1
|
Vieira CS, Bisogno S, Salvemini M, Loza Telleria E, Volf P. Azadirachtin disrupts ecdysone signaling and alters sand fly immunity. Parasit Vectors 2024; 17:526. [PMID: 39707409 DOI: 10.1186/s13071-024-06589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis. METHODS Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR). RESULTS Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression. CONCLUSIONS These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.
Collapse
Affiliation(s)
- Cecilia Stahl Vieira
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Sara Bisogno
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Roach TV, Lenhart KF. Mating-induced Ecdysone in the testis disrupts soma-germline contacts and stem cell cytokinesis. Development 2024; 151:dev202542. [PMID: 38832826 PMCID: PMC11190578 DOI: 10.1242/dev.202542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.
Collapse
Affiliation(s)
- Tiffany V. Roach
- Department of Biology, Drexel University, Chestnut St, Philadelphia, PA 19104, USA
| | - Kari F. Lenhart
- Department of Biology, Drexel University, Chestnut St, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Li X, Xiao J, Cheng X, Zhang H, Zheng W. Nanomaterial-encapsulated dsRNA of ecdysone-induced early gene E75, a potential RNAi-based SIT strategy for pest control against Bactrocera dorsalis. Int J Biol Macromol 2024; 263:130607. [PMID: 38447848 DOI: 10.1016/j.ijbiomac.2024.130607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Bactrocera dorsalis is a notorious pest widely distributed across most Asian countries. With the rapid development of pesticide resistance, new pest control methods are urgently needed. RNAi-based sterile insect technique (SIT) is a species-specific pest management strategy for B. dorsalis control. It is of great significance to identify more target genes from B. dorsalis, and improve the RNAi efficiency. In this study, microinjection-based RNAi results showed that six 20E response genes were necessary for male fertility of B. dorsalis, of which E75 was identified as the key target according to the lowest egg-laying number and hatching rate after E75 knockdown. Three nanoparticles chitosan (CS), chitosan‑sodium tripolyphosphate (CS-TPP), and star polycation (SPc) were used to encapsulate dsE75 expressed by HT115 strain. Properties analysis of nanoparticle-dsRNA complexes showed that both CS-TPP-dsRNA and SPc-dsRNA exhibited better properties (smaller size and polydispersity index) than CS-dsRNA. Moreover, oral administration of CS-TPP-dsE75 and SPc-dsE75 by males resulted in more abnormal testis and significantly lower fertility than feeding naked dsE75. Semi-field trials further confirmed that the number of hatched larvae was dramatically reduced in these two groups. Our study not only provides more valuable targets for RNAi-based SIT, but also promotes the application of environment-friendly management against B. dorsalis in the field.
Collapse
Affiliation(s)
- Xiaoyang Li
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiedan Xiao
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqin Cheng
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Cui H, Huang Q, Li J, Zhou P, Wang Z, Cai J, Feng C, Deng X, Gu H, He X, Tang J, Wang X, Zhao X, Yu J, Chen X. Single-cell RNA sequencing analysis to evaluate antimony exposure effects on cell-lineage communications within the Drosophila testicular niche. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115948. [PMID: 38184976 DOI: 10.1016/j.ecoenv.2024.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The increasing production and prevalence of antimony (Sb)-related products raise concerns regarding its potential hazards to reproductive health. Upon environmental exposure, Sb reportedly induces testicular toxicity during spermatogenesis; moreover, it is known to affect various testicular cell populations, particularly germline stem cell populations. However, the cell-cell communication resulting from Sb exposure within the testicular niche remains poorly understood. To address this gap, herein we analyzed testicular single-cell RNA sequencing data from Sb-exposed Drosophila. Our findings revealed that the epidermal growth factor receptor (EGFR) and WNT signaling pathways were associated with the stem cell niche in Drosophila testes, which may disrupt the homeostasis of the testicular niche in Drosophila. Furthermore, we identified several ligand-receptor pairs, facilitating the elucidation of intercellular crosstalk involved in Sb-mediated reproductive toxicology. We employed scRNA-seq analysis and conducted functional verification to investigate the expression patterns of core downstream factors associated with EGFR and WNT signatures in the testes under the influence of Sb exposure. Altogether, our results shed light on the potential mechanisms of Sb exposure-mediated testicular cell-lineage communications.
