1
|
Bruel AL, Ganga AK, Nosková L, Valenzuela I, Martinovic J, Duffourd Y, Zikánová M, Majer F, Kmoch S, Mohler M, Sun J, Sweeney LK, Martínez-Gil N, Thauvin-Robinet C, Breslow DK. Pathogenic RAB34 variants impair primary cilium assembly and cause a novel oral-facial-digital syndrome. Hum Mol Genet 2023; 32:2822-2831. [PMID: 37384395 PMCID: PMC10481091 DOI: 10.1093/hmg/ddad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogeneous disorders characterized by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in over 20 genes encoding ciliary proteins have been found to cause OFDS through deleterious structural or functional impacts on primary cilia. We identified by exome sequencing bi-allelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families. Affected individuals presented a novel form of OFDS (OFDS-RAB34) accompanied by cardiac, cerebral, skeletal and anorectal defects. RAB34 encodes a member of the Rab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Unlike many genes required for cilium assembly, RAB34 acts selectively in cell types that use the intracellular ciliogenesis pathway, in which nascent cilia begin to form in the cytoplasm. We find that the protein products of these pathogenic variants, which are clustered near the RAB34 C-terminus, exhibit a strong loss of function. Although some variants retain the ability to be recruited to the mother centriole, cells expressing mutant RAB34 exhibit a significant defect in cilium assembly. While many Rab proteins have been previously linked to ciliogenesis, our studies establish RAB34 as the first small GTPase involved in OFDS and reveal the distinct clinical manifestations caused by impairment of intracellular ciliogenesis.
Collapse
Affiliation(s)
- Ange-Line Bruel
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
| | - Anil Kumar Ganga
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute,08035 Barcelona, Spain
| | - Jelena Martinovic
- Unit of Embryo-Fetal Pathology, AP-HP, Antoine Béclère Hospital, Paris Saclay University, 92141 Clamart, France
| | - Yannis Duffourd
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Filip Majer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Markéta Mohler
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava 708 52, Czech Republic
| | - Jingbo Sun
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Lauren K Sweeney
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Núria Martínez-Gil
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute,08035 Barcelona, Spain
| | - Christel Thauvin-Robinet
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
- Centre de Génétique et Centre de référence maladies rares ‘Anomalies du Développement et Syndromes Malformatifs’, FHU-TRANSLAD, Hôpital d'Enfants, CHU Dijon Bourgogne, 21079 Dijon, France
| | - David K Breslow
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
2
|
Li JH, Trivedi V, Diz-Muñoz A. Understanding the interplay of membrane trafficking, cell surface mechanics, and stem cell differentiation. Semin Cell Dev Biol 2023; 133:123-134. [PMID: 35641408 PMCID: PMC9703995 DOI: 10.1016/j.semcdb.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/08/2022] [Accepted: 05/14/2022] [Indexed: 01/17/2023]
Abstract
Stem cells can generate a diversity of cell types during development, regeneration and adult tissue homeostasis. Differentiation changes not only the cell fate in terms of gene expression but also the physical properties and functions of cells, e.g. the secretory activity, cell shape, or mechanics. Conversely, these activities and properties can also regulate differentiation itself. Membrane trafficking is known to modulate signal transduction and thus has the potential to control stem cell differentiation. On the other hand, membrane trafficking, particularly from and to the plasma membrane, depends on the mechanical properties of the cell surface such as tension within the plasma membrane or the cortex. Indeed, recent findings demonstrate that cell surface mechanics can also control cell fate. Here, we review the bidirectional relationships between these three fundamental cellular functions, i.e. membrane trafficking, cell surface mechanics, and stem cell differentiation. Furthermore, we discuss commonly used methods in each field and how combining them with new tools will enhance our understanding of their interplay. Understanding how membrane trafficking and cell surface mechanics can guide stem cell fate holds great potential as these concepts could be exploited for directed differentiation of stem cells for the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jia Hui Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vikas Trivedi
- EMBL, PRBB, Dr. Aiguader, 88, Barcelona 08003, Spain,Developmental Biology Unit, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg 69117, Germany.
