1
|
Subramanian E, Elewa A, Brito G, Kumar A, Segerstolpe Å, Karampelias C, Björklund Å, Sandberg R, Echeverri K, Lui WO, Andersson O, Simon A. A small noncoding RNA links ribosome recovery and translation control to dedifferentiation during salamander limb regeneration. Dev Cell 2023; 58:450-460.e6. [PMID: 36893754 DOI: 10.1016/j.devcel.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Building a blastema from the stump is a key step of salamander limb regeneration. Stump-derived cells temporarily suspend their identity as they contribute to the blastema by a process generally referred to as dedifferentiation. Here, we provide evidence for a mechanism that involves an active inhibition of protein synthesis during blastema formation and growth. Relieving this inhibition results in a higher number of cycling cells and enhances the pace of limb regeneration. By small RNA profiling and fate mapping of skeletal muscle progeny as a cellular model for dedifferentiation, we find that the downregulation of miR-10b-5p is critical for rebooting the translation machinery. miR-10b-5p targets ribosomal mRNAs, and its artificial upregulation causes decreased blastema cell proliferation, reduction in transcripts that encode ribosomal subunits, diminished nascent protein synthesis, and retardation of limb regeneration. Taken together, our data identify a link between miRNA regulation, ribosome biogenesis, and protein synthesis during newt limb regeneration.
Collapse
Affiliation(s)
| | - Ahmed Elewa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gonçalo Brito
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anoop Kumar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Infrastructure of Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, USA
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Siddiqui HB, Dogru S, Lashkarinia SS, Pekkan K. Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development. J Cardiovasc Dev Dis 2022; 9:jcdd9020064. [PMID: 35200717 PMCID: PMC8876703 DOI: 10.3390/jcdd9020064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
During embryonic development, changes in the cardiovascular microstructure and material properties are essential for an integrated biomechanical understanding. This knowledge also enables realistic predictive computational tools, specifically targeting the formation of congenital heart defects. Material characterization of cardiovascular embryonic tissue at consequent embryonic stages is critical to understand growth, remodeling, and hemodynamic functions. Two biomechanical loading modes, which are wall shear stress and blood pressure, are associated with distinct molecular pathways and govern vascular morphology through microstructural remodeling. Dynamic embryonic tissues have complex signaling networks integrated with mechanical factors such as stress, strain, and stiffness. While the multiscale interplay between the mechanical loading modes and microstructural changes has been studied in animal models, mechanical characterization of early embryonic cardiovascular tissue is challenging due to the miniature sample sizes and active/passive vascular components. Accordingly, this comparative review focuses on the embryonic material characterization of developing cardiovascular systems and attempts to classify it for different species and embryonic timepoints. Key cardiovascular components including the great vessels, ventricles, heart valves, and the umbilical cord arteries are covered. A state-of-the-art review of experimental techniques for embryonic material characterization is provided along with the two novel methods developed to measure the residual and von Mises stress distributions in avian embryonic vessels noninvasively, for the first time in the literature. As attempted in this review, the compilation of embryonic mechanical properties will also contribute to our understanding of the mature cardiovascular system and possibly lead to new microstructural and genetic interventions to correct abnormal development.