Collapse
Affiliation(s)
- Hongliang Cui
- Department of Urology, Nantong Hospital of Traditional Chinese Medicine, Nantong 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Peiyao Zhou
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Roach TV, Lenhart KF. Mating-induced ecdysone in the testis disrupts soma-germline contacts and stem cell cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562562. [PMID: 37905121 PMCID: PMC10614927 DOI: 10.1101/2023.10.16.562562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.
Collapse
|
6
|
Mues N, Hammer K, Leatherman J. Pvr regulates cyst stem cell division in the Drosophila testis niche, and has functions distinct from Egfr. Cells Dev 2023; 173:203822. [PMID: 36400422 PMCID: PMC10033353 DOI: 10.1016/j.cdev.2022.203822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Regulation of the rate of stem cell division is one of the key determinants of the abundance of differentiating progeny in stem cell-supported tissues, and mis-regulation can lead to tumorigenesis. The well-studied Drosophila testis niche is an excellent model system to study the regulation of stem cell division in vivo. This niche supports two stem cell populations-the germline stem cells (GSCs) and cyst stem cells (CySCs), which cluster around a group of cells called the hub. The differentiating cells of these two stem cell populations cooperate together to produce sperm. Signal transduction initiated by the epidermal growth factor receptor (Egfr) is a key regulatory pathway in the cyst lineage, and much of the study of this stem cell population has centered around understanding the complexities of the requirements for Egfr signaling. We examined another receptor tyrosine kinase, Pvr, the sole Drosophila PDGF/VEGF homolog, and found that it accumulates in the cyst lineage cells of the testis, while its ligand Pvf1 accumulates in the hub. Pvr inhibition caused a reduction in both CySC numbers and the proportion of CySCs in S phase, similar to Egfr inhibition. However, testes with Pvr inhibition exhibited a low-penetrance non-autonomous germ cell differentiation defect distinct from that observed with Egfr inhibition. Cyst cells with constitutively activated Pvr failed to support germ cell differentiation, as observed with constitutively activated Egfr. However, constitutively activated Pvr promoted tumorous accumulation of cyst cells outside of the niche, a phenotype not observed with constitutively activated Egfr. Thus, Egfr and Pvr have some receptor-specific functions and some shared functions in the cyst lineage cells of the testis.
Collapse
Affiliation(s)
- Nastaran Mues
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
| | - Kenneth Hammer
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
| | - Judith Leatherman
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States.
| |
Collapse
|
7
|
Yu J, Zheng Q, Li Z, Wu Y, Fu Y, Wu X, Lin D, Shen C, Zheng B, Sun F. CG6015 controls spermatogonia transit-amplifying divisions by epidermal growth factor receptor signaling in Drosophila testes. Cell Death Dis 2021; 12:491. [PMID: 33990549 PMCID: PMC8121936 DOI: 10.1038/s41419-021-03783-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023]
Abstract
Spermatogonia transit-amplifying (TA) divisions are crucial for the differentiation of germline stem cell daughters. However, the underlying mechanism is largely unknown. In the present study, we demonstrated that CG6015 was essential for spermatogonia TA-divisions and elongated spermatozoon development in Drosophila melanogaster. Spermatogonia deficient in CG6015 inhibited germline differentiation leading to the accumulation of undifferentiated cell populations. Transcriptome profiling using RNA sequencing indicated that CG6015 was involved in spermatogenesis, spermatid differentiation, and metabolic processes. Gene Set Enrichment Analysis (GSEA) revealed the relationship between CG6015 and the epidermal growth factor receptor (EGFR) signaling pathway. Unexpectedly, we discovered that phosphorylated extracellular regulated kinase (dpERK) signals were activated in germline stem cell (GSC)-like cells after reduction of CG6015 in spermatogonia. Moreover, Downstream of raf1 (Dsor1), a key downstream target of EGFR, mimicked the phenotype of CG6015, and germline dpERK signals were activated in spermatogonia of Dsor1 RNAi testes. Together, these findings revealed a potential regulatory mechanism of CG6015 via EGFR signaling during spermatogonia TA-divisions in Drosophila testes.