| |
Collapse
|
3
|
Hasan MR, Koskenranta A, Alakurtti K, Takatalo M, Rice DP. RAB23 regulates musculoskeletal development and patterning. Front Cell Dev Biol 2023; 11:1049131. [PMID: 36910145 PMCID: PMC9995984 DOI: 10.3389/fcell.2023.1049131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
RAB23 is a small GTPase which functions at the plasma membrane to regulate growth factor signaling. Mutations in RAB23 cause Carpenter syndrome, a condition that affects normal organogenesis and patterning. In this study, we investigate the role of RAB23 in musculoskeletal development and show that it is required for patella bone formation and for the maintenance of tendon progenitors. The patella is the largest sesamoid bone in mammals and plays a critical role during movement by providing structural and mechanical support to the knee. Rab23 -/- mice fail to form a patella and normal knee joint. The patella is formed from Sox9 and scleraxis (Scx) double-positive chondroprogenitor cells. We show that RAB23 is required for the specification of SOX9 and scleraxis double-positive patella chondroprogenitors during the formation of patella anlagen and the subsequent establishment of patellofemoral joint. We find that scleraxis and SOX9 expression are disrupted in Rab23 -/- mice, and as a result, development of the quadriceps tendons, cruciate ligaments, patella tendons, and entheses is either abnormal or lost. TGFβ-BMP signaling is known to regulate patella initiation and patella progenitor differentiation and growth. We find that the expression of TGFβR2, BMPR1, BMP4, and pSmad are barely detectable in the future patella site and in the rudimentary tendons and ligaments around the patellofemoral joint in Rab23 -/- mice. Also, we show that GLI1, SOX9, and scleraxis, which regulate entheses establishment and maturation, are weakly expressed in Rab23 -/- mice. Further analysis of the skeletal phenotype of Rab23 -/- mice showed a close resemblance to that of Tgfβ2 -/- mice, highlighting a possible role for RAB23 in regulating TGFβ superfamily signaling.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Anna Koskenranta
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Kirsi Alakurtti
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - David P Rice
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Hor CHH, Lo JCW, Cham ALS, Leong WY, Goh ELK. Multifaceted Functions of Rab23 on Primary Cilium-Mediated and Hedgehog Signaling-Mediated Cerebellar Granule Cell Proliferation. J Neurosci 2021; 41:6850-6863. [PMID: 34210780 PMCID: PMC8360682 DOI: 10.1523/jneurosci.3005-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sonic hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors commonly cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that Nestin Cre-driven conditional knock-out (CKO) of a Shh pathway repressor-Rab23 in the mouse brain of both genders caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited upregulated basal level of Shh pathway activities despite showing an abnormal ciliogenesis of primary cilia. In line with the compromised ciliation, Rab23-depleted GCPs were desensitized against Hh pathway activity stimulations by Shh ligand and Smoothened (Smo) agonist-SAG, and exhibited attenuated stimulation of Smo-localization on the primary cilium in response to SAG. These results implicate multidimensional actions of Rab23 on Hh signaling cascade. Rab23 represses the basal level of Shh signaling, while facilitating primary cilium-dependent extrinsic Shh signaling activation. Collectively, our findings unravel instrumental roles of Rab23 in GCP proliferation and ciliogenesis. Furthermore, Rab23's potentiation of Shh signaling pathway through the primary cilium and Smo suggests a potential new therapeutic strategy for Smo/primary cilium-driven medulloblastoma.SIGNIFICANCE STATEMENT Primary cilium and Sonic hedgehog (Shh) signaling are known to regulate granule cell precursor (GCP) proliferation. Aberrant overactivation of Shh signaling pathway ectopically increases GCP proliferation and causes malignant childhood tumor called medulloblastoma. However, the genetic and molecular regulatory cascade of GCP tumorigenesis remains incompletely understood. Our finding uncovers Rab23 as a novel regulator of hedgehog (Hh) signaling pathway activity and cell proliferation in GCP. Intriguingly, we demonstrated that Rab23 confers dual functions in regulating Shh signaling; it potentiates primary cilium and Shh/Smoothened (Smo)-dependent signaling activation, while antagonizes basal level Hh activity. Our data present a previously underappreciated aspect of Rab23 in mediating extrinsic Shh signaling upstream of Smo. This study sheds new light on the mechanistic insights underpinning Shh signaling-mediated GCP proliferation and tumorigenesis.
Collapse
Affiliation(s)
- C H H Hor
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - J C W Lo
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - A L S Cham
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - W Y Leong
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - E L K Goh
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
- Department of Research, National Neuroscience Institute, Singapore, 308433
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
- KK Research Center, KK Women's and Children's Hospital, Singapore, 229899
| |
Collapse
|
5
|
Abstract
Ciliogenesis describes the assembly of cilia in interphase cells. Several hundred proteins have been linked to ciliogenesis, which proceeds through a highly coordinated multistage process at the distal end of centrioles requiring membranes. In this short review, we focus on recently reported insights into the biogenesis of the primary cilium membrane and its association with other ciliogenic processes in the intracellular ciliogenesis pathway.
Collapse
Affiliation(s)
- Saurabh Shakya
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| |
Collapse
|
6
|
Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis 2021; 59:e23407. [PMID: 33393730 PMCID: PMC8153179 DOI: 10.1002/dvg.23407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Craniofacial and limb defects are two of the most common congenital anomalies in the general population. Interestingly, these defects are not mutually exclusive. Many patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis, also present with limb defects, including polydactyly, syndactyly, brachydactyly, or ectrodactyly. The gene regulatory networks governing craniofacial and limb development initially seem distinct from one another, and yet these birth defects frequently occur together. Both developmental processes are highly conserved among vertebrates, and zebrafish have emerged as an advantageous model due to their high fecundity, relative ease of genetic manipulation, and transparency during development. Here we summarize studies that have used zebrafish models to study human syndromes that present with both craniofacial and limb phenotypes. We discuss the highly conserved processes of craniofacial and limb/fin development and describe recent zebrafish studies that have explored the function of genes associated with human syndromes with phenotypes in both structures. We attempt to identify commonalities between the two to help explain why craniofacial and limb anomalies often occur together.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
7
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
8
|
De Ita M, Cisneros B, Rosas-Vargas H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J Cardiovasc Transl Res 2020; 14:390-399. [PMID: 32734553 DOI: 10.1007/s12265-020-10064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Transposition of great arteries (TGA) is a complex congenital heart disease whose etiology is still unknown. This defect has been associated, at least in part, with genetic abnormalities involved in laterality establishment and heart outflow tract development, which suggest a genetic heterogeneity. In animal models, the evidence of association with certain genes is strong but, surprisingly, genetic anomalies of its human orthologues are found only in a low proportion of patients and in nonaffected subjects, so that the underlying causes remain as an unexplored field. Evidence related to TGA suggests different pathogenic mechanisms involved between patients with normal organ disposition and isomerism. This article reviews the most important genetic abnormalities related to TGA and contextualizes them into the mechanism of embryonic development, comparing them between humans and mice, to comprehend the evidence that could be relevant for genetic counseling. Graphical abstract.
