mayeur H, Ferreiro-Galve S, Mazan S, Rodríguez-Moldes I, Candal E. Prosomeric organization of the hypothalamus in an elasmobranch, the catshark Scyliorhinus canicula. Front Neuroanat 2015; 9:37. [PMID: 25904850 PMCID: PMC4389657 DOI: 10.3389/fnana.2015.00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
The hypothalamus has been a central topic in neuroanatomy because of its important physiological functions, but its mature organization remains elusive. Deciphering its embryonic and adult organization is crucial in an evolutionary approach of the organization of the vertebrate forebrain. Here we studied the molecular organization of the hypothalamus and neighboring telencephalic domains in a cartilaginous fish, the catshark, Scyliorhinus canicula, focusing on ScFoxg1a, ScShh, ScNkx2.1, ScDlx2/5, ScOtp, and ScTbr1 expression profiles and on the identification α-acetylated-tubulin-immunoreactive (ir), TH-ir, 5-HT-ir, and GFAP-ir structures by means of immunohistochemistry. Analysis of the results within the updated prosomeric model framework support the existence of alar and basal histogenetic compartments in the hypothalamus similar to those described in the mouse, suggesting the ancestrality of these subdivisions in jawed vertebrates. These data provide new insights into hypothalamic organization in cartilaginous fishes and highlight the generality of key features of the prosomeric model in jawed vertebrates.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Centro de Investigaciones Biológicas, Department of Cell Biology and Ecology, University of Santiago de Compostela Santiago de Compostela, Spain
| | - Arnaud Menuet
- Centre National de la Recherche Scientifique, Experimental and Molecular Immunology and Neurogenetics, University of Orleans UMR7355, Orleans, France
| | - Ronan Lagadec
- Centre National de la Recherche Scientifique, FR2424, Development and Evolution of Vertebrates Group, Sorbonne Universités - Université Pierre et Marie Curie Roscoff, France
| | - Hélène Mayeur
- Centre National de la Recherche Scientifique, FR2424, Development and Evolution of Vertebrates Group, Sorbonne Universités - Université Pierre et Marie Curie Roscoff, France
| | - Susana Ferreiro-Galve
- Centre National de la Recherche Scientifique, FR2424, Development and Evolution of Vertebrates Group, Sorbonne Universités - Université Pierre et Marie Curie Roscoff, France
| | - Sylvie Mazan
- Centre National de la Recherche Scientifique, FR2424, Development and Evolution of Vertebrates Group, Sorbonne Universités - Université Pierre et Marie Curie Roscoff, France
| | - Isabel Rodríguez-Moldes
- Centro de Investigaciones Biológicas, Department of Cell Biology and Ecology, University of Santiago de Compostela Santiago de Compostela, Spain
| | - Eva Candal
- Centro de Investigaciones Biológicas, Department of Cell Biology and Ecology, University of Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
33
|
The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain. Nat Commun 2015; 6:6686. [DOI: 10.1038/ncomms7686] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/19/2015] [Indexed: 12/25/2022] Open
|
34
|
Morphogenesis of the cerebellum and cerebellum-related structures in the shark Scyliorhinus canicula: insights on the ground pattern of the cerebellar ontogeny. Brain Struct Funct 2015; 221:1691-717. [DOI: 10.1007/s00429-015-0998-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
35
|
Jackson HW, Prakash D, Litaker M, Ferreira T, Jezewski PA. Zebrafish Wnt9b Patterns the First Pharyngeal Arch into D-I-V Domains and Promotes Anterior-Medial Outgrowth. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajmb.2015.53006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Pose-Méndez S, Candal E, Mazan S, Rodríguez-Moldes I. Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan–gnathostome transition. Brain Struct Funct 2015; 221:1321-35. [DOI: 10.1007/s00429-014-0973-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022]
|
37
|
Square T, Jandzik D, Cattell M, Coe A, Doherty J, Medeiros DM. A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. Dev Biol 2014; 397:293-304. [PMID: 25446275 DOI: 10.1016/j.ydbio.2014.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
Abstract
The morphology of the vertebrate head skeleton is highly plastic, with the number, size, shape, and position of its components varying dramatically between groups. While this evolutionary flexibility has been key to vertebrate success, its developmental and genetic bases are poorly understood. The larval head skeleton of the frog Xenopus laevis possesses a unique combination of ancestral tetrapod features and anuran-specific novelties. We built a detailed gene expression map of the head mesenchyme in X. laevis during early larval development, focusing on transcription factor families with known functions in vertebrate head skeleton development. This map was then compared to homologous gene expression in zebrafish, mouse, and shark embryos to identify conserved and evolutionarily flexible aspects of