Collapse
Affiliation(s)
- Jun Yu
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Qianwen Zheng
- grid.440785.a0000 0001 0743 511XDepartment of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Zhiran Li
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Yunhao Wu
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Yangbo Fu
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Xiaolong Wu
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Dengfeng Lin
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Cong Shen
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bo Zheng
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fei Sun
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
8
|
Marca JEL, Somers WG. The Drosophila gonads: models for stem cell proliferation, self-renewal, and differentiation. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe male and female gonads of Drosophila melanogaster have developed into powerful model systems for both the study of stem cell behaviours, and for understanding how stem cell misregulation can lead to cancers. Using these systems, one is able to observe and manipulate the resident stem cell populations in vivo with a great deal of licence. The tractability of the testis and ovary also allow researchers to explore a range of cellular mechanisms, such as proliferation and polarity, as well as the influence exerted by the local environment through a host of highly-conserved signalling pathways. Importantly, many of the cellular behaviours and processes studied in the Drosophila testis and ovary are known to be disrupted, or otherwise misregulated, in human tumourigenic cells. Here, we review the mechanisms relating to stem cell behaviour, though we acknowledge there are many other fascinating aspects of gametogenesis, including the invasive behaviour of migratory border cells in the Drosophila ovary that, though relevant to the study of tumourigenesis, will unfortunately not be covered.
Collapse
Affiliation(s)
- John E. La Marca
- Department of Genetics, La Trobe University, Melbourne, VIC 3086, Australia
| | | |
Collapse
|
9
|
Bazylev SS, Adashev VE, Shatskikh AS, Olenina LV, Kotov AA. Somatic Cyst Cells as a Microenvironment for the Maintenance and Differentiation of Germline Cells in Drosophila Spermatogenesis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Iki T, Takami M, Kai T. Modulation of Ago2 Loading by Cyclophilin 40 Endows a Unique Repertoire of Functional miRNAs during Sperm Maturation in Drosophila. Cell Rep 2020; 33:108380. [PMID: 33176138 DOI: 10.1016/j.celrep.2020.108380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
In gene silencing, Hsp90 chaperone machinery assists Argonaute (Ago) binding and unwinding of silencing small RNA (sRNA) duplexes. This enables the formation of effector RNA-induced silencing complex (RISC) that often displays cargo preferences. Hence, in Drosophila, microRNAs (miRNAs) and small-interfering RNAs (siRNAs) are differentially sorted into Ago1-RISC and Ago2-RISC, respectively. Here, we identify fly Cyclophilin 40 (Cyp40) as a testis-specialized Hsp90 co-chaperone essential for spermatogenesis and for modulating Ago2-RISC formation. We show that testis-distinctive Ago-sorting and strand-selection mechanisms accumulate a unique set of miRNAs on Ago2. Cyp40 interacts with duplex-incorporating Ago2 through Hsp90 in vitro and selectively promotes the build-up of Ago2-bound miRNAs, but not endogenous siRNAs, in vivo. Moreover, one of Cyp40-dependent Ago2-sorted miRNAs is required for late spermatogenesis, unraveling the physiological relevance of the unconventional yet conserved Drosophila miRNA-Ago2 sorting pathway. Collectively, these results identify RISC-regulatory roles for Hsp90 machinery and, more generally, highlight the tissue-specific adaptation of sRNA pathways through chaperone diversification.
Collapse
Affiliation(s)
- Taichiro Iki
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan.