Collapse
Affiliation(s)
- Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- 2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
9
|
Hasan MR, Takatalo M, Ma H, Rice R, Mustonen T, Rice DP. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. eLife 2020; 9:55829. [PMID: 32662771 PMCID: PMC7423339 DOI: 10.7554/elife.55829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding Ras-associated binding protein 23 (RAB23) cause Carpenter Syndrome, which is characterized by multiple developmental abnormalities including polysyndactyly and defects in skull morphogenesis. To understand how RAB23 regulates skull development, we generated Rab23-deficient mice that survive to an age where skeletal development can be studied. Along with polysyndactyly, these mice exhibit premature fusion of multiple sutures resultant from aberrant osteoprogenitor proliferation and elevated osteogenesis in the suture. FGF10-driven FGFR1 signaling is elevated in Rab23-/-sutures with a consequent imbalance in MAPK, Hedgehog signaling and RUNX2 expression. Inhibition of elevated pERK1/2 signaling results in the normalization of osteoprogenitor proliferation with a concomitant reduction of osteogenic gene expression, and prevention of craniosynostosis. Our results suggest a novel role for RAB23 as an upstream negative regulator of both FGFR and canonical Hh-GLI1 signaling, and additionally in the non-canonical regulation of GLI1 through pERK1/2.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hongqiang Ma
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ritva Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - David Pc Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Gerondopoulos A, Strutt H, Stevenson NL, Sobajima T, Levine TP, Stephens DJ, Strutt D, Barr FA. Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex. Curr Biol 2019; 29:3323-3330.e8. [PMID: 31564489 PMCID: PMC6864590 DOI: 10.1016/j.cub.2019.07.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
Abstract
A subset of Rab GTPases have been implicated in cilium formation in cultured mammalian cells [1-6]. Rab11 and Rab8, together with their GDP-GTP exchange factors (GEFs), TRAPP-II and Rabin8, promote recruitment of the ciliary vesicle to the mother centriole and its subsequent maturation, docking, and fusion with the cell surface [2-5]. Rab23 has been linked to cilium formation and membrane trafficking at mature cilia [1, 7, 8]; however, the identity of the GEF pathway activating Rab23, a member of the Rab7 subfamily of Rabs, remains unclear. Longin-domain-containing complexes have been shown to act as GEFs for Rab7 subfamily GTPases [9-12]. Here, we show that Inturned and Fuzzy, proteins previously implicated as planar cell polarity (PCP) effectors and in developmentally regulated cilium formation [13, 14], contain multiple longin domains characteristic of the Mon1-Ccz1 family of Rab7 GEFs and form a specific Rab23 GEF complex. In flies, loss of Rab23 function gave rise to defects in planar-polarized trichome formation consistent with this biochemical relationship. In cultured human and mouse cells, Inturned and Fuzzy localized to the basal body and proximal region of cilia, and cilium formation was compromised by depletion of either Inturned or Fuzzy. Cilium formation arrested after docking of the ciliary vesicle to the mother centriole but prior to axoneme elongation and fusion of the ciliary vesicle and plasma membrane. These findings extend the family of longin domain GEFs and define a molecular activity linking Rab23-regulated membrane traffic to cilia and planar cell polarity.
Collapse
Affiliation(s)
- Andreas Gerondopoulos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Helen Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Nicola L Stevenson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Tomoaki Sobajima
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tim P Levine
- Institute of Ophthalmology, University College London, 11-43 Bath St., London EC1V 9EL, UK
| | - David J Stephens
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Di-n-butyl phthalate induced autophagy of uroepithelial cells via inhibition of hedgehog signaling in newborn male hypospadias rats. Toxicology 2019; 428:152300. [PMID: 31568847 DOI: 10.1016/j.tox.2019.152300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/31/2019] [Accepted: 09/26/2019] [Indexed: 12/25/2022]
Abstract
Maternal exposure to di-n-butyl phthalate (DBP) induces hypospadias via regulation of autophagy in uroepithelial cells. Here, we use gene express analysis to explore the underlying molecular mechanisms. Pregnant rats received DBP orally at a dose of 750 mg/kg/day during gestational days 14-18. Gene expression analysis showed an increased expression of the hedgehog interacting protein (HhIP) gene. In DBP-induced hypospadiac male offspring, immunohistochemistry (IHC) staining and Western blot analysis confirmed increased expression of the HhIP protein and inhibited hedgehog signaling. in vitro experiments suggest the involvement of the reactive oxygen species (ROS)-HhIP-Gli1-autophagy axis in DBP-treated primary rat urethral epithelial cells. Taken together, our findings show that prenatal exposure to DBP induces abnormal hedgehog signaling and autophagy in uroepithelial cells that may play important roles in the development of hypospadias.