vertebrate head skeleton development. While we observed broad conservation of gene expression between X. laevis and other gnathostomes, we also identified several divergent features that correlate to lineage-specific novelties. We noted a conspicuous change in dlx1/2 and emx2 expression in the second pharyngeal arch, presaging the differentiation of the reduced dorsal hyoid arch skeletal element typical of modern anamniote tetrapods. In the first pharyngeal arch we observed a shift in the expression of the joint inhibitor barx1, and new expression of the joint marker gdf5, shortly before skeletal differentiation. This suggests that the anuran-specific infrarostral cartilage evolved by partitioning of Meckel's cartilage with a new paired joint. Taken together, these comparisons support a model in which early patterning mechanisms divide the vertebrate head mesenchyme into a highly conserved set of skeletal precursor populations. While subtle changes in this early patterning system can affect skeletal element size, they do not appear to underlie the evolution of new joints or cartilages. In contrast, later expression of the genes that regulate skeletal element differentiation can be clearly linked to the evolution of novel skeletal elements. We posit that changes in the expression of downstream regulators of skeletal differentiation, like barx1 and gdf5, is one mechanism by which head skeletal element number and articulation are altered during evolution.
Collapse
Affiliation(s)
- Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84215, Slovakia
| | - Maria Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Alex Coe
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Jacob Doherty
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
38
|
Firulli BA, Fuchs RK, Vincentz JW, Clouthier DE, Firulli AB. Hand1 phosphoregulation within the distal arch neural crest is essential for craniofacial morphogenesis. Development 2014; 141:3050-61. [PMID: 25053435 DOI: 10.1242/dev.107680] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study we examine the consequences of altering Hand1 phosphoregulation in the developing neural crest cells (NCCs) of mice. Whereas Hand1 deletion in NCCs reveals a nonessential role for Hand1 in craniofacial development and embryonic survival, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, in NCCs results in severe mid-facial clefting and neonatal death. Hand1 phosphorylation mutants exhibit a non-cell-autonomous increase in pharyngeal arch cell death accompanied by alterations in Fgf8 and Shh pathway expression. Together, our data indicate that the extreme distal pharyngeal arch expression domain of Hand1 defines a novel bHLH-dependent activity, and that disruption of established Hand1 dimer phosphoregulation within this domain disrupts normal craniofacial patterning.
Collapse
Affiliation(s)
- Beth A Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Robyn K Fuchs
- Department of Physical Therapy and the Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Science, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 E 17th Avenue, Rm. 11-109, MS 8120, Aurora, CO 80045, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| |
Collapse
|
39
|
Quintana-Urzainqui I, Rodríguez-Moldes I, Mazan S, Candal E. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications. Brain Struct Funct 2014; 220:2905-26. [PMID: 25079345 DOI: 10.1007/s00429-014-0834-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 06/24/2014] [Indexed: 01/18/2023]
Abstract
Tangential neuronal migration occurs along different axes from the axis demarcated by radial glia and it is thought to have evolved as a mechanism to increase the diversity of cell types in brain areas, which in turn resulted in increased complexity of functional networks. In the telencephalon of amniotes, different embryonic tangential pathways have been characterized. However, little is known about the exact routes of migrations in basal vertebrates. Cartilaginous fishes occupy a key phylogenetic position to assess the ancestral condition of vertebrate brain organization. In order to identify putative subpallial-derived tangential migratory pathways in the telencephalon of sharks, we performed a detailed analysis of the distribution pattern of GAD and Dlx2, two reliable markers of tangentially migrating interneurons of subpallial origin in the developing forebrain. We propose the existence of five tangential routes directed toward different telencephalic regions. We conclude that four of the five routes might have emerged in the common ancestor of jawed vertebrates. We have paid special attention to the characterization of the proposed migratory pathway directed towards the olfactory bulbs. Our results suggest that it may be equivalent to the "rostral migratory stream" of mammals and led us to propose a hypothesis about its evolution. The analysis of the final destinations of two other streams allowed us to identify the putative dorsal and medial pallium of sharks, the regions from which the neocortex and hippocampus might have, respectively, evolved. Derived features were also reported and served to explain some distinctive traits in the morphology of the telencephalon of cartilaginous fishes.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Biología Celular y Ecología, Edificio CIBUS, Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