Collapse
Affiliation(s)
- Hummaira Banu Siddiqui
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
| | - Sedat Dogru
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Seyedeh Samaneh Lashkarinia
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Bioengineering, Imperial College London, London SW7 2BX, UK
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Correspondence: ; Tel.: +90-(533)-356-3595
| |
Collapse
|
3
|
Nachtigall PG, Bovolenta LA, Patton JG, Fromm B, Lemke N, Pinhal D. A comparative analysis of heart microRNAs in vertebrates brings novel insights into the evolution of genetic regulatory networks. BMC Genomics 2021; 22:153. [PMID: 33663371 PMCID: PMC7931589 DOI: 10.1186/s12864-021-07441-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During vertebrate evolution, the heart has undergone remarkable changes that lead to morphophysiological differences in the fully formed heart of these species, such as chamber septation, heart rate frequency, blood pressure, and cardiac output volume. Despite these differences, the heart developmental process is guided by a core gene set conserved across vertebrates. Nonetheless, the regulatory mechanisms controlling the expression of genes involved in heart development and maintenance are largely uncharted. MicroRNAs (miRNAs) have been described as important regulatory elements in several biological processes, including heart biology. These small RNA molecules are broadly conserved in sequence and genomic context in metazoans. Mutations may occur in miRNAs and/or genes that contribute to the establishment of distinct repertoires of miRNA-target interactions, thereby favoring the differential control of gene expression and, consequently, the origin of novel phenotypes. In fact, several studies showed that miRNAs are integrated into genetic regulatory networks (GRNs) governing specific developmental programs and diseases. However, studies integrating miRNAs in vertebrate heart GRNs under an evolutionary perspective are still scarce. RESULTS We comprehensively examined and compared the heart miRNome of 20 species representatives of the five major vertebrate groups. We found 54 miRNA families with conserved expression and a variable number of miRNA families with group-specific expression in fishes, amphibians, reptiles, birds, and mammals. We also detected that conserved miRNAs present higher expression levels and a higher number of targets, whereas the group-specific miRNAs present lower expression levels and few targets. CONCLUSIONS Both the conserved and group-specific miRNAs can be considered modulators orchestrating the core and peripheral genes of heart GRNs of vertebrates, which can be related to the morphophysiological differences and similarities existing in the heart of distinct vertebrate groups. We propose a hypothesis to explain evolutionary differences in the putative functional roles of miRNAs in the heart GRNs analyzed. Furthermore, we present new insights into the molecular mechanisms that could be helping modulate the diversity of morphophysiology in the heart organ of vertebrate species.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Laboratório Especial de Toxinologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, Brazil. .,Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - Bastian Fromm
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ney Lemke
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
4
|
Viaut C, Weldon S, Münsterberg A. Fine-tuning of the PAX-SIX-EYA-DACH network by multiple microRNAs controls embryo myogenesis. Dev Biol 2021; 469:68-79. [PMID: 33080252 DOI: 10.1016/j.ydbio.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs), short non-coding RNAs, which act post-transcriptionally to regulate gene expression, are of widespread significance during development and disease, including muscle disease. Advances in sequencing technology and bioinformatics led to the identification of a large number of miRNAs in vertebrates and other species, however, for many of these miRNAs specific roles have not yet been determined. LNA in situ hybridisation has revealed expression patterns of somite-enriched miRNAs, here we focus on characterising the functions of miR-128. We show that antagomiR-mediated knockdown (KD) of miR-128 in developing chick somites has a negative impact on skeletal myogenesis. Computational analysis identified the transcription factor EYA4 as a candidate target consistent with the observation that miR-128 and EYA4 display similar expression profiles. Luciferase assays confirmed that miR-128 interacts with the EYA4 3'UTR. In vivo experiments also suggest that EYA4 is regulated by miR-128. EYA4 is a member of the PAX-SIX-EYA-DACH (PSED) network of transcription factors. Therefore, we identified additional candidate miRNA binding sites in the 3'UTR of SIX1/4, EYA1/2/3 and DACH1. Using the miRanda algorithm, we found sites for miR-128, as well as for other myogenic miRNAs, miR-1a, miR-206 and miR-133a, some of these were experimentally confirmed as functional miRNA target sites. Our results reveal that miR-128 is involved in regulating skeletal myogenesis by directly targeting EYA4 with indirect effects on other PSED members, including SIX4 and PAX3. Hence, the inhibitory effect on myogenesis observed after miR-128 knockdown was rescued by concomitant knockdown of PAX3. Moreover, we show that the PSED network of transcription factors is co-regulated by multiple muscle-enriched microRNAs.
Collapse
Affiliation(s)
- Camille Viaut
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Shannon Weldon
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
5
|
miR-128a Acts as a Regulator in Cardiac Development by Modulating Differentiation of Cardiac Progenitor Cell Populations. Int J Mol Sci 2020; 21:ijms21031158. [PMID: 32050579 PMCID: PMC7038042 DOI: 10.3390/ijms21031158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRs) appear to be major, yet poorly understood players in regulatory networks guiding cardiogenesis. We sought to identify miRs with unknown functions during cardiogenesis analyzing the miR-profile of multipotent Nkx2.5 enhancer cardiac progenitor cells (NkxCE-CPCs). Besides well-known candidates such as miR-1, we found about 40 miRs that were highly enriched in NkxCE-CPCs, four of which were chosen for further analysis. Knockdown in zebrafish revealed that only miR-128a affected cardiac development and function robustly. For a detailed analysis, loss-of-function and gain-of-function experiments were performed during in vitro differentiations of transgenic murine pluripotent stem cells. MiR-128a knockdown (1) increased Isl1, Sfrp5, and Hcn4 (cardiac transcription factors) but reduced Irx4 at the onset of cardiogenesis, (2) upregulated Isl1-positive CPCs, whereas NkxCE-positive CPCs were downregulated, and (3) increased the expression of the ventricular cardiomyocyte marker Myl2 accompanied by a reduced beating frequency of early cardiomyocytes. Overexpression of miR-128a (4) diminished the expression of Isl1, Sfrp5, Nkx2.5, and Mef2c, but increased Irx4, (5) enhanced NkxCE-positive CPCs, and (6) favored nodal-like cardiomyocytes (Tnnt2+, Myh6+, Shox2+) accompanied by increased beating frequencies. In summary, we demonstrated that miR-128a plays a so-far unknown role in early heart development by affecting the timing of CPC differentiation into various cardiomyocyte subtypes.