Collapse
|
12
|
Hor CH, Goh EL. Small GTPases in hedgehog signalling: emerging insights into the disease mechanisms of Rab23-mediated and Arl13b-mediated ciliopathies. Curr Opin Genet Dev 2019; 56:61-68. [PMID: 31465935 DOI: 10.1016/j.gde.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/31/2023]
Abstract
Small GTPases are known to have pivotal roles in intracellular trafficking, and several members of the small GTPases superfamily such as Rab10 [1,2•], Rab11 [3-5], Rab34 [6•,7], Rab8 [3,8], Rab23 [9-12], RSG1 [13-15], Arl13b [16-22], and Arl6 [22,23] were recently reported to mediate primary cilia function and/or Hh signalling. Although these functions are implicated in diseases such as ciliopathies, the molecular basis underlying how these small GTPases mediate primary cilia-dependent Hh signalling and pathogenesis of ciliopathies warrants further investigations. Notably, Rab23 and Arl13b have been implicated in ciliopathy-associated human diseases and could regulate Hh signalling cascade in multifaceted manners. This review thus specifically discuss the roles of Rab23 and Arl13b in primary cilia of mammalian systems, their cilia-dependent and cilia-independent modulation of hedgehog signalling pathways and their implications in Carpenter Syndrome and Joubert Syndrome respectively.
Collapse
Affiliation(s)
- Catherine Hh Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Chemistry, Research Cluster on Health and Drug Discovery, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Eyleen Lk Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; KK Research Center, KK Women's and Children's Hospital, Singapore 229899, Singapore.
| |
Collapse
|
13
|
Sun X, Jiang L, Wang C, Sun S, Mei L, Huang L. Systematic investigation of intracellular trafficking behavior of one-dimensional alumina nanotubes. J Mater Chem B 2019; 7:2043-2053. [PMID: 32254808 DOI: 10.1039/c8tb03349h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotube materials exhibit high drug loading capacity and controlled drug release properties, providing new opportunities for drug delivery. However, the intracellular trafficking paths of 1-dimensional (1D) nanostructured materials are poorly understood compared to their spherical counterparts, impeding the broad application of 1D materials as drug carriers. Here, we report the intracellular trafficking mechanism of nontoxic and biocompatible nanomaterials called anodic alumina nanotubes (AANTs), a model for 1D materials with a geometry that can be precisely engineered. The results indicated that AANTs enter the cells mainly by caveolin endocytosis and micropinocytosis and that cells use a novel macropinocytosis-late endosomes (LEs)-lysosomes route to transport AANTs. Moreover, liposomes (marked by DsRed-Rab18) are fully involved in the classical pathway of early endosomes (EEs)/LEs developing into lysosomes. The AANTs were delivered to the cells via two pathways: slow endocytosis recycling and GLUT4 exocytosis vesicles. The AANTs also induced intracellular autophagy and then degraded via the endolysosomal pathway. Blocking endolysosomal pathways using autophagy inhibitors prevented the degradation of AANTs through lysosomes. Our results add new insights into the pathways and mechanisms of intracellular trafficking of AANTs, and suggest that intracellular trafficking and lysosomal degradation are highly interdependent and important for efficient drug delivery, and should be evaluated together for drug carrier development.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Physics, Tsinghua University, Beijing 10008, China.
| | | | | | | | | | | |
Collapse
|
14
|
Xu S, Liu Y, Meng Q, Wang B. Rab34 small GTPase is required for Hedgehog signaling and an early step of ciliary vesicle formation in mouse. J Cell Sci 2018; 131:jcs.213710. [PMID: 30301781 DOI: 10.1242/jcs.213710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 09/21/2018] [Indexed: 12/30/2022] Open
Abstract
The primary cilium is a microtubule-based organelle that protrudes from the cell surface and plays essential roles in embryonic development. Ciliogenesis begins with the successive fusion of preciliary vesicles to form ciliary vesicles, which then dock onto the distal end of the mother centriole. Rab proteins have been linked to cilia formation in cultured cells, but not yet in vivo In the present study, we demonstrate that endocytic recycling protein Rab34 localizes to cilia, and that its mutation results in significant decrease of ciliogenesis in both cultured cells and mice. Rab34 is required for the successive fusion of preciliary vesicles to generate ciliary vesicles and for the migration of the mother centriole from perinuclear region to plasma membrane. We also show that Rab34 mutant mice exhibit polydactyly, and cleft-lip and -palate. These phenotypes are consistent with observations that nonciliated Rab34 mutant cells fail to respond to Hedgehog signaling and that processing of full-length Gli3 to its C-terminally truncated form is reduced in Rab34 mutant embryos. Therefore, Rab34 is required for an early step of ciliary vesicle formation and Hh signaling in vivo This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shouying Xu
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA.,Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yang Liu
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA.,Department of Veterinary Public Health, College of Veterinary Medicine, Jilin University, Jilin 130000, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| |
Collapse
|
15
|
Jiang L, Liang X, Liu G, Zhou Y, Ye X, Chen X, Miao Q, Gao L, Zhang X, Mei L. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery. Drug Deliv 2018; 25:985-994. [PMID: 29667445 PMCID: PMC6058570 DOI: 10.1080/10717544.2018.1461954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.