40
|
Braasch I, Guiguen Y, Loker R, Letaw JH, Ferrara A, Bobe J, Postlethwait JH. Connectivity of vertebrate genomes: Paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163:24-36. [PMID: 24486528 PMCID: PMC4032612 DOI: 10.1016/j.cbpc.2014.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/14/2023]
Abstract
Teleost fish are important models for human biology, health, and disease. Because genome duplication in a teleost ancestor (TGD) impacts the evolution of teleost genome structure and gene repertoires, we must discriminate gene functions that are shared and ancestral from those that are lineage-specific in teleosts or tetrapods to accurately apply inferences from teleost disease models to human health. Generalizations must account both for the TGD and for divergent evolution between teleosts and tetrapods after the likely two rounds of genome duplication shared by all vertebrates. Progress in sequencing techniques provides new opportunities to generate genomic and transcriptomic information from a broad range of phylogenetically informative taxa that facilitate detailed understanding of gene family and gene function evolution. We illustrate here the use of new sequence resources from spotted gar (Lepisosteus oculatus), a rayfin fish that diverged from teleosts before the TGD, as well as RNA-Seq data from gar and multiple teleost lineages to reconstruct the evolution of the Paired-related homeobox (Prrx) transcription factor gene family, which is involved in the development of mesoderm and neural crest-derived mesenchyme. We show that for Prrx genes, the spotted gar genome and gene expression patterns mimic mammals better than teleosts do. Analyses force the seemingly paradoxical conclusion that regulatory mechanisms for the limb expression domains of Prrx genes existed before the evolution of paired appendages. Detailed evolutionary analyses like those reported here are required to identify fish species most similar to the human genome to optimally connect fish models to human gene functions in health and disease.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, 97403-1254 OR, USA.
| | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000 Rennes, France.
| | - Ryan Loker
- Institute of Neuroscience, University of Oregon, Eugene, 97403-1254 OR, USA.
| | - John H Letaw
- Institute of Neuroscience, University of Oregon, Eugene, 97403-1254 OR, USA.
| | - Allyse Ferrara
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000 Rennes, France.
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, 97403-1254 OR, USA.
| |
Collapse
|
41
|
Compagnucci C, Fish J, Depew MJ. Left-right asymmetry of the gnathostome skull: its evolutionary, developmental, and functional aspects. Genesis 2014; 52:515-27. [PMID: 24753133 DOI: 10.1002/dvg.22786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/21/2014] [Indexed: 11/06/2022]
Abstract
Much of the gnathostome (jawed vertebrate) evolutionary radiation was dependent on the ability to sense and interpret the environment and subsequently act upon this information through utilization of a specialized mode of feeding involving the jaws. While the gnathostome skull, reflective of the vertebrate baüplan, typically is bilaterally symmetric with right (dextral) and left (sinistral) halves essentially representing mirror images along the midline, both adaptive and abnormal asymmetries have appeared. Herein we provide a basic primer on studies of the asymmetric development of the gnathostome skull, touching briefly on asymmetry as a field of study, then describing the nature of cranial development and finally underscoring evolutionary and functional aspects of left-right asymmetric cephalic development.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesù Children's Research Hospital, IRCCS, 00165, Rome, Italy
| | | | | |
Collapse
|
42
|
Inman KE, Purcell P, Kume T, Trainor PA. Interaction between Foxc1 and Fgf8 during mammalian jaw patterning and in the pathogenesis of syngnathia. PLoS Genet 2013; 9:e1003949. [PMID: 24385915 PMCID: PMC3868537 DOI: 10.1371/journal.pgen.1003949] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/25/2013] [Indexed: 02/05/2023] Open
Abstract