Collapse
|
6
|
Yang H, Qin X, Wang H, Zhao X, Liu Y, Wo HT, Liu C, Nishiga M, Chen H, Ge J, Sayed N, Abilez OJ, Ding D, Heilshorn SC, Li K. An in Vivo miRNA Delivery System for Restoring Infarcted Myocardium. ACS NANO 2019; 13:9880-9894. [PMID: 31149806 PMCID: PMC7930012 DOI: 10.1021/acsnano.9b03343] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A major challenge in myocardial infarction (MI)-related heart failure treatment using microRNA is the efficient and sustainable delivery of miRNAs into myocardium to achieve functional improvement through stimulation of intrinsic myocardial restoration. In this study, we established an in vivo delivery system using polymeric nanoparticles to carry miRNA (miNPs) for localized delivery within a shear-thinning injectable hydrogel. The miNPs triggered proliferation of human embryonic stem cell-derived cardiomyocytes and endothelial cells (hESC-CMs and hESC-ECs) and promoted angiogenesis in hypoxic conditions, showing significantly lower cytotoxicity than Lipofectamine. Furthermore, one injected dose of hydrogel/miNP in MI rats demonstrated significantly improved cardiac functions: increased ejection fraction from 45% to 64%, reduced scar size from 20% to 10%, and doubled capillary density in the border zone compared to the control group at 4 weeks. As such, our results indicate that this injectable hydrogel/miNP composite can deliver miRNA to restore injured myocardium efficiently and safely.
Collapse
Affiliation(s)
- Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
- Corresponding Authors.,
| | - Xulei Qin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Huiyuan Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Xin Zhao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Yonggang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Hung-Ta Wo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Haodong Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jing Ge
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Oscar J. Abilez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
- Corresponding Authors.,
| |
Collapse
|
7
|
Sabin KZ, Jiang P, Gearhart MD, Stewart R, Echeverri K. AP-1 cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun Biol 2019; 2:91. [PMID: 30854483 PMCID: PMC6403268 DOI: 10.1038/s42003-019-0335-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Salamanders have the remarkable ability to functionally regenerate after spinal cord transection. In response to injury, GFAP+ glial cells in the axolotl spinal cord proliferate and migrate to replace the missing neural tube and create a permissive environment for axon regeneration. Molecular pathways that regulate the pro-regenerative axolotl glial cell response are poorly understood. Here we show axolotl glial cells up-regulate AP-1cFos/JunB after injury, which promotes a pro-regenerative glial cell response. Injury induced upregulation of miR-200a in glial cells supresses c-Jun expression in these cells. Inhibition of miR-200a during regeneration causes defects in axonal regrowth and transcriptomic analysis revealed that miR-200a inhibition leads to differential regulation of genes involved with reactive gliosis, the glial scar, extracellular matrix remodeling and axon guidance. This work identifies a unique role for miR-200a in inhibiting reactive gliosis in axolotl glial cells during spinal cord regeneration. Keith Sabin et al. showed that upregulation of the AP-1 complex, composed of c-Fos and JunB, in the axolotl spinal cord promotes a pro-regenerative glial cell response. This response is impaired by inhibition of miR-200a; suggesting an important role for this microRNA in axolotl spinal cord regeneration.