Collapse
Affiliation(s)
- Lijuan Jiang
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Xin Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Yun Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Xinyu Ye
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Xiuli Chen
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Qianwei Miao
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Li Gao
- The Affiliated Hospital of Guilin Medical College, Guilin, PR China
| | - Xudong Zhang
- School of Life Sciences, Tsinghua University, Beijing, PR China
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
16
|
The Drosophila homologue of MEGF8 is essential for early development. Sci Rep 2018; 8:8790. [PMID: 29884872 PMCID: PMC5993795 DOI: 10.1038/s41598-018-27076-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
Mutations of the gene MEGF8 cause Carpenter syndrome in humans, and the mouse orthologue has been functionally associated with Nodal and Bmp4 signalling. Here, we have investigated the phenotype associated with loss-of-function of CG7466, a gene that encodes the Drosophila homologue of MEGF8. We generated three different frame-shift null mutations in CG7466 using CRISPR/Cas9 gene editing. Heterozygous flies appeared normal, but homozygous animals had disorganised denticle belts and died as 2nd or 3rd instar larvae. Larvae were delayed in transition to 3rd instars and showed arrested growth, which was associated with abnormal feeding behaviour and prolonged survival when yeast food was supplemented with sucrose. RNAi-mediated knockdown using the Gal4-UAS system resulted in lethality with ubiquitous and tissue-specific Gal4 drivers, and growth defects including abnormal bristle number and orientation in a subset of escapers. We conclude that CG7466 is essential for larval development and that diminished function perturbs denticle and bristle formation.
Collapse
|
17
|
Hor CH, Tang BL, Goh EL. Rab23 and developmental disorders. Rev Neurosci 2018; 29:849-860. [DOI: 10.1515/revneuro-2017-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/03/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Rab23 is a conserved member of the Rab family of small GTPases that regulates membrane trafficking in eukaryotes. It is unique amongst the Rabs in terms of its implicated role in mammalian development, as originally illustrated by the embryonic lethality and open neural tube phenotype of a spontaneous mouse mutant that carries homozygous mutation of open brain, a gene encoding Rab23. Rab23 was initially identified to act as an antagonist of Sonic hedgehog (Shh) signaling, and has since been implicated in a number of physiological and pathological roles, including oncogenesis. Interestingly, RAB23 null allele homozygosity in humans is not lethal, but instead causes the developmental disorder Carpenter’s syndrome (CS), which is characterized by craniofacial malformations, polysyndactyly, obesity and intellectual disability. CS bears some phenotypic resemblance to a spectrum of hereditary defects associated with the primary cilium, or the ciliopathies. Recent findings have in fact implicated Rab23 in protein traffic to the primary cilium, thus linking it with the primary cellular locale of Shh signaling. Rab23 also has Shh and cilia-independent functions. It is known to mediate the expression of Nodal at the mouse left lateral plate mesoderm and Kupffer’s vesicle, the zebrafish equivalent of the mouse node. It is thus important for the left-right patterning of vertebrate embryos. In this review, we discuss the developmental disorders associated with Rab23 and attempt to relate its cellular activities to its roles in development.
Collapse
Affiliation(s)
- Catherine H.H. Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
| | - Bor Luen Tang
- Department of Biochemistry , Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117597 , Singapore
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore, Medical Drive , Singapore 117456 , Singapore
| | - Eyleen L.K. Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
- Department of Physiology , Yong Loo Lin School of Medicine , National University of Singapore , 8 Medical Drive , Singapore 117597 , Singapore
- KK Research Center, KK Women’s and Children’s Hospital , Singapore 229899 , Singapore
| |
Collapse
|
18
|
Abstract
Cilia are microtubule-based organelles extending from a basal body at the surface of eukaryotic cells. Cilia regulate cell and fluid motility, sensation and developmental signaling, and ciliary defects cause human diseases (ciliopathies) affecting the formation and function of many tissues and organs. Over the past decade, various Rab and Rab-like membrane trafficking proteins have been shown to regulate cilia-related processes such as basal body maturation, ciliary axoneme extension, intraflagellar transport and ciliary signaling. In this review, we provide a comprehensive overview of Rab protein ciliary associations, drawing on findings from multiple model systems, including mammalian cell culture, mice, zebrafish, C. elegans, trypanosomes, and green algae. We also discuss several emerging mechanistic themes related to ciliary Rab cascades and functional redundancy.
Collapse
Affiliation(s)
- Oliver E Blacque
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Noemie Scheidel
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Stefanie Kuhns
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
19
|
Zhang W, Yu F, Wang Y, Zhang Y, Meng L, Chi Y. Rab23 promotes the cisplatin resistance of ovarian cancer via the Shh-Gli-ABCG2 signaling pathway. Oncol Lett 2018; 15:5155-5160. [PMID: 29552151 DOI: 10.3892/ol.2018.7949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
As a novel member of the Rab GTPase family, the role of Rab23 has been reported in multiple types of tumor. However, to the best of our knowledge, the role of Rab23 in ovarian cancer (OC) has not yet been reported. In the present study, immunohistochemistry analysis demonstrated that Rab23 was upregulated in OC tissue; survival analysis indicated that Rab23 expression was associated with a reduced overall survival (OS) rate and disease-free survival (DFS) time. In vitro experiments also demonstrated the increased expression of Rab23 in the OC cells lines, A2780 and SKOV-3, compared with in the normal ovarian cell line, IOSE80. Following the silencing of ABCG2 in SKOV-3 cells, ATP-binding cassette sub-family G member 2 (ABCG2) expression was significantly downregulated both at the RNA and protein levels. The cisplatin (DDP) IC50 declined from 43.09±7.12 µmol/l in control cells to 26.46±5.38 µmol/l in SKOV-3 cells with silenced Rab23. In contrast, in A2780 cells overexpressing Rab23 (A2780-Rab23), ABCG2 expression was significantly upregulated and the DDP IC50 increased from 27.42±6.54 µmol/l in control cells to 45.92±5.23 µmol/l in A2780-Rab23. Investigation into the potential molecular mechanisms for this revealed that the expression of sonic hedgehog (Shh) and Gli family zinc finger 1 (Gli1) was increased in A2780-Rab23 cells, whereas silencing Rab23 in SKOV-3 cells significantly inhibited the expression of Shh and Gli1. The Gli1 inhibitor GANT-61 significantly abrogated the increased ABCG2 expression in A2780-Rab23 cells. Furthermore, the DDP IC50 in A2780-Rab23 cells decreased significantly following the silencing of ABCG2 expression; the IC50 declined from 51.66±8.32 µmol/l in A2780-Rab23 cells to 25.61±6.17 µmol/l in A2780-Rab23 cells with silenced ABCG2. Collectively, the results indicate that Rab23 promotes the DDP resistance of OC cells via the Shh-Gli1-ABCG2 pathway, providing the proof of principle for the further investigation of drug resistance therapy targeting Rab23.