Syngnathia (bony fusion of the upper and lower jaw) is a rare human congenital condition, with fewer than sixty cases reported in the literature. Syngnathia typically presents as part of a complex syndrome comprising widespread oral and maxillofacial anomalies, but it can also occur in isolation. Most cartilage, bone, and connective tissue of the head and face is derived from neural crest cells. Hence, congenital craniofacial anomalies are often attributed to defects in neural crest cell formation, survival, migration, or differentiation. The etiology and pathogenesis of syngnathia however remains unknown. Here, we report that Foxc1 null embryos display bony syngnathia together with defects in maxillary and mandibular structures, and agenesis of the temporomandibular joint (TMJ). In the absence of Foxc1, neural crest cell derived osteogenic patterning is affected, as osteoblasts develop ectopically in the maxillary prominence and fuse with the dentary bone. Furthermore, we observed that the craniofacial musculature is also perturbed in Foxc1 null mice, which highlights the complex tissue interactions required for proper jaw development. We present evidence that Foxc1 and Fgf8 genetically interact and that Fgf8 dosage is associated with variation in the syngnathic phenotype. Together our data demonstrates that Foxc1 – Fgf8 signaling regulates mammalian jaw patterning and provides a mechanistic basis for the pathogenesis of syngnathia. Furthermore, our work provides a framework for understanding jaw patterning and the etiology of other congenital craniofacial anomalies, including temporomandibular joint agenesis. Approximately one-third of all babies born with congenital defects, exhibit malformations of the head and face. Anomalies can include cleft lip, cleft palate, and abnormal development of bones and muscles. Such defects result in significant infant mortality, as well as life-long physical and social consequences for patients. Improved repair and the development of prevention strategies requires a thorough understanding of the underlying genetic, molecular, and environmental factors that contribute to normal craniofacial development and the pathogenesis of disease. In this study, we report the first genetic model of syngnathia, a rare human craniofacial defect characterized by bony fusion of the upper and lower jaw. We discovered that Foxc1 is required for normal development of the bones and muscles of the jaw as well as the jaw joint. Our studies provide a mechanistic basis for understanding the cause of human syngnathia as well as the failure of jaw joint formation. Furthermore, our work enhances our knowledge of jaw development and may inform treatment strategies for patients with syngnathia and related craniofacial malformation conditions.
Collapse
Affiliation(s)
- Kimberly E. Inman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Patricia Purcell
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy & Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gitton Y, Narboux-Nême N, Levi G. Transitory expression of Dlx5 and Dlx6 in maxillary arch epithelial precursors is essential for upper jaw morphogenesis. F1000Res 2013; 2:261. [PMID: 25339984 PMCID: PMC4193393 DOI: 10.12688/f1000research.2-261.v3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 01/23/2023] Open
Abstract
Asymmetric, articulated jaws are characteristic of most vertebrate species; they derive from the first pharyngeal arch (PA1) which generates both maxillary and mandibular components. PA1 is colonized by cranial neural crest cells (CNCCs) which give rise to most bones and tendons of the jaws. The elements formed by different CNCCs contingents are specified by the combinatorial expression of
Dlx genes.
Dlx5 and
Dlx6 are predominantly expressed by mandibular CNCCs. Analysis of the phenotype of
Dlx5 and
Dlx6 double mutant mice has suggested that they are necessary and sufficient to specify mandibular identity. Here, using 3D reconstruction, we show that inactivation of
Dlx5 and
Dlx6 does not only affect the mandibular arch, but results in the simultaneous transformation of mandibular and maxillary skeletal elements which assume a similar morphology with gain of symmetry. As
Dlx5- and
Dlx6-expressing cells are not found in the maxillary bud, we have examined the lineage of
Dlx5-expressing progenitors using an
in vivo genetic approach. We find that a contingent of cells deriving from epithelial precursors transiently expressing
Dlx5 participate in the formation of the maxillary arch. These cells are mostly located in the distal part of the maxillary arch and might derive from its lambdoidal junction with the olfactory pit. Our observations provide the first genetic demonstration of the ‘Hinge and Caps’ model[1]. We support the notion that ‘cap’ signals could originate from epithelial derivatives of
Dlx5-expressing progenitors which migrate and colonize the maxillary arch epithelium. Our results imply that Dlx5 and Dlx6 control upper and lower jaw morphogenesis through different coordinated mechanisms to generate functional, articulated jaws.
Collapse
Affiliation(s)
- Yorick Gitton
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Narboux-Nême
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
44
|
Higashiyama H, Kuratani S. On the maxillary nerve. J Morphol 2013; 275:17-38. [DOI: 10.1002/jmor.20193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroki Higashiyama
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe 650-0047 Japan
| |
Collapse
|
45
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|