Collapse
Affiliation(s)
- Keith Z Sabin
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA. .,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA.
| |
Collapse
|
8
|
Yan P, Sun C, Ma J, Jin Z, Guo R, Yang B. MicroRNA‐128 confers protection against cardiac microvascular endothelial cell injury in coronary heart disease via negative regulation of IRS1. J Cell Physiol 2019; 234:13452-13463. [DOI: 10.1002/jcp.28025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ping Yan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan Shanxi Province P. R. China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University Taiyuan Shanxi Province P. R. China
| | - Chen Sun
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan Shanxi Province P. R. China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University Taiyuan Shanxi Province P. R. China
| | - Jiale Ma
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan Shanxi Province P. R. China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University Taiyuan Shanxi Province P. R. China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua Zhejiang Province P. R. China
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan Shanxi Province P. R. China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University Taiyuan Shanxi Province P. R. China
| | - Bin Yang
- Department of Cardiovascular Medicine, Shanxi Cardiovascular Hospital Taiyuan Shanxi Province P. R. China
- Department of Cardiovascular Medicine, The Cardiovascular Affiliated Hospital of Shanxi Medical University Taiyuan Shanxi Province P. R. China
| |
Collapse
|
9
|
Yu Y, Tang J, Su J, Cui J, Xie X, Chen F. Integrative Analysis of MicroRNAome, Transcriptome, and Proteome during the Limb Regeneration of Cynops orientalis. J Proteome Res 2019; 18:1088-1098. [DOI: 10.1021/acs.jproteome.8b00778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, PR China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, PR China
| | - Jie Tang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Shaanxi Institute of Zoology, 88 Xingqing Road, Xi’an 710032, PR China
| | - Jiaojiao Su
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
| | - Jihong Cui
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, PR China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, PR China
| | - Xin Xie
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, PR China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, PR China
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, PR China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, PR China
| |
Collapse
|
10
|
Yang J, Hu F, Fu X, Jiang Z, Zhang W, Chen K. MiR-128/SOX7 alleviates myocardial ischemia injury by regulating IL-33/sST2 in acute myocardial infarction. Biol Chem 2018; 400:533-544. [PMID: 30265647 DOI: 10.1515/hsz-2018-0207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Abstract
Acute myocardial infarction (AMI) induced by ischemia hypoxia severely threatens human life. Cell apoptosis of neurocytes was identified to mediate the pathogenesis, while the potential mechanism was still unclear. Sprague Dawley (SD) rats were used to establish the AMI rat model. Real-time polymerase chain reaction (PCR) and Western blot were performed to detect gene expression in mRNA and protein levels, respectively. A TUNEL assay was carried out to determine cell apoptosis. The relationship between SRY-related HMG-box (SOX7) and miR-128 was verified using luciferase reporter assay. The expression of SOX7 was decreased, while miR-128 was increased in AMI rats and ischemia hypoxia (IH) induced H9c2 cells. Hypoxia induction significantly promoted the expression of interleukin (IL)-33 and soluble ST2 (sST2), and also promoted cell apoptosis. MiR-128 targets SOX7 to regulate its expression. Down-regulated miR-128 reversed the effects of IH on expression of SOX7, sST2 and cell apoptosis, while down-regulated sST2 abolished the effects of miR-128 inhibitor. In addition, overexpressed IL-33 abolished the effects of miR-128 inhibitor that induced by IH on the expression of SOX7 and cell apoptosis. In vivo experiments validated the expression of miR-128 on cell apoptosis. The present study indicated that miR-128 modulated cell apoptosis by targeting SOX7, which was mediated by IL-33/sST2 signaling pathway.