| | - Moe Takami
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Chebbo S, Josway S, Belote JM, Manier MK. A putative novel role for Eip74EF in male reproduction in promoting sperm elongation at the cost of male fecundity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:620-628. [PMID: 32725718 DOI: 10.1002/jez.b.22986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 11/06/2022]
Abstract
Spermatozoa are the most morphologically variable cell type, yet little is known about genes controlling natural variation in sperm shape. Drosophila fruit flies have the longest sperm known, which are evolving under postcopulatory sexual selection, driven by sperm competition and cryptic female choice. Long sperm outcompete short sperm but primarily when females have a long seminal receptacle (SR), the primary sperm storage organ. Thus, the selection on sperm length is mediated by SR length, and the two traits are coevolving across the Drosophila lineage, driven by a genetic correlation and fitness advantage of long sperm and long SR genotypes in both males and females. Ecdysone-induced protein 74EF (Eip74EF) is expressed during postmeiotic stages of spermatogenesis when spermatid elongation occurs, and we found that it is rapidly evolving under positive selection in Drosophila. Hypomorphic knockout of the E74A isoform leads to shorter sperm but does not affect SR length, suggesting that E74A may be involved in promoting spermatid elongation but is not a genetic driver of male-female coevolution. We also found that E74A knockout has opposing effects on fecundity in males and females, with an increase in fecundity for males but a decrease in females, consistent with its documented role in oocyte maturation. Our results suggest a novel function of Eip74EF in spermatogenesis and demonstrates that this gene influences both male and female reproductive success. We speculate on possible roles for E74A in spermatogenesis and male reproductive success.
Collapse
Affiliation(s)
- Sharif Chebbo
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Sarah Josway
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - John M Belote
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Mollie K Manier
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
12
|
A Functional Analysis of the Drosophila Gene hindsight: Evidence for Positive Regulation of EGFR Signaling. G3-GENES GENOMES GENETICS 2020; 10:117-127. [PMID: 31649045 PMCID: PMC6945037 DOI: 10.1534/g3.119.400829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have investigated the relationship between the function of the gene hindsight (hnt), which is the Drosophila homolog of Ras Responsive Element Binding protein-1 (RREB-1), and the EGFR signaling pathway. We report that hnt mutant embryos are defective in EGFR signaling dependent processes, namely chordotonal organ recruitment and oenocyte specification. We also show the temperature sensitive hypomorphic allele hntpebbled is enhanced by the hypomorphic MAPK allele rolled (rl1 ). We find that hnt overexpression results in ectopic DPax2 expression within the embryonic peripheral nervous system, and we show that this effect is EGFR-dependent. Finally, we show that the canonical U-shaped embryonic lethal phenotype of hnt, which is associated with premature degeneration of the extraembyonic amnioserosa and a failure in germ band retraction, is rescued by expression of several components of the EGFR signaling pathway (sSpi, Ras85D V12 , pntP1 ) as well as the caspase inhibitor p35 Based on this collection of corroborating evidence, we suggest that an overarching function of hnt involves the positive regulation of EGFR signaling.
Collapse
|
13
|
Leiblich A, Hellberg JEEU, Sekar A, Gandy C, Mendes CC, Redhai S, Mason J, Wainwright M, Marie P, Goberdhan DCI, Hamdy FC, Wilson C. Mating induces switch from hormone-dependent to hormone-independent steroid receptor-mediated growth in Drosophila secondary cells. PLoS Biol 2019; 17:e3000145. [PMID: 31589603 PMCID: PMC6797231 DOI: 10.1371/journal.pbio.3000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/17/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023] Open
Abstract
Male reproductive glands like the mammalian prostate and the paired Drosophila melanogaster accessory glands secrete seminal fluid components that enhance fecundity. In humans, the prostate, stimulated by environmentally regulated endocrine and local androgens, grows throughout adult life. We previously showed that in fly accessory glands, secondary cells (SCs) and their nuclei also grow in adults, a process enhanced by mating and controlled by bone morphogenetic protein (BMP) signalling. Here, we demonstrate that BMP-mediated SC growth is dependent on the receptor for the developmental steroid ecdysone, whose concentration is reported to reflect sociosexual experience in adults. BMP signalling appears to regulate ecdysone receptor (EcR) levels via one or more mechanisms involving the EcR's N terminus or the RNA sequence that encodes it. Nuclear growth in virgin males is dependent on ecdysone, some of which is synthesised in SCs. However, mating induces additional BMP-mediated nuclear growth via a cell type-specific form of hormone-independent EcR signalling, which drives genome endoreplication in a subset of adult SCs. Switching to hormone-independent endoreplication after mating allows growth and secretion to be hyperactivated independently of ecdysone levels in SCs, permitting more rapid replenishment of the accessory gland luminal contents. Our data suggest mechanistic parallels between this physiological, behaviour-induced signalling switch and altered pathological signalling associated with prostate cancer progression.