Collapse
Affiliation(s)
- Wenjie Zhang
- Oncology Department, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Feng Yu
- Gynaecology Department, Maternal and Child Health Care and Family Planning Service Center of Rizhao City, Rizhao, Shandong 276826, P.R. China
| | - Yu Wang
- Emergency Internal Medicine Department, Central Hospital of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Yu Zhang
- Blood Drawing Department, Central Blood Station of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Lingxin Meng
- Oncology Department, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Yuhua Chi
- Oncology Department, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
20
|
Abstract
Cilia are microtubule-based organelles extending from a basal body at the surface of eukaryotic cells. Cilia regulate cell and fluid motility, sensation and developmental signaling, and ciliary defects cause human diseases (ciliopathies) affecting the formation and function of many tissues and organs. Over the past decade, various Rab and Rab-like membrane trafficking proteins have been shown to regulate cilia-related processes such as basal body maturation, ciliary axoneme extension, intraflagellar transport and ciliary signaling. In this review, we provide a comprehensive overview of Rab protein ciliary associations, drawing on findings from multiple model systems, including mammalian cell culture, mice, zebrafish, C. elegans, trypanosomes, and green algae. We also discuss several emerging mechanistic themes related to ciliary Rab cascades and functional redundancy.
Collapse
Affiliation(s)
- Oliver E Blacque
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Noemie Scheidel
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| | - Stefanie Kuhns
- a School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
21
|
Zheng LQ, Chi SM, Li CX. Rab23's genetic structure, function and related diseases: a review. Biosci Rep 2017; 37:BSR20160410. [PMID: 28104793 PMCID: PMC5333778 DOI: 10.1042/bsr20160410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/15/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022] Open
Abstract
Rab23 has been proven to play a role in membrane trafficking and protein transport in eukaryotic cells. Rab23 is also a negative regulator of the Sonic hedgehog (Shh) signaling pathway in an indirect way. The nonsense mutation and loss of protein of Rab23 has been associated with neural tube defect in mice and aberrant expression in various diseases in human such as neural system, breast, visceral, and cutaneous tumor. In addition, Rab23 may play joint roles in autophagosome formation during anti-infection process against Group A streptococcus. In this review, we give a brief review on the functions of Rab23, summarize the involvement of Rab23 in genetic research, membrane trafficking, and potential autophagy pathway, especially focus on tumor promotion, disease pathogenesis, and discuss the possible underlying mechanisms that are regulated by Rab23.
Collapse
Affiliation(s)
- Li-Qiang Zheng
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, the 251st Hospital of Chinese PLA, No.13.Jian'guo Road, Zhangjiakou City, Hebei Province, 075100, China
| | - Su-Min Chi
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Cheng-Xin Li
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Zhang J, Chang D, Yang Y, Zhang X, Tao W, Jiang L, Liang X, Tsai H, Huang L, Mei L. Systematic investigation on the intracellular trafficking network of polymeric nanoparticles. NANOSCALE 2017; 9:3269-3282. [PMID: 28225130 DOI: 10.1039/c7nr00532f] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymeric nanoparticles such as PLGA-based nanoparticles are emerging as promising carriers for controlled drug delivery. However, little is known about the intracellular trafficking network of polymeric nanoparticles. Here, more than 30 Rab proteins were used as markers of multiple trafficking vesicles in endocytosis, exocytosis and autophagy to investigate in detail the intracellular trafficking pathways of PLGA nanoparticles. We observed that coumarin-6-loaded PLGA nanoparticles were internalized by the cells mainly through caveolin and clathrin-dependent endocytosis and Rab34-mediated macropinocytosis. Then the PLGA nanoparticles were transported to early endosomes (EEs), late endosomes (LEs), and finally to lysosomes. Two novel transport pathways were identified in our research: the macropinocytosis (Rab34 positive)-LE (Rab7 positive)-lysosome pathway and the EE-liposome (Rab18)-lysosome pathway. Moreover, the slow (Rab11 and Rab35 positive), fast (Rab4 positive) and apical (Rab20 and Rab25 positive) endocytic recycling endosome pathways could transport the PLGA nanoparticles to lysosomes. The PLGA nanoparticles were transported out of the cells by GLUT4 transport vesicles (Rab8, Rab10 positive), classic secretory vesicles (Rab3, Rab27 positive vesicles) and melanosomes (Rab32, Rab38 positive vesicles). Besides, the PLGA nanoparticles were observed in autophagosomes (LC3 positive), which means that the nanoparticles can be delivered by the autophagy pathway. Multiple cross-talk pathways were identified connecting autophagy and endocytosis or exocytosis by screening the co-localization of the Rab proteins with the LC3 protein. Degradation of nanoparticles through lysosomes can be blocked by autophagy inhibitors (3 MA and CQ). A better understanding of intracellular trafficking mechanisms involved in polymeric nanoparticle-based drug delivery is a prerequisite to clinical application.