Collapse
Affiliation(s)
- Jinhua Yang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Fudong Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Xin Fu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Zhengming Jiang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Wencai Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Kui Chen
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| |
Collapse
|
11
|
Huang W, Feng Y, Liang J, Yu H, Wang C, Wang B, Wang M, Jiang L, Meng W, Cai W, Medvedovic M, Chen J, Paul C, Davidson WS, Sadayappan S, Stambrook PJ, Yu XY, Wang Y. Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nat Commun 2018; 9:700. [PMID: 29453456 PMCID: PMC5816015 DOI: 10.1038/s41467-018-03019-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
The goal of replenishing the cardiomyocyte (CM) population using regenerative therapies following myocardial infarction (MI) is hampered by the limited regeneration capacity of adult CMs, partially due to their withdrawal from the cell cycle. Here, we show that microRNA-128 (miR-128) is upregulated in CMs during the postnatal switch from proliferation to terminal differentiation. In neonatal mice, cardiac-specific overexpression of miR-128 impairs CM proliferation and cardiac function, while miR-128 deletion extends proliferation of postnatal CMs by enhancing expression of the chromatin modifier SUZ12, which suppresses p27 (cyclin-dependent kinase inhibitor) expression and activates the positive cell cycle regulators Cyclin E and CDK2. Furthermore, deletion of miR-128 promotes cell cycle re-entry of adult CMs, thereby reducing the levels of fibrosis, and attenuating cardiac dysfunction in response to MI. These results suggest that miR-128 serves as a critical regulator of endogenous CM proliferation, and might be a novel therapeutic target for heart repair.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yuliang Feng
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Hao Yu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Cheng Wang
- Department of Molecular Biology, Radboud Institute of Molecular Life Sciences and Faculty of Science, Radboud University, Nijmegen, 6525, Gelderland, The Netherlands
| | - Boyu Wang
- Samaritan Medical Center, 830 Washington Street, Watertown, NY, 13601, USA
| | - Mingyang Wang
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wei Meng
- Division of Liver Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Wenfeng Cai
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jenny Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
12
|
Yin J, Liu H, Huan L, Song S, Han L, Ren F, Zhang Z, Zang Z, Zhang J, Wang S. Role of miR-128 in hypertension-induced myocardial injury. Exp Ther Med 2017; 14:2751-2756. [PMID: 28928797 PMCID: PMC5590046 DOI: 10.3892/etm.2017.4886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the role and mechanism of micro RNA (miR)-128 in hypertension-induced myocardial injury. The peripheral blood of patients with hypertension was collected and the expression of miR-128 was detected using fluorescence reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Primary myocardial cells isolated from rat in vitro were cultured under conditions of hypoxia and glucose deprivation, and miR-128 expression was measured by RT-qPCR. The expression of c-Met protein was measured using western blot analysis and the apoptosis of transfected cells was measured by flow cytometry in rat myocardial cells following transfection with miR-128 mimics or c-Met siRNA. A luciferase assay was applied to assess the binding of miR-128 to c-Met mRNA. miR-128 expression was significantly higher in hypertension patients compared with controls (P<0.05). miR-128 expression was higher in patients with stage III/IV hypertension compared with patients with stage II hypertension. Similarly, miR-128 expression in primary cardiomyocytes cultured under deprivation of oxygen and glucose increased with the culture time and reached a peak at 12 h. c-Met expression decreased significantly (P<0.05) and the ratio of apoptotic cells increased significantly (P<0.05), following transfection of miR-128 mimics. The number of apoptotic cells also increased when c-Met expression was knocked down by siRNA. The dual luciferase assay indicated that fluorescence intensity decreased significantly in miR-128 mimics and wild type c-Met group (P<0.05), indicating that miR-128 can directly target c-Met. Therefore, the results of the current study suggest that miR-128 may promote myocardial cell injury by regulating c-Met expression.
Collapse
Affiliation(s)
- Jie Yin
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shangdong 271100, P.R. China
| | - Hongyan Liu
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shangdong 271100, P.R. China
| | - Lei Huan
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shangdong 271100, P.R. China
| | - Suping Song
- Department of The Second Medicine, Laiwu People's Hospital, Laiwu, Shangdong 271100, P.R. China
| | - Liying Han
- Ordance Industrial 521 Hospital, Xi'an, Shanxi 710000, P.R. China
| | - Faxin Ren
- Department of Cardiology, Yuhangding Hospital of Yantai, Yantai, Shangdong 264000, P.R. China
| | - Zengtang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shangdong 271100, P.R. China
| | - Zhiqiang Zang
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shangdong 271100, P.R. China
| | - Junye Zhang
- Laboratory of Cardiac Function, Qilu Hospital of Shangdong University, Jinan, Shandong 250012, P.R. China
| | - Shu Wang
- Sino German Laboratory, Fuwai Hospital, Beijing 100037, P.R. China
| |
Collapse
|
13
|
Yun MH. Changes in Regenerative Capacity through Lifespan. Int J Mol Sci 2015; 16:25392-432. [PMID: 26512653 PMCID: PMC4632807 DOI: 10.3390/ijms161025392] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022] Open
Abstract
Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging.