Collapse
Affiliation(s)
- Aaron Leiblich
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Aashika Sekar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Claudia C. Mendes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Siamak Redhai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Mason
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark Wainwright
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pauline Marie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Deborah C. I. Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Ng CL, Qian Y, Schulz C. Notch and Delta are required for survival of the germline stem cell lineage in testes of Drosophila melanogaster. PLoS One 2019; 14:e0222471. [PMID: 31513679 PMCID: PMC6742463 DOI: 10.1371/journal.pone.0222471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 01/27/2023] Open
Abstract
In all metazoan species, sperm is produced from germline stem cells. These self-renew and produce daughter cells that amplify and differentiate dependent on interactions with somatic support cells. In the male gonad of Drosophila melanogaster, the germline and somatic cyst cells co-differentiate as cysts, an arrangement in which the germline is completely enclosed by cytoplasmic extensions from the cyst cells. Notch is a developmentally relevant receptor in a pathway requiring immediate proximity with the signal sending cell. Here, we show that Notch is expressed in the cyst cells of wild-type testes. Notch becomes activated in the transition zone, an apical area of the testes in which the cyst cells express stage-specific transcription factors and the enclosed germline finalizes transit-amplifying divisions. Reducing the ligand Delta from the germline cells via RNA-Interference or reducing the receptor Notch from the cyst cells via CRISPR resulted in cell death concomitant with loss of germline cells from the transition zone. This shows that Notch signaling is essential for the survival of the germline stem cell lineage.
Collapse
Affiliation(s)
- Chun L. Ng
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yue Qian
- University of North Georgia, Department of Biology, Oakwood, Georgia, United States of America
| | - Cordula Schulz
- University of Georgia, Department of Cellular Biology, Athens, Georgia, United States of America
| |
Collapse
|
15
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
16
|
Relevance of estrogen-related receptor gene and ecdysone receptor gene in adult testis of the cricket Teleogryllus emma (Orthoptera: Gryllidae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2017; 104:97. [PMID: 29086031 DOI: 10.1007/s00114-017-1518-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Estrogen-related receptor gene (ERR) and ecdysone receptor gene (EcR) belong to the nuclear receptor gene superfamily, both of which are associated with the regulation of insect reproductive development. However, the relationship between ERR and EcR and whether ERR participates in the 20E signal pathway during male reproduction are unclear. In this paper, adult male crickets Teleogryllus emma Ohmschi & Matsumura were divided into the experimental group, negative group, and control group. Crickets of the experimental group were injected with TeERR or TeEcR-dsRNA, and those in the negative group received EGFP-dsRNA. The efficiency of TeERR and TeEcR-RNAi was detected in the experimental group. Furthermore, the transcription level, morphological characteristics as well as weight were analyzed in the TeERR or TeEcR knocked-down testis. Results showed that the expression level of TeERR or TeEcR was significantly down-regulated (P < 0.05) when treated with 2000 ng TeERR or TeEcR-dsRNA for 48 h. The expression level of TeERR could be down-regulated (P < 0.05) using TeEcR-RNAi and vice versa. TeERR and TeEcR-RNAi caused morphological changes in testes, but they had no obvious effect on weight (P > 0.05). These results indicate that TeERR and TeEcR are intimately related to each other. In addition, TeERR may be involved in the 20E signal pathway and maintain the function of adult cricket testis.