Collapse
Affiliation(s)
- Jinxie Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China. and The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Danfeng Chang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China. and The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Yao Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xudong Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China. and The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Wei Tao
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China. and The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Lijuan Jiang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China. and The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Xin Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China and School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, People's Republic of China
| | - Hsiangi Tsai
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China. and The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China. and The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Lin Mei
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China. and The Shenzhen Key Lab of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China and School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
23
|
Tgif1 and Tgif2 Repress Expression of the RabGAP Evi5l. Mol Cell Biol 2017; 37:MCB.00527-16. [PMID: 27956704 DOI: 10.1128/mcb.00527-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/02/2016] [Indexed: 11/20/2022] Open
Abstract
Mouse embryos conditionally lacking Tgif1 and Tgif2 have holoprosencephaly and defects in left-right asymmetry. To identify pathways affected by loss of Tgif function during embryogenesis, we performed transcriptome profiling on whole mouse embryos. Among the genes with altered expression in embryos lacking Tgifs were a number with links to cilium function. One of these, Evi5l, encodes a RabGAP that is known to block the formation of cilia when overexpressed. Evi5l expression is increased in Tgif1; Tgif2-null embryos and in double-null mouse embryo fibroblasts (MEFs). Knockdown of Tgifs in a human retinal pigment epithelial cell line also increased EVI5L expression. We show that TGIF1 binds to a conserved consensus TGIF site 5' of the human and mouse Evi5l genes and represses Evi5l expression. In primary MEFs lacking both Tgifs, the number of cells with primary cilia was significantly decreased, and we observed a reduction in the transcriptional response to Shh pathway activation. Reducing Evi5l expression in MEFs lacking Tgifs resulted in a partial restoration of cilium numbers and in the transcriptional response to activation of the Shh pathway. In summary, this work shows that Tgifs regulate ciliogenesis and suggests that Evi5l mediates at least part of this effect.
Collapse
|
24
|
McDowell GS, Lemire JM, Paré JF, Cammarata G, Lowery LA, Levin M. Conserved roles for cytoskeletal components in determining laterality. Integr Biol (Camb) 2016; 8:267-86. [PMID: 26928161 DOI: 10.1039/c5ib00281h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consistently-biased left-right (LR) patterning is required for the proper placement of organs including the heart and viscera. The LR axis is especially fascinating as an example of multi-scale pattern formation, since here chiral events at the subcellular level are integrated and amplified into asymmetric transcriptional cascades and ultimately into the anatomical patterning of the entire body. In contrast to the other two body axes, there is considerable controversy about the earliest mechanisms of embryonic laterality. Many molecular components of asymmetry have not been widely tested among phyla with diverse bodyplans, and it is unknown whether parallel (redundant) pathways may exist that could reverse abnormal asymmetry states at specific checkpoints in development. To address conservation of the early steps of LR patterning, we used the Xenopus laevis (frog) embryo to functionally test a number of protein targets known to direct asymmetry in plants, fruit fly, and rodent. Using the same reagents that randomize asymmetry in Arabidopsis, Drosophila, and mouse embryos, we show that manipulation of the microtubule and actin cytoskeleton immediately post-fertilization, but not later, results in laterality defects in Xenopus embryos. Moreover, we observed organ-specific randomization effects and a striking dissociation of organ situs from effects on the expression of left side control genes, which parallel data from Drosophila and mouse. Remarkably, some early manipulations that disrupt laterality of transcriptional asymmetry determinants can be subsequently "rescued" by the embryo, resulting in normal organ situs. These data reveal the existence of novel corrective mechanisms, demonstrate that asymmetric expression of Nodal is not a definitive marker of laterality, and suggest the existence of amplification pathways that connect early cytoskeletal processes to control of organ situs bypassing Nodal. Counter to alternative models of symmetry breaking during neurulation (via ciliary structures absent in many phyla), our data suggest a widely-conserved role for the cytoskeleton in regulating left-right axis formation immediately after fertilization of the egg. The novel mechanisms that rescue organ situs, even after incorrect expression of genes previously considered to be left-side master regulators, suggest LR patterning as a new context in which to explore multi-scale redundancy and integration of patterning from the subcellular structure to the entire bodyplan.
Collapse
Affiliation(s)
- Gary S McDowell
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA. and Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Joan M Lemire
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.
| | - Jean-Francois Paré
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.
| | | | | | - Michael Levin
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.
| |
Collapse
|
25
|
Zhang J, Zhang X, Liu G, Chang D, Liang X, Zhu X, Tao W, Mei L. Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy. Theranostics 2016; 6:2099-2113. [PMID: 27698943 PMCID: PMC5039683 DOI: 10.7150/thno.16587] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/30/2016] [Indexed: 12/14/2022] Open
Abstract
The inner membrane vesicle system is a complex transport system that includes endocytosis, exocytosis and autophagy. However, the details of the intracellular trafficking pathway of nanoparticles in cells have been poorly investigated. Here, we investigate in detail the intracellular trafficking pathway of protein nanocapsules using more than 30 Rab proteins as markers of multiple trafficking vesicles in endocytosis, exocytosis and autophagy. We observed that FITC-labeled protein nanoparticles were internalized by the cells mainly through Arf6-dependent endocytosis and Rab34-mediated micropinocytosis. In addition to this classic pathway: early endosome (EEs)/late endosome (LEs) to lysosome, we identified two novel transport pathways: micropinocytosis (Rab34 positive)-LEs (Rab7 positive)-lysosome pathway and EEs-liposome (Rab18 positive)-lysosome pathway. Moreover, the cells use slow endocytosis recycling pathway (Rab11 and Rab35 positive vesicles) and GLUT4 exocytosis vesicles (Rab8 and Rab10 positive) transport the protein nanocapsules out of the cells. In addition, protein nanoparticles are observed in autophagosomes, which receive protein nanocapsules through multiple endocytosis vesicles. Using autophagy inhibitor to block these transport pathways could prevent the degradation of nanoparticles through lysosomes. Using Rab proteins as vesicle markers to investigation the detail intracellular trafficking of the protein nanocapsules, will provide new targets to interfere the cellular behaver of the nanoparticles, and improve the therapeutic effect of nanomedicine.