Collapse
Affiliation(s)
- Maximina H Yun
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Lepp AC, Carlone RL. MicroRNA dysregulation in response to RARβ2 inhibition reveals a negative feedback loop between MicroRNAs 1, 133a, and RARβ2 during tail and spinal cord regeneration in the adult newt. Dev Dyn 2015; 244:1519-37. [PMID: 26332998 DOI: 10.1002/dvdy.24342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/07/2015] [Accepted: 08/23/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The molecular events underlying epimorphic regeneration of the adult urodele amphibian tail and caudal spinal cord are undetermined. Given the dynamic nature of gene expression control by retinoic acid (RA) signaling and the pleiotropic effects of microRNAs (miRNAs) on multiple mRNA targets in this complex system, we examined whether RA signaling through a specific receptor, RARβ2, alters expression of select miRNAs during spinal cord regeneration. RESULTS An initial screen identified 18 highly conserved miRNAs dysregulated in regenerating tail and spinal cord tissues after inhibition of RARβ2 signaling with a selective antagonist, LE135. miRNAs let-7c, miR-1, and miR-223 were expressed within the ependymoglial cells, coincident spatially with the expression of RARβ2. Altering the expression pattern of these three miRNAs led to a significant inhibition of caudal ependymal tube outgrowth by 21 days post tail amputation. We demonstrated that miR-1 targets the 3'-untranslated region of RARβ2 mRNA in vitro; and in vivo, up-regulation of miR-1 led to a significant decrease in RARβ2 protein. CONCLUSIONS These and previous data suggest that miR-1 and miR-133a, both members of the same miRNA gene cluster, may participate with RARβ2 in a negative feedback loop contributing to the regulation of the ependymal response after tail amputation.
Collapse
Affiliation(s)
- Amanda C Lepp
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Robert L Carlone
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
15
|
Ben-Shushan E, Feldman E, Reubinoff BE. Notch signaling regulates motor neuron differentiation of human embryonic stem cells. Stem Cells 2015; 33:403-15. [PMID: 25335858 DOI: 10.1002/stem.1873] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/26/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
Abstract
In the pMN domain of the spinal cord, Notch signaling regulates the balance between motor neuron differentiation and maintenance of the progenitor state for later oligodendrocyte differentiation. Here, we sought to study the role of Notch signaling in regulation of the switch from the pMN progenitor state to differentiated motor neurons in a human model system. Human embryonic stem cells (hESCs) were directed to differentiate to pMN-like progenitor cells by the inductive action of retinoic acid and a Shh agonist, purmorphamine. We found that the expression of the Notch signaling effector Hes5 was induced in hESC-derived pMN-like progenitors and remained highly expressed when they were cultured under conditions favoring motor neuron differentiation. Inhibition of Notch signaling by a γ-secretase inhibitor in the differentiating pMN-like progenitor cells decreased Hes5 expression and enhanced the differentiation toward motor neurons. Conversely, over-expression of Hes5 in pMN-like progenitor cells during the differentiation interfered with retinoic acid- and purmorphamine-induced motor neuron differentiation and inhibited the emergence of motor neurons. Inhibition of Notch signaling had a permissive rather than an inductive effect on motor neuron differentiation. Our results indicate that Notch signaling has a regulatory role in the switch from the pMN progenitor to the differentiated motor neuron state. Inhibition of Notch signaling can be harnessed to enhance the differentiation of hESCs toward motor neurons.
Collapse
Affiliation(s)
- Etti Ben-Shushan
- The Sidney and Judy Swartz Embryonic Stem Cell Research Center of The Goldyne Savad Institute of Gene Therapy, Hadassah University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
16
|
Gearhart MD, Erickson JR, Walsh A, Echeverri K. Identification of Conserved and Novel MicroRNAs during Tail Regeneration in the Mexican Axolotl. Int J Mol Sci 2015; 16:22046-61. [PMID: 26378530 PMCID: PMC4613296 DOI: 10.3390/ijms160922046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 01/11/2023] Open
Abstract
The Mexican axolotl salamander (Ambystoma mexicanum) is one member of a select group of vertebrate animals that have retained the amazing ability to regenerate multiple body parts. In addition to being an important model system for regeneration, the axolotl has also contributed extensively to studies of basic development. While many genes known to play key roles during development have now been implicated in various forms of regeneration, much of the regulatory apparatus controlling the underlying molecular circuitry remains unknown. In recent years, microRNAs have been identified as key regulators of gene expression during development, in many diseases and also, increasingly, in regeneration. Here, we have used deep sequencing combined with qRT-PCR to undertake a comprehensive identification of microRNAs involved in regulating regeneration in the axolotl. Specifically, among the microRNAs that we have found to be expressed in axolotl tissues, we have identified 4564 microRNA families known to be widely conserved among vertebrates, as well as 59,811 reads of putative novel microRNAs. These findings support the hypothesis that microRNAs play key roles in managing the precise spatial and temporal patterns of gene expression that ensures the correct regeneration of missing tissues.