Collapse
|
17
|
Feng L, Shi Z, Chen X. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis. PLoS Genet 2017; 13:e1006571. [PMID: 28196077 PMCID: PMC5308785 DOI: 10.1371/journal.pgen.1006571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Zhen Shi
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
18
|
Wilson C, Leiblich A, Goberdhan DCI, Hamdy F. The Drosophila Accessory Gland as a Model for Prostate Cancer and Other Pathologies. Curr Top Dev Biol 2016; 121:339-375. [PMID: 28057306 PMCID: PMC5224695 DOI: 10.1016/bs.ctdb.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human prostate is a gland of the male reproductive tract, which together with the seminal vesicles, is responsible for most seminal fluid production. It is a common site of cancer, and unlike other glands, it typically enlarges in aging men. In flies, the male accessory glands make many major seminal fluid components. Like their human equivalents, they secrete proteins from several conserved families, including proteases, lectins, and cysteine-rich secretory proteins, some of which interact with sperm and affect fertility. A key protein, sex peptide, is not conserved in vertebrates but plays a central role in mediating long-term effects on females after mating. Although postmitotic, one epithelial cell type in the accessory glands, the secondary cell, continues to grow in adults. It secretes microvesicles called exosomes from the endosomal multivesicular body, which, after mating, fuse with sperm. They also appear to affect female postmating behavior. Remarkably, the human prostate epithelium also secretes exosomes, which fuse to sperm in vitro to modulate their activity. Exosomes from prostate and other cancer cells are increasingly proposed to play fundamental roles in modulating the tumor microenvironment and in metastasis. Here we review a diverse accessory gland literature, which highlights functional analogies between the male reproductive glands of flies and humans, and a critical role for extracellular vesicles in allowing seminal fluid to promote male interests within the female. We postulate that secondary cells and prostate epithelial cells use common mechanisms to control growth, secretion, and signaling, which are relevant to prostate and other cancers, and can be genetically dissected in the uniquely tractable fly model.
Collapse
Affiliation(s)
- C Wilson
- University of Oxford, Oxford, United Kingdom.
| | - A Leiblich
- University of Oxford, Oxford, United Kingdom; University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - F Hamdy
- University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
19
|
Qian Y, Ng CL, Schulz C. CSN maintains the germline cellular microenvironment and controls the level of stem cell genes via distinct CRLs in testes of Drosophila melanogaster. Dev Biol 2014; 398:68-79. [PMID: 25459658 DOI: 10.1016/j.ydbio.2014.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/13/2014] [Indexed: 12/25/2022]
Abstract
Stem cells and their daughters are often associated with and depend on cues from their cellular microenvironment. In Drosophila testes, each Germline Stem Cell (GSC) contacts apical hub cells and is enclosed by cytoplasmic extensions from two Cyst Stem Cells (CySCs). Each GSC daughter becomes enclosed by cytoplasmic extensions from two CySC daughters, called cyst cells. CySC fate depends on an Unpaired (Upd) signal from the hub cells, which activates the Janus Kinase and Signal Transducer and Activator of Transcription (Jak/STAT) pathway in the stem cells. Germline enclosure depends on Epidermal Growth Factor (EGF) signals from the germline to the somatic support cells. Expression of RNA-hairpins against subunits of the COnstitutively Photomorphogenic-9- (COP9-) signalosome (CSN) in somatic support cells disrupted germline enclosure. Furthermore, CSN-depleted somatic support cells in the CySC position next to the hub had reduced levels of the Jak/STAT effectors Zinc finger homeotic-1 (Zfh-1) and Chronologically inappropriate morphogenesis (Chinmo). Knockdown of CSN in the somatic support cells does not disrupt EGF and Upd signal transduction as downstream signal transducers, phosphorylated STAT (pSTAT) and phosphorylated Mitogen Activated Protein Kinase (pMAPK), were still localized to the somatic support cell nuclei. The CSN modifies fully formed Cullin RING ubiquitin ligase (CRL) complexes to regulate selective proteolysis. Reducing cullin2 (cul2) from the somatic support cells disrupted germline enclosure, while reducing cullin1 (cul1) from the somatic support cells led to a low level of Chinmo. We propose that different CRLs enable the responses of somatic support cells to Upd and EGF.
Collapse
Affiliation(s)
- Yue Qian
- (a)University of Georgia, Department of Cellular Biology, Athens, GA 30602, USA; Ripon College, Department of Biology, Ripon, WI 54971, USA
| | - Chun L Ng
- (a)University of Georgia, Department of Cellular Biology, Athens, GA 30602, USA
| | - Cordula Schulz
- (a)University of Georgia, Department of Cellular Biology, Athens, GA 30602, USA.
| |
Collapse
|