Collapse
Affiliation(s)
- Jinxie Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Xudong Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Gan Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Danfeng Chang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Xin Liang
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- Department of Pharmacological and Physiological Science and Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Xianbing Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Wei Tao
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Lin Mei
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| |
Collapse
|
26
|
Rab23 activities and human cancer—emerging connections and mechanisms. Tumour Biol 2016; 37:12959-12967. [DOI: 10.1007/s13277-016-5207-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
|
27
|
Tang BL. Rab32/38 and the xenophagic restriction of intracellular bacteria replication. Microbes Infect 2016; 18:595-603. [PMID: 27256464 DOI: 10.1016/j.micinf.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022]
Abstract
Rab GTPases' subversion by intracellular pathogens during infection has been extensively documented. Recent findings have implicated a key intracellular bacterial restriction/containment function for Rab32/38 in Salmonella species in macrophages and Listeria monocytogenes in dendritic cells. Rab32/38 aids the phagolysosome maturation, and mediates a parallel xenophagy mechanism by engaging prohibitins.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
28
|
Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion. Tumour Biol 2015; 37:8131-8. [PMID: 26715272 DOI: 10.1007/s13277-015-4590-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022] Open
Abstract
Rab23 overexpression has been implicated in several human cancers. However, its expression pattern and biological roles in human bladder cancer have not been elucidated. In this study, we examined Rab23 expression in 93 bladder cancer specimens and analyzed its correlation with clinicopathological parameters. We found that Rab23 was overexpressed in 45 of 93 (48.3 %) cancer specimens. Significant association was found between Rab23 overexpression and tumor invasion depth (p = 0.0027). Rab23 overexpression also negatively correlated with FGFR3 protein expression (p = 0.021). We found that Rab23 expression was lower in normal bladder transitional cell line SV-HUC-1 than in bladder cancer cell lines BIU-87, 5637, and T24. We knocked down Rab23 expression in T24 cancer cells and transfected a Rab23 plasmid in the BIU-87 cell line. Rab23 depletion inhibited cell growth rate and invasion, while its overexpression resulted in increased cell growth and invasion. In addition, we demonstrated that Rab23 depletion decreased and its transfection upregulated expression of cyclin E, c-myc, and MMP-9. Furthermore, we showed that Rab23 knockdown inhibited NF-κB signaling and its overexpression upregulated NF-κB signaling. BAY 11-7082 (NF-κB inhibitor) partly inhibited the effect of Rab23 on cyclin E and MMP-9 expression. In conclusion, the present study demonstrated that Rab23 overexpression facilitates malignant cell growth and invasion in bladder cancer through the NF-κB pathway.
Collapse
|
29
|
Chang L, Zhao D, Liu HB, Wang QS, Zhang P, Li CL, Du WZ, Wang HJ, Liu X, Zhang ZR, Jiang CL. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep 2015; 12:6702-10. [PMID: 26299938 PMCID: PMC4626128 DOI: 10.3892/mmr.2015.4229] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/28/2015] [Indexed: 01/29/2023] Open
Abstract
Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N-terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase-2 (MMP-2) and MMP-9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP-2 and -9. Furthermore, it was found that MMP-2- and MMP-9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH-induced upregulation of MMP-2 and -9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP-2 and -9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Liang Chang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hui-Bin Liu
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qiu-Shi Wang
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ping Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chen-Long Li
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wen-Zhong Du
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hong-Jun Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xing Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhi-Ren Zhang
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chuan-Lu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
30
|
Hamada H, Tam PP. Mechanisms of left-right asymmetry and patterning: driver, mediator and responder. F1000PRIME REPORTS 2014; 6:110. [PMID: 25580264 PMCID: PMC4275019 DOI: 10.12703/p6-110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The establishment of a left-right (LR) organizer in the form of the ventral node is an absolute prerequisite for patterning the tissues on contralateral sides of the body of the mouse embryo. The experimental findings to date are consistent with a mechanistic paradigm that the laterality information, which is generated in the ventral node, elicits asymmetric molecular activity and cellular behaviour in the perinodal tissues. This information is then relayed to the cells in the lateral plate mesoderm (LPM) when the left-specific signal is processed and translated into LR body asymmetry. Here, we reflect on our current knowledge and speculate on the following: (a) what are the requisite anatomical and functional attributes of an LR organizer, (b) what asymmetric information is emanated from this organizer, and (c) how this information is transferred across the paraxial tissue compartment and elicits a molecular response specifically in the LPM.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Bioscience, Osaka UniversityJapan
| | - Patrick P.L. Tam
- Embryology Unit, Children's Medical Research Institute and Sydney Medical School, University of SydneyNew South WalesAustralia
| |
Collapse
|