Collapse
Affiliation(s)
- Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jami R Erickson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Andrew Walsh
- Cenix BioScience GmbH, Dresden 01307, Germany.
- Sitools Biotech GmbH, Planegg-Martinsried 82152, Germany.
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Krylova MI, Bogolyubov DS. An early post-traumatic reaction of lymph-heart striated muscle fibers in adult frog Rana temporaria during the first postoperative week: An electron microscopic and autoradiographic study. J Morphol 2015; 276:1525-34. [PMID: 26352460 DOI: 10.1002/jmor.20476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 11/10/2022]
Abstract
According to the current opinion, lymph-heart striated muscle represents a specialized type of skeletal muscles in frogs. Here, we studied muscle fibers in mechanically damaged lymph hearts during the first postoperative week using electron-microscopic autoradiography. We present evidence that both, the satellite cells and pre-existing muscle fibers bordering the site of injury, contribute directly to the lymph-heart muscle regeneration. Several muscle fibers located in the vicinity of the damaged area displayed features of nuclear and sarcoplasmic activation. We also observed ultrastructural changes indicating activation of a few satellite cells, namely decondensation of chromatin, enlargement of nuclei and nucleoli, appearance of free ribosomes and rough endoplasmic reticulum tubules in the cytoplasm. Electron-microscopic autoradiography showed that 4 h after single (3)H-thymidine administration on the seventh day after injury not only the activated satellite cells, but also some nuclei of myofibers bordering the injured zone are labeled. We showed that both, the myonuclei of fibers displaying the signs of degenerative/reparative processes in the sarcoplasm and the myonuclei of the fibers enriched with highly organized myofibrils, can re-enter into the S-phase. Our results indicate that the nuclei of lymph-heart myofibers can reactivate DNA synthesis during regenerative myogenesis, unlike the situation in regenerating frog skeletal muscle where myogenic cells do not synthesize DNA at the onset of myofibrillogenesis.
Collapse
Affiliation(s)
- Marina I Krylova
- Lab. of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Dmitry S Bogolyubov
- Lab. of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
18
|
Leone M, Magadum A, Engel FB. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am J Physiol Heart Circ Physiol 2015; 309:H1237-50. [PMID: 26342071 DOI: 10.1152/ajpheart.00559.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major efforts have been invested to induce proliferation of mammalian cardiomyocytes in order to improve cardiac function after injury or to protect the heart from further functional deterioration. In this review, we describe and analyze methods currently used to evaluate cardiomyocyte proliferation. In addition, we summarize the literature on naturally occurring heart regeneration. Our analysis highlights that newt and zebrafish heart regeneration relies on factors that are also utilized in cardiomyocyte proliferation during mammalian fetal development. Most of these factors have, however, failed to induce adult mammalian cardiomyocyte proliferation. Finally, our analysis of mammalian neonatal heart regeneration indicates experiments that could resolve conflicting results in the literature, such as binucleation assays and clonal analysis. Collectively, cardiac regeneration based on cardiomyocyte proliferation is a promising approach for improving adult human cardiac function after injury, but it is important to elucidate the mechanisms arresting mammalian cardiomyocyte proliferation after birth and to utilize better assays to determine formation of new muscle mass.
Collapse
Affiliation(s)
- Marina Leone
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Ajit Magadum
- Department of Cardiology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| |
Collapse
|
19
|
Abstract
The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.
Collapse
Affiliation(s)
- Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden Department of Medicine-Cardiology, Karolinska Institute, Stockholm, Sweden
| | - Federica Santoro
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden Department of Medicine-Cardiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Lepp AC, Carlone RL. RARβ2 expression is induced by the down-regulation of microRNA 133a during caudal spinal cord regeneration in the adult newt. Dev Dyn 2014; 243:1581-90. [DOI: 10.1002/dvdy.24210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- A. C. Lepp
- Department of Biological Sciences; Brock University; St. Catharines Ontario Canada
| | - R. L. Carlone
- Department of Biological Sciences; Brock University; St. Catharines Ontario Canada
| |
Collapse
|